I am using following way to write InputStream to File:
private void writeToFile(InputStream stream) throws IOException {
String filePath = "C:\\Test.jpg";
FileChannel outChannel = new FileOutputStream(filePath).getChannel();
ReadableByteChannel inChannel = Channels.newChannel(stream);
ByteBuffer buffer = ByteBuffer.allocate(1024);
while(true) {
if(inChannel.read(buffer) == -1) {
break;
}
buffer.flip();
outChannel.write(buffer);
buffer.clear();
}
inChannel.close();
outChannel.close();
}
I was wondering if this is the right way to use NIO. I have read a method FileChannel.transferFrom, which takes three parameter:
ReadableByteChannel src
long position
long count
In my case I only have src, I don't have the position and count, is there any way I can use this method to create the file?
Also for Image is there any better way to create image only from InputStream and NIO?
Any information would be very useful to me. There are similar questions here, in SO, but I cannot find any particular solution which suites my case.
I would use Files.copy
Files.copy(is, Paths.get(filePath));
as for your version
ByteBuffer.allocateDirect is faster - Java will make a best effort to perform native I/O operations directly upon it.
Closing is unreliable, if first fails second will never execute. Use try-with-resources instead, Channels are AutoCloseable too.
No it's not correct. You run the risk of losing data. The canonical NIO copy loop is as follows:
while (in.read(buffer) >= 0 || buffer.position() > 0)
{
buffer.flip();
out.write(buffer);
buffer.compact();
}
Note the changed loop conditions, which take care of flushing the output at EOS, and the use of compact() instead of clear(), which takes care of the possibility of short writes.
Similarly the canonical transferTo()/transferFrom() loop is as follows:
long offset = 0;
long quantum = 1024*1024; // or however much you want to transfer at a time
long count;
while ((count = out.transferFrom(in, offset, quantum)) > 0)
{
offset += count;
}
It must be called in a loop, as it isn't guaranteed to transfer the entire quantum.
Related
i am making a java program that reads data from a binary stream (using a DataInputStream).
Sometimes during this process i need to read a data chunk, however the method (which i cannot modify) that reads it will stop before reaching the end of the chunk (it is the normal behavior, apparently it just doesn't need the last bytes, but i can't do anything about the fact that they are there). This is not a problem in itself because i know exactly how long the chunk is, i.e. i know how many bytes there are in the chunk so i can skip bytes (with the skipBytes(int) method) until the end of the chunk ; the problem is : i don't actually know how many bytes the method actually read (or left), so i don't know how many bytes i need to skip to reach the end of the chunk.
Is there any way to :
know how many bytes were read in a stream since a certain point in time ?
know how many bytes were read in a stream since it was ?
any other way i could know how many bytes my data-chunk-reading method just read (since it won't directly tell me) ?
Just in case, i made a small diagram
Thanks in advance
ImageInputStream can do what you want. It implements DataInput and it has most of the methods of InputStream. And it has getStreamPosition, seek and skipBytes methods.
However, as you correctly point out, ImageIO.read(ImageInputStream) would close the stream, preventing you from reading more than one image.
The solution is to avoid using ImageIO.read, and instead obtain an ImageReader explicitly, using ImageIO.getImageReaders. Then you can invoke an ImageReader’s read method, which does not close the stream.
Here’s how I implemented it:
public void readImages(InputStream source,
Consumer<? super BufferedImage> imageHandler)
throws IOException {
// Every image is at a byte index which is a multiple of this number.
int boundary = 5000;
try (ImageInputStream stream = ImageIO.createImageInputStream(source)) {
while (true) {
long pos = stream.getStreamPosition();
Iterator<ImageReader> readers = ImageIO.getImageReaders(stream);
if (!readers.hasNext()) {
break;
}
ImageReader reader = readers.next();
reader.setInput(stream);
BufferedImage image = reader.read(0);
imageHandler.accept(image);
pos = stream.getStreamPosition();
long bytesToSkip = boundary - (pos % boundary);
if (bytesToSkip < boundary) {
stream.skipBytes(bytesToSkip);
}
}
}
}
And here’s how I tested it:
try (InputStream source = new BufferedInputStream(
Files.newInputStream(Path.of(filename)))) {
reader.readImages(source, img -> EventQueue.invokeLater(() -> {
JOptionPane.showMessageDialog(null, new ImageIcon(img));
}));
}
All the buffered read methods return the actual number of bytes read.
Quoting documentation for InputStream#read(byte[] b):
Returns:
the total number of bytes read into the buffer, or -1 if there is no more data because the end of the stream has been reached.
This code below streams at 1.3 seconds for a 2.43 MB file
byte[] buff = new byte[64*1024];
private static void flow(InputStream is, OutputStream os, byte[] buf )
throws IOException {
int numRead;
while ( (numRead = is.read(buf) ) >= 0) {
os.write(buf, 0, numRead);
}
}
What is the fastest way to "stream" an InputStream to OutputStream?
Update:
Data source is a cache, EHCache to be specific:
byte[] cached = cacheService.get(cacheKey); // Just `2 ms` to get the bytes, very fast
if(cached != null && cached.length > 0) {
flow(ByteSource.wrap(cached).openStream(), outputStream, buff);
}
I can't make any assertion that it's the fastest but I would suggest using apache-commons-io's IOUtils. Specifically
public static long copy(InputStream input, OutputStream output, int bufferSize)
and try to benchmark with different values of bufferSize.
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html#copy(java.io.InputStream,%20java.io.OutputStream,%20int)
The real problem here is the high level of abstraction you're working with. Provided you know exactly where the data is coming from (e.g. the file system) and where it's going (e.g network socket) and you know which operating system you're working on, it is possible to leverage the kernel's stream support to make this much faster.
Googling for "zero copy kernel io" I found this article which is an okay overview:
https://xunnanxu.github.io/2016/09/10/It-s-all-about-buffers-zero-copy-mmap-and-Java-NIO/
Since Java 9, InputStream provides a transferTo(OutStream) method or using Java 7 Files can also be used.
Again no claims on which is the fastest but you can benchmark these as well.
References:
Official Documentation
A similar Question
I would also have said commons-io: IOUtils::copy which does this probably better than a naive approach, but the code seems to do the same as yours (see copyLarge) but answer about Java 9 makes it a better choice.
public static long copyLarge(final InputStream input, final OutputStream output, final byte[] buffer)
throws IOException {
long count = 0;
int n;
while (EOF != (n = input.read(buffer))) {
output.write(buffer, 0, n);
count += n;
}
return count;
}
However, your problem may not be how you copy, but rather the lack of buffering: you could try with BufferedInputStream and BufferedOutputStream on top of existing stream:
Files.newInputStream is not buffered.
Files.newOutputStream is not buffered.
You could use FileChannel and ByteBuffer.
System is probably buffering file on its side.
You should roll up a JMH benchmark test:
Not sure how you can disable system buffering. I don't think it is a problem.
I would first check result with buffered input stream of various size (8K, 16K, 32K, 64K, 512K, 1M, 2M, 4M, 8M)
Then with buffered output stream
Then with a mix of two.
While it may take time to execute, the road to what the fastest implies measuring.
Currently, I am relying on the ObjectInputStream.available() method to tell me how many bytes are left in a stream. Reason for this -- I am writing some unit/integration tests on certain functions that deal with streams and I am just trying to ensure that the available() method returns 0 after I am done.
Unfortunately, upon testing for failure (i.e., I have sent about 8 bytes down the stream) my assertion for available() == 0 is coming up true when it should be false. It should show >0 or 8 bytes!
I know that the available() method is classically unreliable, but I figured it would show something at least > 0!
Is there a more reliable way of checking if a stream is empty or not (The is my main goal here after all)? Perhaps in the Apache IO domain or some other library out there?
Does anyone know why the available() method is so profoundly unreliable; what is the point of it? Or, is there a specific, proper way of using it?
Update:
So, as many of you can read from the comments, the main issue I am facing is that on one end of a stream, I am sending a certain number of bytes but on the other end, not all the bytes are arriving!
Specifically, I am sending 205498 bytes on one end and only getting 204988 on the other, consistently. I am controlling both sides of this operation between threads in a socket, but it should be no matter.
Here is the code I have written to collect all the bytes.
public static int copyStream(InputStream readFrom, OutputStream writeTo, int bytesToRead)
throws IOException {
int bytesReadTotal = 0, bytesRead = 0, countTries = 0, available = 0, bufferSize = 1024 * 4;
byte[] buffer = new byte[bufferSize];
while (bytesReadTotal < bytesToRead) {
if (bytesToRead - bytesReadTotal < bufferSize)
buffer = new byte[bytesToRead - bytesReadTotal];
if (0 < (available = readFrom.available())) {
bytesReadTotal += (bytesRead = readFrom.read(buffer));
writeTo.write(buffer, 0, bytesRead);
countTries = 0;
} else if (countTries < 1000)
try {
countTries++;
Thread.sleep(1L);
} catch (InterruptedException ignore) {}
else
break;
}
return bytesReadTotal;
}
I put the countTries variable in there just to see what happens. Even without countTires in there, it will block forever before it reaches the BytesToRead.
What would cause the stream to suddenly block indefinitely like that? I know on the other end it fully sends the bytes over (as it actually utilizes the same method and I see that it completes the function with the full BytesToRead matching bytesReadTotal in the end. But the receiver doesn't. In fact, when I look at the arrays, they match up perfectly up till the end as well.
UPDATE2
I noticed that when I added a writeTo.flush() at the end of my copyStream method, it seems to work again. Hmm.. Why are flushes so vital in this situation. I.e., why would not using it cause a stream to perma-block?
The available() method only returns how many bytes can be read without blocking (which may be 0). In order to see if there are any bytes left in the stream, you have to read() or read(byte[]) which will return the number of bytes read. If the return value is -1 then you have reached the end of file.
This little code snippet will loop through an InputStream until it gets to the end (read() returns -1). I don't think it can ever return 0 because it should block until it can either read 1 byte or discover there is nothing left to read (and therefore return -1)
int currentBytesRead=0;
int totalBytesRead=0;
byte[] buf = new byte[1024];
while((currentBytesRead =in.read(buf))>0){
totalBytesRead+=currentBytesRead;
}
I want to compare two files, one is in file system and the other is being downloaded from a HTTP URL.
We have tried to compare by byte[] arrays (we used HTTPRequestBuilder by Apache), but the concern is that the files may be too large and they may exhaust the memory. Do we have any good alternates.
You can compare the contents from two InputStream objects by reading just a buffer at a time. You'll need to read data as and when you "run out" from each stream, noting that you when you call read you may not end up actually reading a full buffer.
The two streams are equal if each byte-by-byte comparison from the buffers is equal and the streams run out of data at the same time. I suspect the code may be slightly fiddly, but it shouldn't be too bad.
In fact, for simpler code, if you wrap each InputStream in a BufferedInputStream, you could probably just compare byte-by-byte (calling the parameterless read() method on each iteration) without losing too much performance:
public boolean equals(InputStream x, InputStream y)
{
// TODO: Only wrap them if they're not already buffered
x = new BufferedInputStream(x);
y = new BufferedInputStream(y);
while (true)
{
int xValue = x.read();
int yValue = y.read();
if (xValue != yValue)
{
return false;
}
if (xValue == -1)
{
// Reached the end of both streams at the same time
return true;
}
}
}
Is there an article/algorithm on how I can read a long file at a certain rate?
Say I do not want to pass 10 KB/sec while issuing reads.
A simple solution, by creating a ThrottledInputStream.
This should be used like this:
final InputStream slowIS = new ThrottledInputStream(new BufferedInputStream(new FileInputStream("c:\\file.txt"),8000),300);
300 is the number of kilobytes per second. 8000 is the block size for BufferedInputStream.
This should of course be generalized by implementing read(byte b[], int off, int len), which will spare you a ton of System.currentTimeMillis() calls. System.currentTimeMillis() is called once for each byte read, which can cause a bit of an overhead. It should also be possible to store the number of bytes that can savely be read without calling System.currentTimeMillis().
Be sure to put a BufferedInputStream in between, otherwise the FileInputStream will be polled in single bytes rather than blocks. This will reduce the CPU load form 10% to almost 0. You will risk to exceed the data rate by the number of bytes in the block size.
import java.io.InputStream;
import java.io.IOException;
public class ThrottledInputStream extends InputStream {
private final InputStream rawStream;
private long totalBytesRead;
private long startTimeMillis;
private static final int BYTES_PER_KILOBYTE = 1024;
private static final int MILLIS_PER_SECOND = 1000;
private final int ratePerMillis;
public ThrottledInputStream(InputStream rawStream, int kBytesPersecond) {
this.rawStream = rawStream;
ratePerMillis = kBytesPersecond * BYTES_PER_KILOBYTE / MILLIS_PER_SECOND;
}
#Override
public int read() throws IOException {
if (startTimeMillis == 0) {
startTimeMillis = System.currentTimeMillis();
}
long now = System.currentTimeMillis();
long interval = now - startTimeMillis;
//see if we are too fast..
if (interval * ratePerMillis < totalBytesRead + 1) { //+1 because we are reading 1 byte
try {
final long sleepTime = ratePerMillis / (totalBytesRead + 1) - interval; // will most likely only be relevant on the first few passes
Thread.sleep(Math.max(1, sleepTime));
} catch (InterruptedException e) {//never realized what that is good for :)
}
}
totalBytesRead += 1;
return rawStream.read();
}
}
The crude solution is just to read a chunk at a time and then sleep eg 10k then sleep a second. But the first question I have to ask is: why? There are a couple of likely answers:
You don't want to create work faster than it can be done; or
You don't want to create too great a load on the system.
My suggestion is not to control it at the read level. That's kind of messy and inaccurate. Instead control it at the work end. Java has lots of great concurrency tools to deal with this. There are a few alternative ways of doing this.
I tend to like using a producer consumer pattern for soling this kind of problem. It gives you great options on being able to monitor progress by having a reporting thread and so on and it can be a really clean solution.
Something like an ArrayBlockingQueue can be used for the kind of throttling needed for both (1) and (2). With a limited capacity the reader will eventually block when the queue is full so won't fill up too fast. The workers (consumers) can be controlled to only work so fast to also throttle the rate covering (2).
while !EOF
store System.currentTimeMillis() + 1000 (1 sec) in a long variable
read a 10K buffer
check if stored time has passed
if it isn't, Thread.sleep() for stored time - current time
Creating ThrottledInputStream that takes another InputStream as suggested would be a nice solution.
If you have used Java I/O then you should be familiar with decorating streams. I suggest an InputStream subclass that takes another InputStream and throttles the flow rate. (You could subclass FileInputStream but that approach is highly error-prone and inflexible.)
Your exact implementation will depend upon your exact requirements. Generally you will want to note the time your last read returned (System.nanoTime). On the current read, after the underlying read, wait until sufficient time has passed for the amount of data transferred. A more sophisticated implementation may buffer and return (almost) immediately with only as much data as rate dictates (be careful that you should only return a read length of 0 if the buffer is of zero length).
You can use a RateLimiter. And make your own implementation of the read in InputStream. An example of this can be seen bellow
public class InputStreamFlow extends InputStream {
private final InputStream inputStream;
private final RateLimiter maxBytesPerSecond;
public InputStreamFlow(InputStream inputStream, RateLimiter limiter) {
this.inputStream = inputStream;
this.maxBytesPerSecond = limiter;
}
#Override
public int read() throws IOException {
maxBytesPerSecond.acquire(1);
return (inputStream.read());
}
#Override
public int read(byte[] b) throws IOException {
maxBytesPerSecond.acquire(b.length);
return (inputStream.read(b));
}
#Override
public int read(byte[] b, int off, int len) throws IOException {
maxBytesPerSecond.acquire(len);
return (inputStream.read(b,off, len));
}
}
if you want to limit the flow by 1 MB/s you can get the input stream like this:
final RateLimiter limiter = RateLimiter.create(RateLimiter.ONE_MB);
final InputStreamFlow inputStreamFlow = new InputStreamFlow(originalInputStream, limiter);
It depends a little on whether you mean "don't exceed a certain rate" or "stay close to a certain rate."
If you mean "don't exceed", you can guarantee that with a simple loop:
while not EOF do
read a buffer
Thread.wait(time)
write the buffer
od
The amount of time to wait is a simple function of the size of the buffer; if the buffer size is 10K bytes, you want to wait a second between reads.
If you want to get closer than that, you probably need to use a timer.
create a Runnable to do the reading
create a Timer with a TimerTask to do the reading
schedule the TimerTask n times a second.
If you're concerned about the speed at which you're passing the data on to something else, instead of controlling the read, put the data into a data structure like a queue or circular buffer, and control the other end; send data periodically. You need to be careful with that, though, depending on the data set size and such, because you can run into memory limitations if the reader is very much faster than the writer.