Prototyping in Java instead of extending - java

Is Javascript-like prototyping anyhow achievable, even using Reflection? Can I wrap my object inside another one, just to extend its functionality with one or two more methods, without wiring all its original nonprivate methods to the wrapper class, or extends is all I get?

If you are looking for extension methods, you could try Xtend. Xtend is language that compiles to java code and eliminates boilerplate code.
The following text is stolen from the Xtend Docs for extensions:
By adding the extension keyword to a field, a local variable or a parameter declaration, its instance methods become extension methods.
Imagine you want to have some layer specific functionality on a class Person. Let us say you are in a servlet-like class and want to persist a Person using some persistence mechanism. Let us assume Person implements a common interface Entity. You could have the following interface
interface EntityPersistence {
public save(Entity e);
public update(Entity e);
public delete(Entity e);
}
And if you have obtained an instance of that type (through a factory or dependency injection or what ever) like this:
class MyServlet {
extension EntityPersistence ep = Factory.get(typeof(EntityPersistence))
...
}
You are able to save, update and delete any entity like this:
val Person person = ...
person.save // calls ep.save(person)
person.name = 'Horst'
person.update // calls ep.update(person)
person.delete // calls ep.delete(person)

I don't think you can do this in Java. You can though in Groovy, using metaclasses
String.metaClass.world = {
return delegate + " world!"
}
println "Hello".world()

Related

How to check if a Java interface has an implementation? [duplicate]

Can I do it with reflection or something like that?
I have been searching for a while and there seems to be different approaches, here is a summary:
reflections library is pretty popular if u don't mind adding the dependency. It would look like this:
Reflections reflections = new Reflections("firstdeveloper.examples.reflections");
Set<Class<? extends Pet>> classes = reflections.getSubTypesOf(Pet.class);
ServiceLoader (as per erickson answer) and it would look like this:
ServiceLoader<Pet> loader = ServiceLoader.load(Pet.class);
for (Pet implClass : loader) {
System.out.println(implClass.getClass().getSimpleName()); // prints Dog, Cat
}
Note that for this to work you need to define Petas a ServiceProviderInterface (SPI) and declare its implementations. you do that by creating a file in resources/META-INF/services with the name examples.reflections.Pet and declare all implementations of Pet in it
examples.reflections.Dog
examples.reflections.Cat
package-level annotation. here is an example:
Package[] packages = Package.getPackages();
for (Package p : packages) {
MyPackageAnnotation annotation = p.getAnnotation(MyPackageAnnotation.class);
if (annotation != null) {
Class<?>[] implementations = annotation.implementationsOfPet();
for (Class<?> impl : implementations) {
System.out.println(impl.getSimpleName());
}
}
}
and the annotation definition:
#Retention(RetentionPolicy.RUNTIME)
#Target(ElementType.PACKAGE)
public #interface MyPackageAnnotation {
Class<?>[] implementationsOfPet() default {};
}
and you must declare the package-level annotation in a file named package-info.java inside that package. here are sample contents:
#MyPackageAnnotation(implementationsOfPet = {Dog.class, Cat.class})
package examples.reflections;
Note that only packages that are known to the ClassLoader at that time will be loaded by a call to Package.getPackages().
In addition, there are other approaches based on URLClassLoader that will always be limited to classes that have been already loaded, Unless you do a directory-based search.
What erickson said, but if you still want to do it then take a look at Reflections. From their page:
Using Reflections you can query your metadata for:
get all subtypes of some type
get all types annotated with some annotation
get all types annotated with some annotation, including annotation parameters matching
get all methods annotated with some
In general, it's expensive to do this. To use reflection, the class has to be loaded. If you want to load every class available on the classpath, that will take time and memory, and isn't recommended.
If you want to avoid this, you'd need to implement your own class file parser that operated more efficiently, instead of reflection. A byte code engineering library may help with this approach.
The Service Provider mechanism is the conventional means to enumerate implementations of a pluggable service, and has become more established with the introduction of Project Jigsaw (modules) in Java 9. Use the ServiceLoader in Java 6, or implement your own in earlier versions. I provided an example in another answer.
Spring has a pretty simple way to acheive this:
public interface ITask {
void doStuff();
}
#Component
public class MyTask implements ITask {
public void doStuff(){}
}
Then you can autowire a list of type ITask and Spring will populate it with all implementations:
#Service
public class TaskService {
#Autowired
private List<ITask> tasks;
}
The most robust mechanism for listing all classes that implement a given interface is currently ClassGraph, because it handles the widest possible array of classpath specification mechanisms, including the new JPMS module system. (I am the author.)
try (ScanResult scanResult = new ClassGraph().whitelistPackages("x.y.z")
.enableClassInfo().scan()) {
for (ClassInfo ci : scanResult.getClassesImplementing("x.y.z.SomeInterface")) {
foundImplementingClass(ci); // Do something with the ClassInfo object
}
}
With ClassGraph it's pretty simple:
Groovy code to find implementations of my.package.MyInterface:
#Grab('io.github.classgraph:classgraph:4.6.18')
import io.github.classgraph.*
new ClassGraph().enableClassInfo().scan().withCloseable { scanResult ->
scanResult.getClassesImplementing('my.package.MyInterface').findAll{!it.abstract}*.name
}
What erikson said is best. Here's a related question and answer thread - http://www.velocityreviews.com/forums/t137693-find-all-implementing-classes-in-classpath.html
The Apache BCEL library allows you to read classes without loading them. I believe it will be faster because you should be able to skip the verification step. The other problem with loading all classes using the classloader is that you will suffer a huge memory impact as well as inadvertently run any static code blocks which you probably do not want to do.
The Apache BCEL library link - http://jakarta.apache.org/bcel/
Yes, the first step is to identify "all" the classes that you cared about. If you already have this information, you can enumerate through each of them and use instanceof to validate the relationship. A related article is here: https://web.archive.org/web/20100226233915/www.javaworld.com/javaworld/javatips/jw-javatip113.html
Also, if you are writing an IDE plugin (where what you are trying to do is relatively common), then the IDE typically offers you more efficient ways to access the class hierarchy of the current state of the user code.
I ran into the same issue. My solution was to use reflection to examine all of the methods in an ObjectFactory class, eliminating those that were not createXXX() methods returning an instance of one of my bound POJOs. Each class so discovered is added to a Class[] array, which was then passed to the JAXBContext instantiation call. This performs well, needing only to load the ObjectFactory class, which was about to be needed anyway. I only need to maintain the ObjectFactory class, a task either performed by hand (in my case, because I started with POJOs and used schemagen), or can be generated as needed by xjc. Either way, it is performant, simple, and effective.
A new version of #kaybee99's answer, but now returning what the user asks: the implementations...
Spring has a pretty simple way to acheive this:
public interface ITask {
void doStuff();
default ITask getImplementation() {
return this;
}
}
#Component
public class MyTask implements ITask {
public void doStuff(){}
}
Then you can autowire a list of type ITask and Spring will populate it with all implementations:
#Service
public class TaskService {
#Autowired(required = false)
private List<ITask> tasks;
if ( tasks != null)
for (ITask<?> taskImpl: tasks) {
taskImpl.doStuff();
}
}

Call Kotlin object with class delegation from Java as a static method

This may be a bit difficult to describe, so I'll try to give a concrete example of what I'm trying to do.
Suppose we have a Facade interface and class (in Java), like this:
interface FacadeInterface<T> {
void method(String from, String via);
}
class Facade<T> implements FacadeInterface<T> {
private Class<T> mClazz;
public Facade(Class<T> clazz) {
mClazz = clazz;
}
#Override
public void method(String from, String via) {
System.out.println("Method called from " + from + " via " + via);
}
}
In my applications, I need to have multiple singletons which hold an instance of the facade. The real facade has additional setup/config parameters but those are irrelevant here.
Before I started using kotlin, I would have a class which holds a static instance of the facade (not really a singleton, but in my case, it served a similar purpose) which proxied the calls to the facade, like this:
public class Singleton {
private static final FacadeInterface<String> sFacade = new Facade<>(String.class);
private Singleton() {
}
public static void method(String from, String via) {
sFacade.method(from, via);
}
}
Now, with Kotlin we have class delegates which allow me to write something like this:
object SingletonKt : FacadeInterface<String> by Facade(String::class.java)
This is great - no more boilerplate and I can call SingletonKt from Kotlin classes the same way I called the java Singleton:
Singleton.method("Kotlin", "Singleton")
SingletonKt.method("Kotlin", "SingletonKt")
But, a slight problem arises when I use SingletonKt from Java. Then I have to specify INSTANCE:
Singleton.method("Java", "Singleton");
SingletonKt.INSTANCE.method("Java", "SingletonKt");
I am aware of the #JvmStatic annotation, but the only place I can put it in the SingletonKt file without causing compile errors is right before FacadeInterface and it doesn't seem to do the trick.
Is there a way to set up this class delegate so that I can call it from Java as if it were a static method, without introducing the boilerplate of creating proxy methods for SingletonKt (which would defeat the purpose of the class delegate)?
It's sadly not possilble!
The Kotlin Delegation is a nice way to reduce boilerplate code. But it comes with the inability to actually access the delegate within the class body.
The second issue you're facing regarding #JvmStatic is actually more drastic to your cause than the first and also applies to you when implementing the delegation manually:
Override members cannot be '#JvmStatic' in object
So instead of exposing the method() through the INSTANCE only, you could delegate it to a staticMethod() on the object. This still differs from your intent, but comes close to it.
object SingletonKt : FacadeInterface<String> by Facade(String::class.java)
#JvmStatic fun staticMethod(from: String, via: String) = method(from, to)
}
I don't know if it is possible to have delegated methods as static methods inside an object in Kotlin.
However, as you are interested in creating singletons that proxy a class, you could use package-level constants in Kotlin:
val SingletonKt : FacadeInterface<String> = Facade(String::class.java)
Now, you can call SingletonKt.method just like you would in Java. Note that you need to use a static import in Java to be able to use the SingletonKt constant.
This also allows you to use features like lazy to only create the singleton (or, in this case, instance) when you need it.

How can I add my own EnumValueMapperSupport

I'm trying to persist some enums in Hibernate and it looks like my two options for built in support are to use the name of the enum, which I would rather not do because it's string based instead of int based, or the ordinal of the enum, which I would rather not do because if I add one of the enum values at the top of the class later on, I break everything down the line.
Instead, I have an interface called Identifiable that has public int getId() as part of its contract. This way, the enums I want to persist can implement Identifable and I can know that they'll define their own id.
But when I try to extend EnumValueMapperSupport so I can utilize this functionality, I'm greeted with errors from the compiler because the EnumValueMapper interface and the EnumValueMapperSupport class are not static, and thus are expected to be locked into a given EnumType object.
How can I extend this functionality in Hibernate, short of rewriting a bunch of Hibernate code and submitting a patch. If I can't, is there another way to somehow store an enum based on something other than the ordinal or name, but instead on your own code?
In a related thought, has anyone personally been down this road and decided "let's see how bad the name mapping is" and just went with name mapping because it wasn't that much worse performance? Like, is it possible I'm prematurely optimizing here?
I'm working against Hibernate version 5.0.2-final.
At least for Hibernate 4.3.5 the EnumValueMapper is static - although private.
But you can extend EnumValueMapperSupport in an extension of EnumType:
public class ExampleEnumType extends EnumType {
public class ExampleMapper extends EnumValueMapperSupport {
...
}
}
To create an instance of this mapper you need an instance of your EnumType:
ExampleEnumType type = new ExampleEnumType();
ExampleMapper mapper = type.new ExampleMapper();
Or you create it inside your type:
public class ExampleEnumType extends EnumType {
public class ExampleMapper extends EnumValueMapperSupport {
...
}
public ExampleMapper createMapper() {
return new ExampleMapper();
}
}

Design Patterns, override a method without need to re compile / relink

We are building a product that needs to run on production environments. We need to modify some of the functionality of a existing library. The existing library has class's and methods, we need to override 1 or more methods so that the caller uses our overriden methods instead of the original library.
OriginalLibrary
package com.original.library ;
public class OriginalLibrary {
public int getValue() {
return 1 ;
}
public int getAnotherValue() {
return 1 ;
}
}
Original Client
public class MyClient {
private OriginalLibraryClass originalLibraryObject ;
public MyClient () {
originalLibraryObject = new OriginalLibraryClass() ;
System.out.println(originalLibraryObject.getValue()) ;
System.out.println(originalLibraryObject.getAnotherValue()) ;
}
}
Output
1
2
Now, I need to change getValue() to return 3, instead of 1
Needed Output
3
2
package com.original.library.improved ;
public class OriginalLibrary extends com.original.library.OriginalLibrary {
public int getValue() {
return 3 ;
}
public int getAnotherValue() {
return super.getAnotherValue() ;
}
}
If I do the above, I need to tell my Original Client to reorder and use my new com.original.library.improved jar file before com.original.library.
I am almost convinced that this is the most non intrusive way to launch my improved services over and above the OriginalLibrary. I would have preferred a solution where I need to tell the customer to just add my jar file, no need to recompile, relink your client code.
Similar (not same) questions on a google search
here
here
java assist is excellent library for bytecode manipulation. I have modified code below as per your sample code given, You have to explore javaassist more for your actual requirenment
CtClass etype = ClassPool.getDefault().get("com.original.library.OriginalLibrary");
// get method from class
CtMethod cm = etype.getDeclaredMethod("getValue");
// change the method bosy
cm.setBody("return 3;");
etype.rebuildClassFile();
// give the path where classes is placed, In my eclipse it is bin
etype.writeFile("bin");
OriginalLibrary originalLibraryObject;
originalLibraryObject = new OriginalLibrary();
System.out.println(originalLibraryObject.getValue());
System.out.println(originalLibraryObject.getAnotherValue());
Now output of getValue is 3 because I changed body of that method.
A couple of questions -
How is the client getting an instance of your library's class?
If they are using new OriginalLibrary(), then you're pretty much stuck with creating a new subclass of OriginalLibrary and then asking your client to use your new OriginalLibraryImproved class. This is a common problem encountered in projects and is one reason why a library should not allow its clients to instantiate its classes directly using the new operator.
If instead, your client is instantiating OriginalLibrary using a factory method provided by the library (say, OriginalLibrary.getInstance()), you may want to check if there are any hooks into the factory that allow you to change the object being returned.
Do you have full control of the source code of the original library?
If yes, then you definitely should (and I cannot emphasize this strongly enough) provide factory methods for any class in the library that is instantiable. Doing this allows you to change the actual object being returned without modifying the client (as long as the returned object's class is a subclass of the return value from the factory method).
If not, then I suggest you do the following.
Create a subclass of OriginalLibrary (say, OriginalLibraryImproved).
Create a Factory class named OriginalLibraryFactory that has a static method named getInstance(). Write code to return an instance of OriginalLibraryImproved from this method.
Ask your client to replace all occurrences of new OriginalLibrary() with OriginalLibraryFactory.getInstance(). Note that this approach will only involve adding an extra import for the factory class. The client will still refer to the returned instance using the same OriginalLibrary reference as before.
The advantage of this approach is that it gives you complete flexibility to change the implementation details of OriginalLibraryImproved without affecting the client in anyway. You could also swap OriginalLibararyImproved with a newer version like OriginalLibraryImprovedVer2 and the client will be oblivious to the fact that it is using a new class. You'll just have to make sure that OriginalLibraryImprovedVer2 subclasses OriginalLibrary.
An even more flexible approach is to use the Wrapper or Decorator pattern to avoid the pitfalls of inheritance. You can understand more about the Decorator pattern here.
In a nutshell, try to avoid forcing your clients to use new and try to avoid inheritance unless you have very compelling reasons.

Force Singleton Pattern on a Class implementing an Interface

I better explain the question with an example.
I have an Interface Model which can be used to access data.
There can be different implementations of Model which can represent the data in various format say XMl , txt format etc. Model is not concerned with the formats.
Lets say one such implementation is myxmlModel.
Now i want to force myxmlModel and every other implementation of Model to follow Singleton Pattern.The usual way is to make myxmlModels constructor private and provide a static factory method to return an instance of myModel class.But the problem is interface cannot have static method definitions and a result i cannot enforce a particular Factory method definition on all implementation of Model. So one implementation may end with providing getObject() and other may have getNewModel()..
One work around is to allow package access to myxmlModel's constructor and create a Factory class which creates the myxmlModel object and cache it for further use.
I was wondering if there is a better way to achieve the same functionality .
Make a factory that returns
instances of your interface, Model.
Make all concrete implementations of the model package-private classes
in the same package as your factory.
If your model is to be a singleton, and you are using java
5+, use enum instead of traditional
singleton, as it is safer.
public enum MyXMLModel{
INSTANCE();
//rest of class
};
EDIT:
Another possibility is to create delegate classes that do all the work and then use an enum to provide all of the Model Options.
for instance:
class MyXMLModelDelegate implements Model {
public void foo() { /*does foo*/}
...
}
class MyJSONModelDelegate implements Model {
public void foo() { /*does foo*/ }
...
}
public enum Models {
XML(new MyXMLModelDelgate()),
JSON(new MyJSONModelDelegate());
private Model delegate;
public Models(Model delegate) { this.delegate=delegate; }
public void foo() { delegate.foo(); }
}
You can use reflection. Something like this:
public interface Model {
class Singleton {
public static Model instance(Class<? extends Model> modelClass) {
try {
return (Model)modelClass.getField("instance").get(null);
} catch (blah-blah) {
blah-blah
}
}
}
public class XmlModel implements Model {
private static final Model instance = new XmlModel();
private XmlModel() {
}
}
usage:
Model.Singleton.instance(XmlModel.class)
Actually, I don't like this code much :). First, it uses reflection - very slow, second - there are possibilities of runtime errors in case of wrong definitions of classes.
Can you refactor the interface to be an abstract class? This will allow you to force a particular factory method down to all implementing classes.
I used to ask myself the same question. And I proposed the same answer ;-)
Now I normally drop the "forcing" behavior, I rely on documentation.
I found no case where the Singleton aspect was so compelling that it needed to be enforced by all means.
It is just a "best-practice" for the project.
I usually use Spring to instanciate such an object,
and it is the Spring configuration that makes it a Singleton.
Safe, and so easy ... plus additionnal Spring advantages (such as Proxying, substituing a different object once to make some tests etc...)
This is more an answer to your comment/clarification to kts's answer. Is it so, that the real problem is not using the Singleton pattern but instead defining an eclipse (equinox) extension point schema that allows contributing a singleton?
I think, this can't be done, because everytime you call IConfigurationElement.createExecutableExtension you create a new instance. This is quite incompatible with your singleton requirement. And therefore you need the public default constructor so that everybody can create instances.
Unless you can change the extension point definition so that plugins contribute a ModelFactory rather than a model, like
public interface ModelFactory {
public Model getModelInstance();
}
So the extension user will instantiate a ModelFactory and use it to obtain the singleton.
If I guessed wrong, leave a comment and I delete the answer ;)

Categories