I am building an API for my application as a middle layer between model and the controller.
The model contains all data and low-level function. I have created a new class for API which uses the model but makes things easier for the user and does not let the user to access the data directly.
Now, I would like to prevent the user from accessing the model and let him to use only the functions from API.
How do I do that?
As far as I believe, this can be simply done by specifying whether the method or variable is private or public. The problem is that I have many static fields for global data. Can I restrict access to static fields so that only private functions of API can access them?
Creating a private static field in a class will ensure that ONLY functions in that class will have access to those fields. Also, if the class is re-instantiated (aka new myClass();), those fields will not be recreated; their values will remain intact and global to all instances of myClass.
In addition to the already posted answer:
It depends on what you mean by "restrict access to static fields":
If you want to prevent others from using them directly inadvertently, use the "private" modifier.
But remember that one can still access them via reflection if no other countermeasures have bin put into place.
This holds true also for the "static int foo" case if you don't seal the package since one can easily put another class into the same package which will have access again.
If you are building an API, maybe you want to read the book Practical API Design, Confessions of a Java Framework Architect.
A Method Is Better Than a Field It's better to use methods —typically getters and setters— to access fields than to expose them directly.
A Factory Is Better Than a Constructor You facilitate an API's future evolution when you expose a factory method rather than a constructor.
Make Everything Final For the sake of future evolution, it's better to disallow subclassing ... make your class final.
...
Related
This question already has answers here:
Why use getters and setters/accessors?
(37 answers)
Closed 5 years ago.
Why do the data members of POJO classes are private and the getter/setter function are public?
Can someone please give solution for this.
Common approach: access to variables by using getters/setters:
better maintainability
accessibility to private properties only for the defining class (isolation)
used for a different data representation (you might have private data to store the birthdate, but create a getter named getAge()).
It doesn't have to be that way, it's just a pattern and it exists for a reason.
All members of a class should be private by default, so that noone can mess up things from outside or read/write values which are not important by the outside. Additionally some internal stuff can change within your class, and the outside world should not care about it.
To allow access from the 'outside world', be it reading or writing anything should be handled via getters/setters/issers to allow a governed manipulation.
Think of it like a mini API of your class - an interface to your class anyone outside can understand and rely on.
If you want to add any validation or modify any other thing before/after setting value of an object, you can use that validation in setter method. Same applies for getter.
It the basic object-oriented principle i.e only object can communicate through message which is called encapsulation.So indirectly you are not exposing your state to outside.For an example class with one attribute age is there and age can not be negative so in setter you can put a check so your object state will not in bad condition.If you access directly the variable then there is no scope for validation.
The basic principle of the oriented object programming is to encapsulate the members of a class and give access to them only via getters and setters
consider the class:
class MyClass{
MyOtherClass obj;
//setObj and getObj methods
public void someMethod(){
...
//access to obj needs.
...
}
}
How to right replace
//access to obj needs.
through getter or explicitly?
P.S.
I saw both variants in my expirience.
Personally I would say it depends on the level of "connection" between both classes. If they are in the same package and part of the same "mecanism" (one would have no reason to exist without the other), bypassing accessors is acceptable.
So here we're talking about code in Class MyClass accessing information in an instance of MyOtherClass.
Typically you don't get a choice. If MyOtherClass exposes a getter for a data member, it's unlikely to also expose that data member. If it does (even if the data member is, say, protected but the accessor is public), the design is a bit questionable.
But if you do have the choice, I would use the getter, rather than the exposed data member. It's a bit subjective, but using data members rather than accessors more tightly binds the classes together. In my protected/public example, you'd have more work to do if for any reason you wanted to move MyClass to a different package.
It's worth noting that using the getter is not more expensive in performance terms with a decent JVM (such as the one from Sun). If the code becomes a performance "hotspot" for whatever reason (or possibly even if it doesn't), the JVM's JIT will convert the call to the getter into a direct access anyway (presuming it's a pure getter), so you get the benefit of abstraction at the coding/design-time without the function call overhead at runtime.
To answer this, let's first see why getters and setters were introduced in the first place. It is clear that direct access to data members is simpler.
SOme of the reasons are:
for a better encapsulation, to hide the property implementation from a class user. For example you can internally store a temperature value in C and return it by a getter in F.
for more control over the access. If you want to do something more besides pure getting/setting a piece of data, you would need a method. For example, you might want to log the change of value for audit purpose
methods are much more "interface friendly" than pure data members.
In this case the class itself accesses its own property. Are you sure you want that?
If so, let's see the reasons:
Encapsulation is definitelly not needed, since the class itself accesses its own attributes.
Do you need to somehow control access here? Do you need to do something else, besides get/set? Are there any other possible users of this class?
If all these answers are NO, ans especially if the only user of this class the mentioned method, then go for a simpler option and use direct access, without getters/setters.
If some of the answers is true, just make a simple trade-off and decide.
I know this applies to many languages, and not just Java, but that is the language I'm most familiar with.
I understand what the modifiers do, and how to use them. I just want to know, why do we need them? Why can't every object be accessible, whether or not it needs to be?
The reason becomes more apparent when you have to maintain a larger project. When a method or variable is public, you have to be careful when you make changes to it, because you never know which parts of the codebase rely on its exact behavior.
But when a variable or method is private, you know that it is not used outside of the class. That means there is a lot less code you have to pay attention to when you make changes.
By making class features private and public, you clearly separate the interface to the outside world from the internals. The less you exposes to the outside world, the more freedom you have with what the internal implementation does.
When you, for example, always make variables private and accessed them through getters and setters, you can later change them from a variable to a computed value, and then even later add caching to the computation for performance reasons. When it would be a public variable, you would have to change code everywhere the variable is used. But when you expose it to the outside world through getters and setters, all other code can keep using the class as if nothing had changed.
Making fields and methods private keeps other classes from improperly depending on the specific details of how a class works. The public interface (and the best case of all, an actual interface) describes how client code should interact with a library based on the semantics of the work being done. The implementer is then free to use whatever appropriate techniques to implement that interface and can make significant behind-the-scenes changes knowing that the client code will keep working.
An everyday example is the Collections group of interfaces. Most of the time, it's not important logically for code to know what particular kind of Set is in use, just that it's a collection that supports certain operations and doesn't have duplicates. This means that a method that accepts a Set<Integer> will work with any Set, including HashSet and ImmutableSet, because the person who wrote the interface wasn't poking around in the implementation's internals.
An example where this breaks down is the unfortunate tendency of some programmers to use packages in the com.sun namespace, especially when using cryptography. Upgrading to a new version of the JRE routinely breaks this code, which would have worked fine if the programmer had used the proper javax.crypto interfaces and factory methods instead of poking around in the JVM internals.
More or less they are used to control who can access your member variables and functions. It's the broader concept of encapsulation at work in Java(http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)).
From the Oracle Docs:
Access level modifiers determine whether other classes can use a
particular field or invoke a particular method. There are two levels
of access control:
At the top level—public, or package-private (no explicit modifier).
At the member level—public, private, protected, or package-private (no
explicit modifier).
http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
As to why you should do this:
It has to do with intent of use. It would probably be best described as a design choice that helps guide usage through-out the code-base. By marking something private you are telling other developers that this field or method should not be used outside it's current purpose. It really becomes important on large projects that shuffle developers over time. It helps communicate the purpose & intended uses of classes.
To avoid other classes having direct access to internal members of the class.
This is most useful for avoiding that member variables are mutated in an uncontrolled way (e.g. without proper validation, without notifying listeners, ...).
Another reason to avoid this is that the internal implementation may change at any time but you don't want to break code that uses it.
As others have noted, the concept is called Encapsulation.
Access modifiers are there to set access levels for classes, variables, methods and constructors. This provides an individual with the chance of controlling better the privacy of the application. There are 4 access modifiers.
Modifier | Class | Package | Subclass | World
no modifier:--|----yes----|------yes--------|--------no--------|-----no----|
private:-------|----yes----|-------no--------|--------no--------|-----no----|
public:--------|----yes----|------yes--------|-------yes-------|----yes----|
protected:---|----yes----|------yes--------|-------yes-------|-----no-----|
Regarding your question, we do need and use access modifiers because we need to restrict whom can call our program and in what way.
Also, when it comes to variables if you make something public, that means that I have direct access to it. Therefore, I am allowed to do whatever I want without following your guidelines through your methods.
For example:
public int maxUsers;
public void setMaxUsers(int users) throws IllegalArgumentException{
if(users > 0 && users <= 1000){
maxUsers = users;
}else{
throw new IllegalArgumentException("The users can not be less than 0 or greater than 1000")"
}
}
Imagine your whole program being based on its maxUsers. Since, you give me the right to access that variable directly, I could do this: maxUsers = -15; and not use the setMaxUsers method, which will simply make your program behave in an abnormal way (in the best case).
Explanations
A private member is only accessible within the same class as it is declared.
A member with no access modifier is only accessible within classes in the same package.
or
If a variable is set to protected inside a Class, it will be accessible from its sub classes defined in the same classes or different package only via Inheritance.
A protected member is accessible within all classes in the same package and within subclasses in other packages.
A public member is accessible to all classes (unless it resides in a module that does not export the package it is declared in
Here's a better version of the table. (Future proof with a column for modules.)
We have a getter method within a class.
Within the same JAR we want the variable to be accessible with the no-identifier access level, from the same package and subpackages.
Below the access levels from: http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
Our problem is, how do we stop someone from taking the compiled .JAR, creating a class with the same package namespace definition, and being able to access our variable through the getter?
We thought about getting rid of all getters for the specific variable, and giving the variable value to other classes with setters and constructors, when they pass a reference to themselves. Obviously, they will be final classes. This way all objects needing the variable value have their own private copy.
I'm wondering though if there is a better way?
Access control modifiers (public, private, protected) are not meant as a security tool, but as an OO design tool. They're used to implement OO patterns like encapsulation, inheritance.
Even with no getter whatsoever and a private variable, any Java developer can use reflection to access the variable.
If you want to keep something secret, don't ever put it in a variable of a program executed by anyone. Keep it on your own machines.
- Reflection seems to be the evil here, using which any variable even with private access modifier can be accessed.
- Four access controls like private, default, protected, and public are introduced in Java more as a tool to support the Core Object Oriented Concept like Inheritance, Encapsulation etc...
What is the "correct" way to access an object's properties from within an object method that is not a getter/setter method?
Getter/Setter is the recommended way of accessing properties of an object. Otherwise you to have to use public properties, but public properties are not recommended.
If a classes' properties don't have getters and they are not visible (e.g. not public), that means that the class is designed so that you can't access them. In that case, there is no proper way to access them.
Flipping this around, if you are designing a class and you intend that other classes can access its attributes, you ought to provide getters. You could alternatively declare the attributes to be public, protected or package private, but that makes your abstraction leaky and has a number of undesirable consequences.
If you are asking how one of an object's methods should access its own attributes, the simple answer is whichever way is most convenient. If the class has getters, you could call them. Alternatively, you could just access the attributes directly. The problems of leaky abstraction don't apply in this case because the method accessing the state is inside the abstraction boundary.
This is mostly a matter of preference.
I personally prefer not to use the getters and setters in my object. This increases readability, allows me to change my getters and settings to return copies (of lists mostly) without it changing my own object. If you do something special in your getter then you can make a helper method that is used by both your getter and your other functions. This will go wrong if your classes get too large though (so don't make large classes). I don't like how using a getter setter hides the side effects inside the object (unlike for external users, they should be hidden from any side effects inside the object), when you want to have the side effects, give the private method a clear name indiciting it has them.
First off I'll answer the question as is:
What is the "correct" way to access an object's properties from within an object method that is not a getter/setter method?
When you are within an object, you can reference the properties directly where the method is part of the object. For example:
public class testClass() {
public int x;
private someMethod() {
x = 4;
}
}
To answer the comment:
I think the question can be reformulated: Should I use getters and setters when implementing my object methods? Or should I access member variables directly?
You should always hide the internal data and other implementation details within a class as much as possible; seperating the API from the implementation (a.k.a encapsulation). Encapsulation decouples the modules thereby allowing them to be developed, tested and modified in isolation.
Generally, you should use the lowest access modifier possible (e.g. private, protected, package-private) whilst maintaining functionality for the application you're writing. The benefits of designing and devloping this way is that you can change implementation details without breaking code that uses the modules. If you make everything public, and other people are using your classes, you are forced to support it forever maintaining compatibility - or until they change their implementation that is using your modules.
Instance fields should never be public as you give up the ability to limit the values that can be stored in the field, and if it is a mutable object, you open your object up for misuse (see here). It is important to note too that classes with public mutable fields are not thread-safe. It is also important to note that instance fields that are declared public static final but are mutable objects can also be modified and can be a security risk.
Basically, in public classes - always use accessor methods, not public fields. It allows you to protect your mutable objects from modification outside of the class (be it intentionally or unintentionally) and allows you to change implementation detail later without harming your clients.