While working on a project, I was presented with a task to design a set of classes that implement an interface defining a simple action. Usually these classes would do their job in particular sequence, all at once, but the possibility to call a method from only one of them was also a requirement.
Taking into account all the above and also considering that:
- each class would have quite basic logic
- extending another class was not required
- it might be convenient to have all classes in a single file
- editing source file when needed is not an issue
I came up with the following solution (actual class was not so contrived, but the example below is sufficient to give you some basic idea):
public enum Bestiary {
DOG(1) {
#Override
void makeNoise(Loudspeaker ls) {
ls.shoutOutLoud("I am alpha dog");
}
},
CAT(2) {
#Override
void makeNoise(Loudspeaker ls) {
ls.shoutOutLoud("I am beta cat");
}
},
RAT(3) {
List<String> foods = new ArrayList<>();
{
foods.add("gods");
foods.add("dogs");
foods.add("cats");
foods.add("other rats");
}
#Override
void makeNoise(Loudspeaker ls) {
StringBuilder cry = new StringBuilder("I am THE rat; usually I eat ");
for (int i = 0; i < foods.size(); i++) {
cry.append(foods.get(i));
if (i != (foods.size() - 1)) {
cry.append(", ");
}
}
ls.shoutOutLoud(cry.toString());
}
},
THE_THING(4) {
String name = "r2d2";
#Override
void makeNoise(Loudspeaker ls) {
ls.shoutOutLoud(calculateHash(name));
}
private String calculateHash(String smth) {
return String.valueOf(smth.hashCode());
}
};
private int id;
public int getId() {
return id;
}
Bestiary(int id) {
this.id = id;
}
abstract void makeNoise(Loudspeaker ls); // all enum elements will need to implement this - kind of like implementing an interface (which was also an option); note that we pass some arbitrary object and call methods on it
}
And code which calls this class might look like:
public final class Loudspeaker {
private static Loudspeaker loudspeaker = new Loudspeaker();
public static void shoutOutLoud(String cry) {
System.out.println(cry);
}
static class Noizemakers {
public static void makeSomeNoise() {
for (Bestiary creature: Bestiary.values()) {
System.out.println(creature + " with id " + creature.getId() + " says: ");
creature.makeNoise(loudspeaker);
}
}
}
public static void main(String[] args) {
Noizemakers.makeSomeNoise();
Bestiary.CAT.makeNoise(loudspeaker);
}
}
During a code review my suggestion was mocked as the one that is "too hacky, exploites the fact that enums have class body and methods, and have a bad code smell in overall". While transforming it into a separate interface, a bunch of usual Java classes etc. is a matter of few minutes, I was not really quite satisfied with this explanation. Are there any guidelines saying that you should use enums exclusively in their basic form, similarly to other languages? What real drawbacks does this approach have? How about Joshua Bloch's suggestion to write singletons as enums - in this case such an enum will have to be a full-fledged class, right?
One could use an enum anywhere you have a shallow class hierarchy, with trade offs between extensibility (classes have more, enums have less) and conciseness (if the functionality is straightforward, enums are probably clearer). It's not the right thing to do all the time, but it's certainly ok to do some of the time, just be aware of the differences, some of which I list below.
To my mind, the situation you're dealing with seems to me to be exactly the kind of thing the language designers were working to support by allowing enums to have methods. It doesn't seem to me that you're subverting the intention of that language feature in the least.
As an example from my work, I often use enums with methods as a way of implementing a variety of stateless strategies, but have also used them for other things, including being a kind of extensible form of Class.
Answers to your specific questions:
What real drawbacks does this approach have?
Compared to the interface + concrete classes approach:
Methods defined in a specific enum value can't be called from outside that value. eg, if you defined a method for RAT called squeak(), no one can call it.
No mutable state, because each enum value is effectively a singleton.
Your enum class file can get excessively long if the number of types increases dramatically, or the code for each type increases.
Can't subclass enum values, they are effectively final
No doubt some others...
Are there any guidelines saying that you should use enums exclusively in their basic form, similarly to other languages?
None that I've ever seen.
How about Joshua Bloch's suggestion to write singletons as enums - in this case such an enum will have to be a full-fledged class, right?
Following the logic of your questioners, yes. So it becomes a question of whether you'd rather listen to them, or to Josh Bloch.
You should only use an enum where there is no (or little) possibility of the addition of a new element. This is not to say that you shouldn't give an enum class-like functions. For example:
public enum Planet {
MERCURY (3.303e+23, 2.4397e6),
VENUS (4.869e+24, 6.0518e6),
EARTH (5.976e+24, 6.37814e6),
MARS (6.421e+23, 3.3972e6),
JUPITER (1.9e+27, 7.1492e7),
SATURN (5.688e+26, 6.0268e7),
URANUS (8.686e+25, 2.5559e7),
NEPTUNE (1.024e+26, 2.4746e7);
private final double mass; // in kilograms
private final double radius; // in meters
Planet(double mass, double radius) {
this.mass = mass;
this.radius = radius;
}
}
There are multiple reasons for this:
Semantics/intended purpose. It just doesn't make sense to have enums for non-enumerations, by the very definition of the word.
Compatibility. What if I want to add a bird to your bestiary? You'd have to amend the enum. Easy enough, but what if you have some users using an older version of the enum and others using a later version? This makes for lots of compatibility issues.
One (suboptimal) solution if you must use an enum would be:
interface Animal {
void makeNoise();
}
enum Bestiary implements Animal {
// the rest of the stuff here
}
Then, any method currently accepting a Bestiary could be easily switched to accept an Animal. However, if you do this, it's better anyway to just have:
interface Animal {
void makeNoise();
}
public class Dog implements Animal {...}
public class Cat implements Animal {...}
public class Rat implements Animal {...}
public class Thing implements Animal {...}
My personal opinion is that enums should not contain any mutating methods, as it violates most assumptions of enumerated values having constant state. ...But looking over your work again, that does not actually appear to be the case. It certainly seems odd to do it this way, but it's more of an "unexpected usage" thing than specifically being a "wrong way to do it" thing.
Just make sure that any potentially-modifiable values within the enumerated types aren't accessible externally, such as foods. (The Strings can be made final, so that's not an issue, but making foods final wouldn't prevent people from manipulating the list itself, just assigning a new one.)
Related
I have a Java class that has some private variable that I don't intend to create setters and getters for; I want these variables to remain inaccessible. But there is one class that needs access to these variables. This class is a visitor in a different package (and I'd prefer to keep it in a different package). Is it bad practice to allow this class to provide the visitor with Consumers and Suppliers, that act as setters and getters, so that the visitor could read and modify these variables? If yes, please state the reasons.
Example:
A.java
public class A {
private int x;
private Consumer<Integer> setter;
private Supplier<Integer> getter;
public A(int v) {
x = v;
setter = new Consumer<Integer>() {
#Override
public void accept(Integer t) {
x = t;
}
};
getter = new Supplier<Integer>() {
#Override
public Integer get() {
return x;
}
};
}
public void accept(SomeVisitor visitor) {
visitor.setSetter(setter);
visitor.setGetter(getter);
visitor.visit(this);
}
}
SomeVisitor.java
public class SomeVisitor extends ParentVisitor {
private Consumer<Integer> setter;
private Supplier<Integer> getter;
public SomeVisitor() {
setter = null;
getter = null;
}
public void setSetter(Consumer<Integer> setter) {
this.setter = setter;
}
public void setGetter(Supplier<Integer> getter) {
this.getter = getter;
}
#Override
public void visit(A a) {
// Code that will, possibly, read and modify A.x
...
}
}
This way the variable A.x remains inaccessible to every class except the visitor.
More Details:
I have some classes that will make use of the visitors. These classes have private variables that are dependent on one another. If these variables had setters, inconsistencies could arise as users change these variables, that should be dependent on one another, without respecting these dependecies.
Some of these variables will have getters, others won't as they will only be used internally and shouldn't be accessed elsewhere. The reason the visitors are an exception and should get read/write access to these variables is that the functionality the visitors are intended to implement were meant to be implemented within methods in these classes. But I thought it will be cleaner if I used visitors. And these functionalities do need read/write access to these variables.
The intention behind this approach was to emulate the friend feature in C++. I could place the visitors within the same package as these classes (which I would do if I didn't find a neat solution to this problem); But I think the package will look messy if it had the visitors as well (and there will be many visitors).
The functionality the visitors will implement will also have something to do with these classes relations to one another.
I tried to squeeze it into a comment, as it technically does not answer the question about whether this is a "Bad Practiceâ„¢", but this term is hard to define, and thus, it is nearly impossible to give an answer anyhow...
This eventually seems to boil down to the question of how to Make java methods visible to only specific classes (and there are similar questions). The getter/setter should only be available to one particular class - namely, to the visitor.
You used very generic names and descriptions in the question, and it's hard to say whether this makes sense in general.
But some points to consider:
One could argue that this defeats the encapsulation in general. Everybody could write such a visitor and obtain access to the get/set methods. And even though this would be a ridiculous hack: If people want to achieve a goal, they will do things like that! (sketeched in Appendix 1 below)
More generally, one could argue: Why is only the visitor allowed to access the setter/getter, and other classes are not?
One convincing reason to hide getter/setter methods behind Supplier/Consumer instances could be related to visibility and the specificness of classes (elaborated in Appendix 2). But since the visitor always has the dependency to the visited class, this is not directly applicable here.
One could argue that the approach is more error prone. Imagine the case that either the setter or the getter are null, or that they belong to different instances. Debugging this could be awfully hard.
As seen in the comments and other answer: One could argue that the proposed approach only complicates things, and "hides" the fact that these are actually setter/getter methods. I wouldn't go so far to say that having setter/getter methods in general already is a problem. But your approach is now to have setter-setters and getter-setters in a visitor. This extends the state space of the visitor in a way that is hard to wrap the head around.
To summarize:
Despite the arguments mentioned above, I would not call it a "bad practice" - also because it is not a common practice at all, but a very specific solution approach. There may be reasons and arguments to do this, but as long as you don't provide more details, it's hard to say whether this is true in your particular case, or whether there are more elegant solutions.
Update
For the added details: You said that
inconsistencies could arise as users change these variables
It is usually the responsibility of a class to manage its own state space in a way that makes sure that it is always "consistent". And, in some sense, this is the main purpose of having classes and encapsulation in the first place. One of the reasons of why getters+setters are sometimes considered as "evil" is not only the mutability (that should usually be minimized). But also because people tend to expose properties of a class with getters+setters, without thinking about a proper abstraction.
So specifically: If you have two variables x and y that depend on one another, then the class should simply not have methods
public void setX(int x) { ... }
public void setY(int y) { ... }
Instead, there should (at best, and roughly) be one method like
public void setState(int x, int y) {
if (inconsistent(x,y)) throw new IllegalArgumentException("...");
...
}
that makes sure that the state is always consistent.
I don't think that there is a way of cleanly emulating a C++ friend function. The Consumer/Supplier approach that you suggested may be reasonable as a workaround. Some (not all) of the problems that it may cause could be avoided with a slightly different approach:
The package org.example contains your main class
class A {
private int v;
private int w;
public void accept(SomeVisitor visitor) {
// See below...
}
}
And the package org.example also contains an interface. This interface exposes the internal state of A with getter+setter methods:
public interface InnerA {
void setV(int v);
int getV();
void setW(int w);
int getW();
}
But note that the main class does not implement this interface!
Now, the visitors could reside in a different packakge, like org.example.visitors. And the visitor could have a dedicated method for visiting the InnerA object:
public class SomeVisitor extends ParentVisitor {
#Override
public void visit(A a) {
...
}
#Override
public void visit(InnerA a) {
// Code that will, possibly, read and modify A.x
...
}
The implementation of the accept method in A could then do the following:
public void accept(SomeVisitor visitor) {
visitor.accept(this);
visitor.accept(new InnerA() {
#Override
public void setX(int theX) {
x = theX;
}
#Override
public int getX() {
return x;
}
// Same for y....
});
}
So the class would dedicatedly pass a newly created InnerA instance to the visitor. This InnerA would only exist for the time of visiting, and would only be used for modifying the specific instance that created it.
An in-between solution could be to not define this interface, but introduce methods like
#Override
public void visit(Consumer<Integer> setter, Supplier<Integer> getter) {
...
}
or
#Override
public void visit(A a, Consumer<Integer> setter, Supplier<Integer> getter) {
...
}
One would have to analyze this further depending on the real application case.
But again: None of these approaches will circumvent the general problem that when you provide access to someone outside of your package, then you will provide access to everyone outside of your package....
Appendix 1: A class that is an A, but with public getter/setter methods. Goodbye, encapsulation:
class AccessibleA extends A {
private Consumer<Integer> setter;
...
AccessibleA() {
EvilVisitor e = new EvilVisitor();
e.accept(this);
}
void setSetter(Consumer<Integer> setter) { this.setter = setter; }
...
// Here's our public setter now:
void setValue(int i) { setter.accept(i); }
}
class EvilVisitor {
private AccessibleA accessibleA;
...
public void setSetter(Consumer<Integer> setter) {
accessibleA.setSetter(setter);
}
...
}
Appendix 2:
Imagine you had a class like this
class Manipulator {
private A a;
Manipulator(A a) {
this.a = a;
}
void manipulate() {
int value = a.getValue();
a.setValue(value + 42);
}
}
And now imagine that you wanted to remove the compile-time dependency of this class to the class A. Then you could change it to not accept an instance of A in the constructor, but a Supplier/Consumer pair instead. But for a visitor, this does not make sense.
As getters and setters are evil anyway, you'll be better off making things not more complicated than ordinary getters and setters.
I design my game application and face some troubles in OOP design.
I want to know some patterns which can help me, because java have not any multiple extends option. I will describe my problem below, and also explain why multiple interface doesn't help me at all. Lets go.
What we want is "class is set of features". By feature I mean construction like:
field a;
field b;
field c;
method m1(){
// use, and change fields a,b,c;
}
method m2(){
// use, and change fields a,b,c;
}
//etc
So, basically the feature is a set of methods and corresponding fields. So, it's very close to the java interface.
When I talk that class implemets "feature1" I mean that this class contains ALL "feature needed" fields, and have realisation of all feature related methods.
When class implements two features the tricky part begins. There is a change, that two different features contains similar fields (names of this fields are equal). Let the case of different types for such fields will be out of scope. What I want - is "feature naming tolerance" - so that if methodA() from feature A change the field "common_field", the methodB from feature B, that also use "common_field" as field will see this changes.
So, I want to create a set of features (basically interfaces) and their implementations. After this I want to create classes which will extends multiple features, without any copy-paste and other crap.
But I can't write this code in Java:
public static interface Feature1 {
public void method1();
}
public static interface Feature2 {
public void method2();
}
public static class Feature1Impl implements Feature1 {
int feature1Field;
int commonField;
#Override
public void method1() {
feature1Field += commonField;
commonField++;
}
}
public static class Feature2Impl implements Feature2 {
int feature2Field;
int commonField;
#Override
public void method2() {
commonField++;
}
}
public static class MyFeaturedClass extends Feature1Impl, Feature2Impl implements Feature1, Features2 {
}
So, as you can see the problem are really complex.
Below I'll describe why some standart approaches doesn't work here.
1) Use something like this:
public static class MyFeaturesClass implements Feature1,Feature2{
Feature1 feature1;
Feature2 feature2;
#Override
public void method2() {
feature2.method2();
}
#Override
public void method1() {
feature1.method1();
}
}
Ok, this is really nice approach - but it does not provide "feature field name tolerance" - so the call of method2 will not change the field "commonField" in object corresponding the feature1.
2) Use another design. For what sake you need such approach?
Ok. In my game there is a "unit" concept. A unit is MOVABLE and ALIVE object.
Movable objects has position, and move() method. Alive objects has hp and takeDamage() and die() methods.
There is only MOVABLE objects in my game, but this objects isn't alive.
Also, there is ALIVE objects in my game, but this objects isn't movable (buildings for example).
And when I realize the movable and alive as classes, that implements interfaces, I really don't know from what I should extends my Unit class. In both cases I will use copy-paste for this.
The example above is really simple, actually I need a lot of different features for different game mechanics. And I will have a lot of different objects with different properties.
What I actually tried is:
Map<Field,Object> fields;
So any object in my game has such Map, and to any object can be applied any method. The realization of method is just take needed fields from this map, do its job and change some of them. The problem of this approach is performance. First of all - I don't want to use Double and Interger classes for double and int fields, and second - I want to have a direct accsess to the fields of my objects (not through the map object).
Any suggestions?
PS. What I want as a result:
class A implements Feature1, Feature2, Feature3, Feature4, Feature5 {
// all features has corresponding FeatureNImpl implementations;
// features 1-2-3 has "shared" fields, feature 3-4 has, features 5-1 has.
// really fast implementation with "shared field tolerance" needed.
}
One possibility is to add another layer of interfaces. XXXProviderInterface could be defined for all possible common fields, that define a getter and setter for them.
A feature implementation class would require the needed providers in the constructor. All access to common fields are done through these references.
A concrete game object class implementation would implement the needed provider interfaces and feature interfaces. Through aggregation, it would add the feature implementations (with passing this as provider), and delegate the feature calls to them.
E.g.
public interface Feature1 {
void methodF1();
}
public interface Feature2 {
void methodF2();
}
public interface FieldAProvider {
int getA();
void setA(int a);
}
public class Feature1Impl implements Feature1 {
private FieldAProvider _a;
Feature1Impl(FieldAProvider a) {
_a = a;
}
void methodF1() {
_a.setA(_a.getA() * 2);
}
}
// Similar for Feature2Impl
public class GameObject implements Feature1, Feature2, FieldAProvider
{
int _fieldA;
Feature1 _f1;
Feature2 _f2;
GameObject() {
_f1 = new Feature1Impl(this);
_f2 = new Feature2Impl(this);
}
int getA() {
return _fieldA;
}
void setA(int a) {
_fieldA = a;
}
void methodF1() {
_f1.methodF1();
}
void methodF2() {
_f2.methodF2();
}
}
However, I don't think this is an optimal solution
I was reading some article about collision avoidance systems in cars when my programmer mind led me to think of that concept in the object-oriented way, and it made me wonder if those systems respect the object-oriented programming model.
Being mainly a Java developer, I transposed this problem in a Java environment and it raised a particular question: does calling a public method within the same class (in a non-static context) respect and follow the object-oriented way?
I mean, take this brief hypothetical Car class:
public class Car {
// Class attributes.
// Constructors.
public void accelerate(final double amplitude) {
// Accelerate according to the amplitude.
}
public void brake(final double amplitude) {
// Brake according to the amplitude.
}
// Other useful methods.
private void collisionPreventionActions() {
// Some actions.
brake(100.0);
// Some other actions.
}
}
Suppose some Thread is responsible of detecting a collision and take actions when it does detect a collision, and one of those actions would be braking. Obviously the brake(...) method becomes an interesting choice, but doesn't that break the object-oriented way of doing things? It's not just the brakes though. What if the collision avoidance system in this class used the steering wheel instead to avoid the accident? I find it weird that the car would be using its own input from an internal point of view...
On a more general scope, suppose you have a generic object, which I like to see as a black box. The public methods would be the equivalent of levers on that black box that would control its behaviour. Calling a public method within this object would mean that the black box would activate its own levers from its internal mechanism.
I ask because I know it's legal in Java to do so, and that I've seen public methods being called within the same class numerous times in my life, but it being legal doesn't necessarily mean that it's the proper OO way of doing it.
Does using public methods within the same class in a non-static context follow the rules of object-oriented programming and encapsulation? If not, what would be the proper way of doing it or what could be the workaround?
There is nothing wrong with this choice from the OOP perspective: it is perfectly fine for a method to perform things that require combinations of other methods.
In practice, though, a common approach would be to separate the functionality into a public and a private portions, like this:
public void brake(final double amplitude) {
// check preconditions
if (speed == 0) throw new IllegalStateException("cannot brake when standing");
if (amplitude <= 0) throw new IllegalArgumentException("amplitude must be positive");
// ... do other important checks
doBrake(amplitude);
}
private void doBrake(final double amplitude) {
// The real code goes here
}
Now your collisionPreventionActions could call doBrake instead of brake, assuming that you have checked all the necessary preconditions before making the call.
Note: doBrake should check its preconditions as well. However, rather than throwing exceptions when preconditions are not met, it can use assertions. The difference is that exceptions indicate a misuse of your public methods by others, while assertions indicate misuse of your encapsulated methods by you or someone else maintaining your code.
No rules are violated when an object uses its own API. On the contrary, problems are likely to occur if a class has an API that can be overridden, but it fails to use that API internally.
As a trivial example, consider a non-final property accessor. An object could skip the accessor and read (or worse, write) fields directly. Suppose the accessor is overridden in a subclass to compute the property value using the field together with some other information from the subclass. Now the class is broken because it failed to honor its own contract.
Consider the (somewhat contrived) Point and OffsetPoint classes below. The derived class, OffsetPoint is written correctly, but it's inherited toString() method will not work as expected because the parent class, Point, wrongly fails to use its own accessors.
public class Point {
private final int x, y;
public Point(int x, int y) { this.x = x; this.y = y; }
public int getX() { return x; }
public int getY() { return y; }
#Override
public final String toString() {
/* Here's the bug; should be getX() and getY() instead of x and y */
return String.format("(%d,%d)", x, y);
}
}
class OffsetPoint extends Point {
private int dx, dy;
OffsetPoint(Point point, int dx, int dy) {
super(point.getX(), point.getY());
this.dx = dx;
this.dy = dy;
}
#Override
public int getX() { return super.getX() + dx; }
#Override
public int getY() { return super.getY() + dy; }
}
Does using public methods within the same class in a non-static context follow the rules of object-oriented programming and encapsulation?
No, there is no problem with encapsulation becuase the method is public so anyone (even this) can call it.
However, for something like a collision avoidance system, relying on public methods could be bad security wise.
Let's use your example of this intenal Collision detector calling the public method brake(). What if someone subclassed car and overrode the method?
public class BrokenCar extends Car{
#Override
public void brake(final double amplitude) {
//BREAKS CUT!!!
}
}
So there are some security rules of not relying on overridable methods. Making brake and accelerate final methods resolves this problem.
Yes, I think it is proper in an OO context to call your own public method. It's quite common when there are overloads for a method that all but one call the most specific one, either filling in defaults for missing parameters or transforming the type of the argument(s). I also see the pattern where all the overloads call into a private or protected method of the same name with _internal or _impl added to the end. For example, several overloads of ComputeSpeed might all call ComputerSpeed_internal. This pattern would be appropriate if there is parameter validation in the public methods that you don't want to do twice, or would be inappropriate for internal calls.
You can certainly introduce problems by not having a clear separation of concerns. For example, if the caller of collisionPreventionActions also decided it was a good idea to set the brake, you could have a conflict in how much brake is applied.
KC
In general, it is fine to call the public methods. The thing to consider is what the interface of the Car should be. In this case, does preventCollision() belong in the Car class or in some other CollisionPrevention class.
Breaking your code multiple classes each with a single responsibility, and then using them a bigger class like Car, is generally a good idea.
I totally agree with you that it's common that a class itself addresses its private members and methods. But I don't understand why it shouldn't be legal in terms of the Object Oriented Paradigm. Consider the following example:
public class Human {
public Human() {
liveYourLife();
}
private void liveYourLife() {
while(alive){
createYourDay();
}
}
private void createYourDay() {
drink();
eat();
sleep();
awake();
drink();
}
private void eat() {}
private void drink() {}
private void sleep() {}
private void awake() {}
}
Probably someone will criticise the simple rule of life, shown in the example above. But what I want to demonstrate with the few lines above is, that "normally" a human is allowed to decide on his daily routine.
The basic principle of the OO-Paradigm is to describe the actions and properties of real world entities. Hence, as long you are allowed to yourself decide on when you want to eat, drink, sleep, etc. your above described model is absolutely correct. But if you discover some exceptional cases in your problem domain which you want to address in your software (e.g. you got arrested, etc. ) you should update your OO-design.
In case that there is an something, which heavily influences the state of another instance, you should treat that "instance of disturbance" as a different object which has a reference to the actual instance.
public class Prisoner extends Human {
#Override
private void liveYourLife() {
while(jailed){
createYourDay();
}
}
#Override
private void createYourDay() {
// A bit different :)
}
}
public class Prison {
private List<Prisoner> prisoners;
}
I am in a very early stage of game development. It is some sort of turn based game like Warhammer or Warcraft. Some creatures can regenerate the damage they have suffered and to represent this I have a interface like this
public interface Regenerative {
void regenerates();
}
So a creature that regenerates is
public class SomeMonster() extends BaseCreature implements Regeneative{
//Code
private int hitPoints;
public void regenerates(){
hitPoints = hitPoints + regenerateValue;
}
}
The problem I face is that not all the creatures regenerates the same ammount of hit points so I have to place that amount (regenerateValue) somewhere. Since I cannot put it on the interface (because I don't want the ammount to be the same to all the creatures) I have thought in adding a new property to the creature class
public class SomeMonster() extends BaseCreature implements Regeneative{
//Code
private int regenerateValue;
public void regenerates(){
hitPoints = hitPoints + regenerateValue;
}
}
but I don't like it this way (why a creature that doesn't regenerate should have a regenerateValue of 0?). I think it is giving a class unnecesary properties and thus a bad design. What do you think is the best approach for this case?
The problem I face is that not all the creatures regenerates the same ammount of hit points so I have to place that amount (regenerateValue) somewhere.
Why does it have to be a field anywhere? Some implementations of the interface might use a different value per instance; others might use a constant value.
This is an implementation detail - and thus inappropriate for the interface. You could potentially put it in an abstract superclass which implements the interface, of course.
Code which knows about the interface almost certainly shouldn't know or care the details of how much a creature regenerates - maybe they regenerate in terms of magic rather than just hit points, for example, or maybe the level of regeneration depends on some other function of their state. Callers shouldn't care.
I would add it to the abstract BaseCreature and not worry about it too much. Your BaseCreature may end up with lots of properties which are effectively "turned off" but the alternative is to create a complex inheritance tree. As Java doesn't support multiple inheritance this will frustrate your ability to abstract all the combinations you might like away.
The solution i use may be a bit over-ingeniered, but this allow for a lot of extension (regeneration, poison, protection...)
I use of interface "CreatureProperties" that define a integer value along with an id, and can perform action on a monster at each turn. You subclass those properties to perform a given property
abstract class CreatureProperties {
protected String id = "";
protectd int propertyValue = 0;
public void actOn(BaseMonster);
// plus setter and getter
}
public RegenerationProperty implements CreatureProperties {
final public REGENERATION_ID = "Regeneration";
int regenerationValue = 0;
public RegenerationProperty(int value){
id = REGENERATION_ID;
propertyValue= value;
}
public void actOn(BaseMonster monster){
monster.setHitPoint(monster.getHitPoints()+propertyValue);
}
}
in the BaseMonster class, you manage a set of MonsterProperty, initially empty.
class BaseMonster {
protected List<CreatureProperties> properties =
new ArrayList<CreatureProperties>();
// plus management of propeties : add remove, iterator...
public void update(){
// perform all properties-linked update to monster
foreach (CreatureProperty property : properties){
property.actOn(this);
}
}
}
in the subclass for SomeMonster, you simply add during instanciation the set of properties for this type of monster.
class SomeMonster extends BaseMonster {
public SomeMonster(){
properties.add(new RegenerationProperty(5)); // presto : monster regenerate
}
}
I'm using the Id in some case where the property is not used each tick (ie nothing in the update), but for example damage reduction (id="LightningReduction"), or to modify the list of existing properties (a property that remove all regenerationProperty and add PoisonProperty of same value...).
I think your design is probably ok, as you would only need to include a regenerateValue in the classes that implement the Regenerative interface. So there would be no need to include a regenerateValue.
Otherwise you could look at more complex design patterns that favor composition over inheritance. This way you could cater for the possibility of dynamically adding Regenerative abilities to a monster along with other 'abilities' during the game, rather than having to recompile the game each time you need to make change the behaviour of your monster.
What if all monster regenerate, but some of them with 0 regenerate value (the same as not regenerating)?
So you don't need the inferface:
public class SomeMonster() extends BaseCreature {
//Code
protected int regenerateValue; //protected, so that subclasses can override the value
public void regenerates(){
hitPoints = hitPoints + regenerateValue;
}
}
The regenerateValue starts with 0, so you have to override the value in subclasses that want to actually regenerate
Edited to remove the " implements Regeneative"
You could add a method in your interface, like getRegnerationValue(), making sure all creatures with that interface have this method that holds the value or formula if that is something you would like to work with.
The question you should ask yourself is this: if a creature should regenerate, how do you know that? Will it implement a different (or extending) base class? one that implements Regenerative?
If the answer is that you will extend the base class (to something like BaseRegeneratingCreature) and all regenerating creatures will extend that class, then this is your answer: BaseRegeneratingCreature should implement that interface, and have all properties required for regenerating.
All non-regenerating creatures should directly extend BaseCreature (or another extending class), and will not need the regeneration related properties.
Then, your base class could have some method like:
OnStartOfTurn();
which will, in BaseRegeneratingCreature, call regenerates() (and then probably call super()), and in BaseCreature do something else or call other methods.
I have the following code in which I have a parent class and its child. I am trying to determine how the code benefits from using polymorphism.
class FlyingMachines {
public void fly() {
System.out.println("No implementation");
}
}
class Jet extends FlyingMachines {
public void fly() {
System.out.println("Start, Taxi, Fly");
}
public void bombardment() {
System.out.println("Throw Missile");
}
}
public class PolymorphicTest {
public static void main(String[] args) {
FlyingMachines flm = new Jet();
flm.fly();
Jet j = new Jet();
j.bombardment();
j.fly();
}
}
What is the advantage of polymorphism when both flm.fly() and j.fly() give me the same answer?
In your example, the use of polymorphism isn't incredibly helpful since you only have one subclass of FlyingMachine. Polymorphism becomes helpful if you have multiple kinds of FlyingMachine. Then you could have a method that accepts any kind of FlyingMachine and uses its fly() method. An example might be testMaxAltitude(FlyingMachine).
Another feature that is only available with polymorphism is the ability to have a List<FlyingMachine> and use it to store Jet, Kite, or VerySmallPebbles.
One of the best cases one can make for using polymorphism is the ability to refer to interfaces rather than implementations.
For example, it's better to have a method that returns as List<FlyingMachine> rather than an ArrayList<FlyingMachine>. That way, I can change my implementation within the method to a LinkedList or a Stack without breaking any code that uses my method.
What is the advantage of polymorphism when both flm.fly() and j.fly()
give me the same answer?
The advantage is that
FlyingMachines flm = new Jet();
flm.fly();
returns
"Start, Taxi, Fly"
instead of
"No implementation"
That's polymorphism. You call fly() on an object of type FlyingMachine and it still knows that it is in fact a Jet and calls the appropriate fly() method instead of the wrong one which outputs "No implementation".
That means you can write methods that work with objects of type FlyingMachine and feed it with all kinds of subtypes like Jet or Helicopter and those methods will always do the right thing, i.e. calling the fly() method of the appropriate type instead of always doing the same thing, i.e. outputting "No implementation".
Polymorphism
Polymorphism is not useful in your example.
a) It gets useful when you have different types of objects and can write classes that can work with all those different types because they all adhere to the same API.
b) It also gets useful when you can add new FlyingMachines to your application without changing any of the existing logic.
a) and b) are two sides of the same coin.
Let me show how.
Code example
import java.util.ArrayList;
import java.util.List;
import static java.lang.System.out;
public class PolymorphismDemo {
public static void main(String[] args) {
List<FlyingMachine> machines = new ArrayList<FlyingMachine>();
machines.add(new FlyingMachine());
machines.add(new Jet());
machines.add(new Helicopter());
machines.add(new Jet());
new MakeThingsFly().letTheMachinesFly(machines);
}
}
class MakeThingsFly {
public void letTheMachinesFly(List<FlyingMachine> flyingMachines) {
for (FlyingMachine flyingMachine : flyingMachines) {
flyingMachine.fly();
}
}
}
class FlyingMachine {
public void fly() {
out.println("No implementation");
}
}
class Jet extends FlyingMachine {
#Override
public void fly() {
out.println("Start, taxi, fly");
}
public void bombardment() {
out.println("Fire missile");
}
}
class Helicopter extends FlyingMachine {
#Override
public void fly() {
out.println("Start vertically, hover, fly");
}
}
Explanation
a) The MakeThingsFly class can work with everything that is of type FlyingMachine.
b) The method letTheMachinesFly also works without any change (!) when you add a new class, for example PropellerPlane:
public void letTheMachinesFly(List<FlyingMachine> flyingMachines) {
for (FlyingMachine flyingMachine : flyingMachines) {
flyingMachine.fly();
}
}
}
That's the power of polymorphism. You can implement the open-closed-principle with it.
The reason why you use polymorphism is when you build generic frameworks that take a whole bunch of different objects with the same interface. When you create a new type of object, you don't need to change the framework to accommodate the new object type, as long as it follows the "rules" of the object.
So in your case, a more useful example is creating an object type "Airport" that accepts different types of FlyingMachines. The Airport will define a "AllowPlaneToLand" function, similar to:
//pseudocode
void AllowPlaneToLand(FlyingMachine fm)
{
fm.LandPlane();
}
As long as each type of FlyingMachine defines a proper LandPlane method, it can land itself properly. The Airport doesn't need to know anything about the FlyingMachine, except that to land the plane, it needs to invoke LandPlane on the FlyingMachine. So the Airport no longer needs to change, and can continue to accept new types of FlyingMachines, be it a handglider, a UFO, a parachute, etc.
So polymorphism is useful for the frameworks that are built around these objects, that can generically access these methods without having to change.
let's look at OO design first, inheritance represents a IS-A relationship, generally we can say something like "let our FlyingMachines fly". every specific FlyingMachines (sub class) IS-A FlyingMachines (parent class), let say Jet, fits this "let our FlyingMachines fly", while we want this flying actually be the fly function of the specific one (sub class), that's polymorphism take over.
so we do things in abstract way, oriented interfaces and base class, do not actually depend on detail implementation, polymorphism will do the right thing!
Polymorphism (both runtime and compile time) is necessary in Java for quite a few reasons.
Method overriding is a run time polymorphism and overloading is compile time polymorphism.
Few of them are(some of them are already discussed):
Collections: Suppose you have multiple type of flying machines and you want to have them all in a single collection. You can just define a list of type FlyingMachines and add them all.
List<FlyingMachine> fmList = new ArrayList<>();
fmList.add(new new JetPlaneExtendingFlyingMachine());
fmList.add(new PassengerPlanePlaneExtendingFlyingMachine());
The above can be done only by polymorphism. Otherwise you would have to maintain two separate lists.
Caste one type to another : Declare the objects like :
FlyingMachine fm1 = new JetPlaneExtendingFlyingMachine();
FlyingMachine fm2 = new PassengerPlanePlaneExtendingFlyingMachine();
fm1 = fm2; //can be done
Overloading: Not related with the code you gave, But overloading is also another type of polymorphism called compile time polymorphism.
Can have a single method which accepts type FlyingMachine handle all types i.e. subclasses of FlyingMachine. Can only be achieved with Polymorphism.
It doesn't add much if you are going to have just Jets, the advantage will come when you have different FlyingMachines, e.g. Aeroplane
Now that you've modified to include more classes, the advantage of polymorphism is that abstraction from what the specific type (and business concept) of the instance you receive, you just care that it can fly
Polymorphism can also help our code to remove the "if" conditionals which is intended to produce production level code because removing conditionals will increase the code readability and helps us to write better unit test cases, we know for "n" if cases there comes n!(n factorial) possibilities.
Let us see how
if you have class FlyingMachine and which takes a string in the constructor defining the type of FlyMachine as below
class FlyingMachine{
private type;
public FlyingMachine(String type){
this.type = type;
}
public int getFlyingSpeedInMph {
if(type.equals("Jet"))
return 600;
if(type.equals("AirPlane"))
return 300;
}
}
We can create two instances of FlyingMachine as
FlyingMachine jet = new FlyingMachine("Jet");
FlyingMachine airPlane = new FlyingMachine("AirPlane");
and get the speeds using
jet.fylingSpeedInMph();
airPlane.flyingSpeedInMph();
But if you use polymorphism you are going to remove the if conditions by extending the generic FlyMachine class and overriding the getFlyingSpeedInMph as below
class interface FlyingMachine {
public int abstract getFlyingSpeedInMph;
}
class Jet extends FlyingMachine {
#Override
public int getFlyingSpeedInMph(){
return 600;
}
}
class Airplane extends FlyingMachine {
#Override
public int getFlyingSpeedInMph(){
return 600;
}
}
Now you can get the flying speeds as below
FlyingMachine jet = new Jet();
jet.flyingSpeed();
FlyingMachine airPlane = new AirPlane();
airPlane.flyingSpeed();
Both flm.fly() and j.fly() give you the same answer because of the type of the instance is actually the same, which is Jet, so they are behave the same.
You can see the difference when you:
FlyingMachines flm = new FlyingMachines();
flm.fly();
Jet j = new Jet();
j.bombarment();
j.fly();
Polymorphism is define as same method signature with difference behaviour. As you can see, both FlyingMachines and Jet have method fly() defined, but the method is implemented differently, which consider as behave differently.
See
aa
Polymorphism
Let's add one more class in this, It help's you to understand use of polymorphism..
class FlyingMachines {
public void fly() {
System.out.println("No implementation");
}
}
class Jet extends FlyingMachines {
public void fly() {
System.out.println("Start, Jet, Fly");
}
}
class FighterPlan extends FlyingMachines {
public void fly() {
System.out.println("Start, Fighter, Fight");
}
}
public class PolymorphicTest {
public static void main(String[] args) {
FlyingMachines flm = new Jet();
flm.fly();
FlyingMachines flm2 = new FighterPlan();
flm2.fly();
}
}
Output:
Start, Jet, Fly
Start, Fighter, Fight
Polymorphism gives you benefits only if you need Polymorphism.
It's used when an entity of your conceptual project can be seen as the specialization of another entity.
The main idea is "specialization".
A great example stands in the so called Taxonomy,for example applied to living beings.
Dogs and Humans are both Mammals.
This means that, the class Mammals group all the entities that have some properties and behaviors in common.
Also, an ElectricCar and a DieselCar are a specialization of a Car.
So both have a isThereFuel() because when you drive a car you expect to know if there's fuel enough for driving it.
Another great concept is "expectation".
It's always a great idea to draw an ER (entity relationship) diagram of the domain of your software before starting it.
That's because your are forced to picture which kind of entities are gonna be created and, if you're able enough, you can save lot of code finding common behaviors between entities.
But saving code isn't the only benefit of a good project.
You might be interested in finding out the so called "software engineering" that it's a collection of techniques and concepts that allows you to write "clean code" (there's also a great book called "Clean code" that's widely suggested by pro-grammes).
The good reason for why Polymorphism is need in java is because the concept is extensively used in implementing inheritance.It plays an important role in allowing objects having different internal structures to share the same external interface.
polymorphism as stated clear by itself, a one which mapped for many.
java is a oops language so it have implementation for it by abstract, overloading and overriding
remember java would not have specification for run time polymorphism.
it have some best of example for it too.
public abstract class Human {
public abstract String getGender();
}
class Male extends Human
{
#Override
public String getGender() {
return "male";
}
}
class Female extends Human
{
#Override
public String getGender() {
return "female";
}
}
Overriding
redefine the behavior of base class.
for example i want to add a speed count int the existing functionality of move in my base Car.
Overloading
can have behavior with same name with different signature.
for example a particular president speaks clear an loud but another one speaks only loud.
Here, for this particular code, there is no need of polymorphism.
Let's understand why and when we need polymorphism.
Suppose there are different kinds of machines (like car, scooter, washing machine, electric motor, etc.) and we know that every machine starts and stops. But the logic to start and stop a machine is different for each machine. Here, every machine will have different implementations to start and stop. So, to provide different implementations we need polymorphism.
Here we can have a base class machine with start() and stop() as its methods and each machine type can extend this functionality and #Override these methods.