Lucene: - indexing and finding unique terms - java

I have written a code in lucene, which firsts indexes xml documents, and finds the number of unique terms in the index.
Say there are n number (no.) of unique terms.
I want to generate a matrix of dimensions nXn, where
m[i][j] = (co_occurrence value of terms (i, j))/ (occurrence value of term i)
co_occurence of terms (i, j) = no. of documents in which ith term and jth terms, both are occurring
occurence of term j is the no. of documents in which the term j is occurring.
My code is working fine. But its not efficient. for large no. of files, where no. of terms are more than 2000, its taking more than 10 minutes.
here is my code for finding co_occurence -
int cooccurrence(IndexReader reader, String term_one, String term_two) throws IOException {
int common_doc_no = 0, finaldocno_one = 0, finaldocno_two = 0;
int termdocid_one[] = new int[6000];
int termdocid_two[] = new int[6000];
int first_docids[] = new int[6000];
int second_docids[] = new int[6000];
int k = 0;
for (java.util.Iterator<String> it = reader.getFieldNames(
FieldOption.ALL).iterator(); it.hasNext();) {
String fieldname = (String) it.next();
TermDocs t = reader.termDocs(new Term(fieldname, term_one));
while (t.next()) {
int x = t.doc();
if (termdocid_one[x] != 1) {
finaldocno_one++;
first_docids[k] = x;
k++;
}
termdocid_one[x] = 1;
}
}
/*
* System.out.println("value of finaldoc_one - " + finaldocno_one); for
* (int i = 0; i < finaldocno_one; i++) { System.out.println("" +
* first_docids[i]); }
*/
k = 0;
for (java.util.Iterator<String> it = reader.getFieldNames(
FieldOption.ALL).iterator(); it.hasNext();) {
String fieldname = (String) it.next();
TermDocs t = reader.termDocs(new Term(fieldname, term_two));
while (t.next()) {
int x = t.doc();
if (termdocid_two[x] != 1) {
finaldocno_two++;
second_docids[k] = x;
k++;
}
termdocid_two[x] = 1;
}
}
/*
* System.out.println("value of finaldoc_two - " + finaldocno_two);
*
* for (int i = 0; i < finaldocno_two; i++) { System.out.println("" +
* second_docids[i]); }
*/
int max;
int search = 0;
if (finaldocno_one > finaldocno_two) {
max = finaldocno_one;
search = 1;
} else {
max = finaldocno_two;
search = 2;
}
if (search == 1) {
for (int i = 0; i < max; i++) {
if (termdocid_two[first_docids[i]] == 1)
common_doc_no++;
}
} else if (search == 2) {
for (int i = 0; i < max; i++) {
if (termdocid_one[second_docids[i]] == 1)
common_doc_no++;
}
}
return common_doc_no;
}
code for calculation of knowledge matrix: -
void knowledge_matrix(double matrix[][], IndexReader reader, double avg_matrix[][]) throws IOException {
ArrayList<String> unique_terms_array = new ArrayList<>();
int totallength = unique_term_count(reader, unique_terms_array);
int co_occur_matrix[][] = new int[totallength + 3][totallength + 3];
double rowsum = 0;
for (int i = 1; i <= totallength; i++) {
rowsum = 0;
for (int j = 1; j <= totallength; j++) {
int co_occurence;
int occurence = docno_single_term(reader,
unique_terms_array.get(j - 1));
if (i > j) {
co_occurence = co_occur_matrix[i][j];
} else {
co_occurence = cooccurrence(reader,
unique_terms_array.get(i - 1),
unique_terms_array.get(j - 1));
co_occur_matrix[i][j] = co_occurence;
co_occur_matrix[j][i] = co_occurence;
}
matrix[i][j] = (float) co_occurence / (float) occurence;
rowsum += matrix[i][j];
if (i > 1)
{
avg_matrix[i - 1][j] = matrix[i - 1][j] - matrix[i - 1][0];
}
}
matrix[i][0] = rowsum / totallength;
}
for (int j = 1; j <= totallength; j++) {
avg_matrix[totallength][j] = matrix[totallength][j]
- matrix[totallength][0];
}
}
Please anyone suggest me any efficient method to implement it.

I think you can put the find process of term_one and term_two in one for loop. And you can use two hashsets to save the docid that you have found. And then use termOneSet.retainAll(termTwoSet) to get the doc which have both term_one and term_two.

Related

Bin packing, how do I include multiple 'bin sizes'

The code below is working well, however it isn't quite what I am looking for. It finds an efficient way to cut variable sizes (user input) from one static stock size. I want to alter the code so it finds an efficient way to cut the variable sizes from multiple static stock sizes, 4 to be specific.
public static void binPacking(double[] FinalCuttingList, double size, int TotalCuts)
{
int StockLengthCount = 0;
double[] StockValues = new double[TotalCuts];
for (int i = 0; i < StockValues.length; i++)
StockValues[i] = size;
for (int i = 0; i < TotalCuts; i++)
for (int o = 0; o < StockValues.length; o++)
{
if (StockValues[o] - FinalCuttingList[i] >= 0)
{
StockValues[o] -= FinalCuttingList[i];
break;
}
}
for (int i = 0; i < StockValues.length; i++)
if (StockValues[i] != size)
StockLengthCount++;
System.out
.println("Number of 3400mm pieces required is :"
+ StockLengthCount);
}
static double[] sort(double[] sequence)
{
// Sort in descending order
for (int i = 0; i < sequence.length; i++)
for (int o = 0; o < sequence.length - 1; o++)
if (sequence[o] < sequence[o + 1])
{
sequence[o] = sequence[o] + sequence[o + 1];
sequence[o + 1] = sequence[o] - sequence[o + 1];
sequence[o] = sequence[o] - sequence[o + 1];
}
return sequence;
}

Neural Network implementation for Number Recognition in Java

Firstly, i should mention that i only recently started programming (about a year ago). My main-language is Java.
to elaborate on what I've done:
to learn about Neural Networks i watched 3Blue1Brown´s series on the topic
after (mostly) understanding it i started to make the actual Implementation
I implemented a File-Reader to turn the raw numbers of the Database (i used MNIST just like 3b1b) into three arrays : 1 for the labels, 1 for the Images and one for the grayscale-values (i mapped the RGB values between 0 and 1) in one input-array
I then designed a test() and train() method, this is what i did:
public class Network {
int L;
int[] Lsize;
double[][][] weights;
double[][] biases;
public Network(int... Lsize) {
L = Lsize.length;
this.Lsize = Lsize;
weights = new double[L - 1][][];
for (int i = 0; i < L - 1; i++) {
weights[i] = new double[Lsize[i + 1]][Lsize[i]];
for (int j = 0; j < Lsize[i + 1]; j++) {
for (int k = 0; k < Lsize[i]; k++) {
weights[i][j][k] = (Math.random() * 2) - 1;
}
}
}
biases = new double[L - 1][];
for (int i = 0; i < L - 1; i++) {
biases[i] = new double[Lsize[i + 1]];
for (int j = 0; j < Lsize[i + 1]; j++) {
biases[i][j] = (Math.random() * 2) - 1;
}
}
}
public static void main(String[] args) {
Network n = new Network(28 * 28, 16, 16, 10);
Database mnist_train = new Database(60000, 28, 28, "mnist_train");
Database mnist_test = new Database(10000, 28, 28, "mnist_test");
System.out.println("accuracy= " + n.accuracy(mnist_test));
for(int i = 0; i < 50; i ++) {
n.train(mnist_train, 10, 0.1);
System.out.println("accuracy= " + n.accuracy(mnist_test));
}
}
public void train(Database data,int batchsize,double factor) {
Batch[] batches = data.dividetoBatches(batchsize);
for (int b = 0; b < data.n / batchsize; b++) {
System.out.println("Step " + b + " started!");
Batch batch = batches[b];
double[][][] averagegweights = new double[L - 1][][];
double[][] averagegbiases = new double[L - 1][];
for (int i = 0; i < L - 1; i++) {
averagegweights[i] = new double[Lsize[i + 1]][Lsize[i]];
averagegbiases[i] = new double[Lsize[i + 1]];
}
double averagecost = 0;
for (int e = 0; e < batchsize; e++) {
double[] target = batch.target[e];
double[] values = batch.values[e];
double[][] z = new double[L - 1][];
double[][] a = new double[L][];
a[0] = values;
for (int i = 0; i < L - 1; i++) {
a[i + 1] = new double[Lsize[i + 1]];
z[i] = new double[Lsize[i + 1]];
for (int j = 0; j < Lsize[i + 1]; j++) {
double sum = biases[i][j];
for (int k = 0; k < Lsize[i]; k++) {
sum += weights[i][j][k] * a[i + 1][j];
}
z[i][j] = sum;
a[i + 1][j] = sigmoid(sum);
}
}
double[][][] gweights = new double[L - 1][][];
double[][] gbiases = new double[L - 1][];
double[][] dCa = new double[L][];
double cost = 0;
dCa[L - 1] = new double[Lsize[L - 1]];
for (int i = 0; i < Lsize[L - 1]; i++) {
dCa[L-1][i] = 2 * (target[i] - a[L - 1][i]);
cost += (target[i] - a[L - 1][i]) * (target[i] - a[L - 1][i]);
}
// Backpropagation:
for (int i = L - 2; i >= 0; i--) {
dCa[i] = new double[Lsize[i]];
gweights[i] = new double[Lsize[i+1]][Lsize[i]];
gbiases[i] = new double[Lsize[i]];
for (int j = 0; j < Lsize[i + 1]; j++) {
gbiases[i][j] = dsigmoid(z[i][j]) * dCa[i+1][j];
for (int k = 0; k < Lsize[i]; k++) {
gweights[i][j][k] = a[i][k] * dsigmoid(z[i][j]) * dCa[i+1][j];
}
}
for (int k = 0; k < Lsize[i]; k++) {
dCa[i][k] = 0;
for (int j = 0; j < Lsize[i + 1]; j++) {
dCa[i][k] += weights[i][j][k] * dsigmoid(z[i][j]) * dCa[i + 1][j];
}
}
}
for (int i = 0; i < L - 1; i++) {
for (int j = 0; j < Lsize[i + 1]; j++) {
averagegbiases[i][j] += gbiases[i][j];
for (int k = 0; k < Lsize[i]; k++) {
averagegweights[i][j][k] += gweights[i][j][k];
}
}
}
averagecost += cost;
}
for (int i = 0; i < L - 1; i++) {
for (int j = 0; j < Lsize[i + 1]; j++) {
averagegbiases[i][j] = averagegbiases[i][j]/batchsize * -1;
for (int k = 0; k < Lsize[i]; k++) {
averagegweights[i][j][k] = averagegweights[i][j][k]/batchsize * -1;
}
}
}
for (int i = 0; i < L - 1; i++) {
for (int j = 0; j < Lsize[i + 1]; j++) {
biases[i][j] += averagegbiases[i][j] * factor;
for (int k = 0; k < Lsize[i]; k++) {
weights[i][j][k] += averagegweights[i][j][k] * factor;
}
}
}
averagecost = averagecost/batchsize;
System.out.println("averagecost = " + averagecost);
// System.out.println(Arrays.deepToString(batch.target));
System.out.println("Das sollte eine" + data.labels[0] + " sein!");
data.shuffle();
double[] output = test(data.values[0]);
for (int i = 0; i < output.length; i++) {
float val = (float) output[i];
System.out.print(i + ": ");
System.out.printf("%.2f", val);
System.out.println();
}
System.out.println("Step " + b + " finished!");
}
}
public double accuracy(Database data) {
int rightanswers = 0;
int answers = 0;
for(int i = 0; i < data.n; i++) {
if(maxIndex(test(data.values[i])) == data.labels[i]) {
rightanswers++;
}
answers++;
}
return (double)rightanswers/(double)answers;
}
public int maxIndex(double[] output) {
int index = 0;
for(int i = 0; i < output.length; i++) {
if(output[i] > output[index])
index = i;
}
return index;
}
public double[] test(double[] input) {
double[][] values = new double[L][];
values[0] = input;
for (int i = 0; i < L - 1; i++) {
values[i + 1] = new double[Lsize[i + 1]];
for (int j = 0; j < Lsize[i + 1]; j++) {
double sum = biases[i][j];
for (int k = 0; k < Lsize[i]; k++) {
sum += weights[i][j][k] * values[i][k];
}
values[i + 1][j] = sigmoid(sum);
}
}
double[] output = values[L - 1];
return output;
}
public double sigmoid(double x) {
return 1 / (1 + Math.pow(Math.E, x));
}
// derivative of the sigmoid-function
public double dsigmoid(double x) {
return sigmoid(x) * (1 - sigmoid(x));
}
}
my problem now is when i run the training the Cost-function decreases, but only because all of the output-values are nearing 0 and not because the network has actually found the right number to the picture.
after about one run through the Database the average Cost stagnates around 0.9
am i missing something fundamental or am i just not noticing an simple error
Thank you in advance
I`m sorry for my bad English, I´m actually German
The first thing you can do is to increase the complexity of the network. I just tried your architecture with my implementation and the network you currently have definitely isn't big enough to fit handwritten digits. I would recommend 784,128,128,10 as that had around 90% accuracy for 3 runs over the training set. If that doesn't yield better results, make sure your implementation of a neural network is functional on something less complex like the XOR problem. If XOR is learnable by your implementation, it could be the way you are altering the dataset. Debugging a neural network is tough, but you have to make sure the foundation of it is built correctly before looking at higher-level problems like learning rate and optimizers. You're using vanilla gradient descent so you should definitely implement momentum as it is easier to implement than what you've already done and is a significant improvement to your current method.

Why is the output always converging to 0.5?

I was trying to solve a XOR problem, but the output always converged to 0.5, so i tried a simpler problem like NOT and the same thing happened.
I really don't know what's going on, i checked the code a million times and everything seems to be right, when i debugged it saving the neural network info I saw that the either the weight values or the biases values were getting really large. To do that I followed the 3 blue 1 brown youtube series about neural network and some other videos, too.
this is my code:
PS: I put the entire code here but I think the main problem is inside the bakpropag function
class NeuralNetwork {
int inNum, hiddenLayersNum, outNum, netSize;
int[] hiddenLayerSize;
Matrix[] weights;
Matrix[] biases;
Matrix[] sums;
Matrix[] activations;
Matrix[] error;
Matrix inputs;
long samples = 0;
float learningRate;
//Constructor------------------------------------------------------------------------------------------------------
NeuralNetwork(int inNum, int hiddenLayersNum, int[] hiddenLayerSize, int outNum, float learningRate) {
this.inNum = inNum;
this.hiddenLayersNum = hiddenLayersNum;
this.hiddenLayerSize = hiddenLayerSize;
this.outNum = outNum;
this.netSize = hiddenLayersNum + 1;
this.learningRate = learningRate;
//output layer plus the hidden layer size
//Note: I'm not adding the input layer because it doesn't have weights
weights = new Matrix[netSize];
//no biases added to the output layer
biases = new Matrix[netSize - 1];
sums = new Matrix[netSize];
activations = new Matrix[netSize];
error = new Matrix[netSize];
initializeHiddenLayer();
initializeOutputLayer();
}
//Initializing Algorithms------------------------------------------------------------------------------------------
void initializeHiddenLayer() {
for (int i = 0; i < hiddenLayersNum; i++) {
if (i == 0) {//only the first hidden layer takes the inputs
weights[i] = new Matrix(hiddenLayerSize[i], inNum);
} else {
weights[i] = new Matrix(hiddenLayerSize[i], hiddenLayerSize[i - 1]);
}
biases[i] = new Matrix(hiddenLayerSize[i], 1);
sums[i] = new Matrix(hiddenLayerSize[i], 1);
activations[i] = new Matrix(hiddenLayerSize[i], 1);
error[i] = new Matrix(hiddenLayerSize[i], 1);
}
}
void initializeOutputLayer() {
//the output layer takes the last hidden layer activation values
weights[netSize - 1] = new Matrix(outNum, hiddenLayerSize[hiddenLayerSize.length - 1]);
activations[netSize - 1] = new Matrix(outNum, 1);
sums[netSize - 1] = new Matrix(outNum, 1);
error[netSize - 1] = new Matrix(outNum, 1);
for (Matrix m : weights) {
for (int i = 0; i < m.i; i++) {
for (int j = 0; j < m.j; j++) {
m.values[i][j] = random(-1, 1);
}
}
}
for (Matrix m : biases) {
for (int i = 0; i < m.i; i++) {
for (int j = 0; j < m.j; j++) {
m.values[i][j] = 1;
}
}
}
for (Matrix m : sums) {
for (int i = 0; i < m.i; i++) {
for (int j = 0; j < m.j; j++) {
m.values[i][j] = 0;
}
}
}
}
//Calculation------------------------------------------------------------------------------------------------------
void calculate(float[] inputs) {
this.inputs = new Matrix(0, 0);
this.inputs = this.inputs.arrayToCollumn(inputs);
sums[0] = (weights[0].matrixMult(this.inputs)).sum(biases[0]);
activations[0] = sigM(sums[0]);
for (int i = 1; i < netSize - 1; i++) {
sums[i] = weights[i].matrixMult(activations[i - 1]);
activations[i] = sigM(sums[i]).sum(biases[i]);
}
//there's no biases in the output layer
//And the output layer uses sigmoid function
sums[netSize - 1] = weights[netSize - 1].matrixMult(activations[netSize - 1 - 1]);
activations[netSize - 1] = sigM(sums[netSize - 1]);
}
//Sending outputs--------------------------------------------------------------------------------------------------
Matrix getOuts() {
return activations[netSize - 1];
}
//Backpropagation--------------------------------------------------------------------------------------------------
void calcError(float[] exp) {
Matrix expected = new Matrix(0, 0);
expected = expected.arrayToCollumn(exp);
//E = (output - expected)
error[netSize - 1] = this.getOuts().diff(expected);
samples++;
}
void backPropag(int layer) {
if (layer == netSize - 1) {
error[layer].scalarDiv(samples);
for (int i = layer - 1; i >= 0; i--) {
prevLayerCost(i);
}
weightError(layer);
backPropag(layer - 1);
} else {
weightError(layer);
biasError(layer);
if (layer != 0)
backPropag(layer - 1);
}
}
void weightError(int layer) {
if (layer != 0) {
for (int i = 0; i < weights[layer].i; i++) {
for (int j = 0; j < weights[layer].j; j++) {
float changeWeight = 0;
if (layer != netSize - 1)
changeWeight = activations[layer - 1].values[j][0] * deriSig(sums[layer].values[i][0]) * error[layer].values[i][0];
else
changeWeight = activations[layer - 1].values[j][0] * deriSig(sums[layer].values[i][0]) * error[layer].values[i][0];
weights[layer].values[i][j] += -learningRate * changeWeight;
}
}
} else {
for (int i = 0; i < weights[layer].i; i++) {
for (int j = 0; j < weights[layer].j; j++) {
float changeWeight = this.inputs.values[j][0] * deriSig(sums[layer].values[i][0]) * error[layer].values[i][0];
weights[layer].values[i][j] += -learningRate * changeWeight;
}
}
}
}
void biasError(int layer) {
for (int i = 0; i < biases[layer].i; i++) {
for (int j = 0; j < biases[layer].j; j++) {
float changeBias = 0;
if (layer != netSize - 1)
changeBias = deriSig(sums[layer].values[i][0]) * error[layer].values[i][0];
biases[layer].values[i][j] += -learningRate * changeBias;
}
}
}
void prevLayerCost(int layer) {
for (int i = 0; i < activations[layer].i; i++) {
for (int j = 0; j < activations[layer + 1].j; j++) {//for all conections of that neuron to the next layer
if (layer != netSize - 1)
error[layer].values[i][0] += weights[layer + 1].values[j][i] * deriSig(sums[layer + 1].values[j][0]) * error[layer + 1].values[j][0];
else
error[layer].values[i][0] += weights[layer + 1].values[j][i] * deriSig(sums[layer + 1].values[j][0]) * error[layer + 1].values[j][0];
}
}
}
//Activation Functions---------------------------------------------------------------------------------------------
Matrix reLUM(Matrix m) {
Matrix temp = m.copyM();
for (int i = 0; i < temp.i; i++) {
for (int j = 0; j < temp.j; j++) {
temp.values[i][j] = ReLU(m.values[i][j]);
}
}
return temp;
}
float ReLU(float x) {
return max(0, x);
}
float deriReLU(float x) {
if (x <= 0)
return 0;
else
return 1;
}
Matrix sigM(Matrix m) {
Matrix temp = m.copyM();
for (int i = 0; i < temp.i; i++) {
for (int j = 0; j < temp.j; j++) {
temp.values[i][j] = sig(m.values[i][j]);
}
}
return temp;
}
float sig(float x) {
return 1 / (1 + exp(-x));
}
float deriSig(float x) {
return sig(x) * (1 - sig(x));
}
//Saving Files-----------------------------------------------------------------------------------------------------
void SaveNeuNet() {
for (int i = 0; i < weights.length; i++) {
weights[i].saveM("weights\\weightLayer" + i);
}
for (int i = 0; i < biases.length; i++) {
biases[i].saveM("biases\\biasLayer" + i);
}
for (int i = 0; i < activations.length; i++) {
activations[i].saveM("activations\\activationLayer" + i);
}
for (int i = 0; i < error.length; i++) {
error[i].saveM("errors\\errorLayer" + i);
}
}
}
and this is the Matrix code:
class Matrix {
int i, j, size;
float[][] values;
Matrix(int i, int j) {
this.i = i;
this.j = j;
this.size = i * j;
values = new float[i][j];
}
Matrix sum (Matrix other) {
if (other.i == this.i && other.j == this.j) {
for (int x = 0; x < this.i; x++) {
for (int z = 0; z < this.j; z++) {
values[x][z] += other.values[x][z];
}
}
return this;
}
return null;
}
Matrix diff(Matrix other) {
if (other.i == this.i && other.j == this.j) {
for (int x = 0; x < this.i; x++) {
for (int z = 0; z < this.j; z++) {
values[x][z] -= other.values[x][z];
}
}
return this;
}
return null;
}
Matrix scalarMult(float k) {
for (int i = 0; i < this.i; i++) {
for (int j = 0; j < this.j; j++) {
values[i][j] *= k;
}
}
return this;
}
Matrix scalarDiv(float k) {
if (k != 0) {
for (int i = 0; i < this.i; i++) {
for (int j = 0; j < this.j; j++) {
values[i][j] /= k;
}
}
return this;
} else
return null;
}
Matrix matrixMult(Matrix other) {
if (this.j != other.i)
return null;
else {
Matrix temp = new Matrix(this.i, other.j);
for (int i = 0; i < temp.i; i++) {
for (int j = 0; j < temp.j; j++) {
for (int k = 0; k < this.j; k++) {
temp.values[i][j] += this.values[i][k] * other.values[k][j];
}
}
}
return temp;
}
}
Matrix squaredValues(){
for (int i = 0; i < this.i; i++){
for (int j = 0; j < this.j; j++){
values[i][j] = sq(values[i][j]);
}
}
return this;
}
void printM() {
for (int x = 0; x < this.i; x++) {
print("| ");
for (int z = 0; z < this.j; z++) {
print(values[x][z] + " | ");
}
println();
}
}
void saveM(String name) {
String out = "";
for (int x = 0; x < this.i; x++) {
out += "| ";
for (int z = 0; z < this.j; z++) {
out += values[x][z] + " | ";
}
out += "\n";
}
saveStrings("outputs\\" + name + ".txt", new String[] {out});
}
Matrix arrayToCollumn(float[] array) {
Matrix temp = new Matrix(array.length, 1);
for (int i = 0; i < array.length; i++)
temp.values[i][0] = array[i];
return temp;
}
Matrix arrayToLine(float[] array) {
Matrix temp = new Matrix(1, array.length);
for (int j = 0; j < array.length; j++)
temp.values[0][j] = array[j];
return temp;
}
Matrix copyM(){
Matrix temp = new Matrix(i, j);
for (int i = 0; i < this.i; i++){
for (int j = 0; j < this.j; j++){
temp.values[i][j] = this.values[i][j];
}
}
return temp;
}
}
As I said, the outputs are always converging to 0.5 instead of the actual value 1 or 0
I rewrote the code and it is working now! I have no idea what was wrong with the code before but this one works:
class NeuralNetwork {
int netSize;
float learningRate;
Matrix[] weights;
Matrix[] biases;
Matrix[] activations;
Matrix[] sums;
Matrix[] errors;
NeuralNetwork(int inNum, int hiddenNum, int[] hiddenLayerSize, int outNum, float learningRate) {
netSize = hiddenNum + 1;
this.learningRate = learningRate;
weights = new Matrix[netSize];
biases = new Matrix[netSize - 1];
activations = new Matrix[netSize];
sums = new Matrix[netSize];
errors = new Matrix[netSize];
initializeMatrices(inNum, hiddenNum, hiddenLayerSize, outNum);
}
//INITIALIZING MATRICES
void initializeMatrices(int inNum, int hiddenNum, int[] layerSize, int outNum) {
for (int i = 0; i < hiddenNum; i++) {
if (i == 0)
weights[i] = new Matrix(layerSize[0], inNum);
else
weights[i] = new Matrix(layerSize[i], layerSize[i - 1]);
biases[i] = new Matrix(layerSize[i], 1);
activations[i] = new Matrix(layerSize[i], 1);
errors[i] = new Matrix(layerSize[i], 1);
sums[i] = new Matrix(layerSize[i], 1);
weights[i].randomize(-1, 1);
biases[i].randomize(-1, 1);
activations[i].randomize(-1, 1);
}
weights[netSize - 1] = new Matrix(outNum, layerSize[layerSize.length - 1]);
activations[netSize - 1] = new Matrix(outNum, 1);
errors[netSize - 1] = new Matrix(outNum, 1);
sums[netSize - 1] = new Matrix(outNum, 1);
weights[netSize - 1].randomize(-1, 1);
activations[netSize - 1].randomize(-1, 1);
}
//---------------------------------------------------------------------------------------------------------------
void forwardPropag(float[] ins) {
Matrix inputs = new Matrix(0, 0);
inputs = inputs.arrayToCollumn(ins);
sums[0] = (weights[0].matrixMult(inputs)).sum(biases[0]);
activations[0] = sigM(sums[0]);
for (int i = 1; i < netSize - 1; i++) {
sums[i] = (weights[i].matrixMult(activations[i - 1])).sum(biases[i]);
activations[i] = sigM(sums[i]);
}
//output layer does not have biases
sums[netSize - 1] = weights[netSize - 1].matrixMult(activations[netSize - 2]);
activations[netSize - 1] = sigM(sums[netSize - 1]);
}
Matrix predict(float[] inputs) {
forwardPropag(inputs);
return activations[netSize - 1].copyM();
}
//SUPERVISED LEARNING - BACKPROPAGATION
void train(float[] inps, float[] expec) {
Matrix expected = new Matrix(0, 0);
expected = expected.arrayToCollumn(expec);
errors[netSize - 1] = predict(inps).diff(expected);
calcErorrPrevLayers();
adjustWeights(inps);
adjustBiases();
for (Matrix m : errors){
m.reset();
}
}
void calcErorrPrevLayers() {
for (int l = netSize - 2; l >= 0; l--) {
for (int i = 0; i < activations[l].i; i++) {
for (int j = 0; j < activations[l + 1].i; j++) {
errors[l].values[i][0] += weights[l + 1].values[j][i] * dSig(sums[l + 1].values[j][0]) * errors[l + 1].values[j][0];
}
}
}
}
void adjustWeights(float[] inputs) {
for (int l = 0; l < netSize; l++) {
if (l == 0) {
//for ervery neuron n in the first layer
for (int n = 0; n < activations[l].i; n++) {
//for every weight w of the first layer
for (int w = 0; w < inputs.length; w++) {
float weightChange = inputs[w] * dSig(sums[l].values[n][0]) * errors[l].values[n][0];
weights[l].values[n][w] += -learningRate * weightChange;
}
}
} else {
//for ervery neuron n in the first layer
for (int n = 0; n < activations[l].i; n++) {
//for every weight w of the first layer
for (int w = 0; w < activations[l - 1].i; w++) {
float weightChange = activations[l - 1].values[w][0] * dSig(sums[l].values[n][0]) * errors[l].values[n][0];
weights[l].values[n][w] += -learningRate * weightChange;
}
}
}
}
}
void adjustBiases() {
for (int l = 0; l < netSize - 1; l++) {
//for ervery neuron n in the first layer
for (int n = 0; n < activations[l].i; n++) {
float biasChange = dSig(sums[l].values[n][0]) * errors[l].values[n][0];
biases[l].values[n][0] += -learningRate * biasChange;
}
}
}
//ACTIVATION FUNCTION
float sig(float x) {
return 1 / (1 + exp(-x));
}
float dSig(float x) {
return sig(x) * (1 - sig(x));
}
Matrix sigM(Matrix m) {
Matrix temp = m.copyM();
for (int i = 0; i < m.i; i++) {
for (int j = 0; j < m.j; j++) {
temp.values[i][j] = sig(m.values[i][j]);
}
}
return temp;
}
}

DTW memory usage in Java

I have found the Dynamic Time Warping (DTW) library which coded in Java. Floating point array (float []) as an input and pass by JSP.
However, I have triple confirmed that the huge memory usage problem is caused by the DTW library.
Java always prompt me that "java.lang.OutOfMemoryError". Besides, DTW algorithm always use around 2-3 GB for performing DTW.
I think the root cause that is caused by global variable, am I correct?
Would you please help me to improve and keep the program with low memory usage?
JSP Code:
...
float[] integer_hum_UDS = new float[hum_uds.length];
float[] integer_midi_UDS = new float[midi_uds.length];
...
DTW dtw = new DTW(integer_midi_UDS, integer_hum_UDS); //<- Huge Memory usage statement
float distance = dtw.getDistance();
Java Code:
public class DTW {
protected float[] seq1;
protected float[] seq2;
protected int[][] warpingPath;
protected int n;
protected int m;
protected int K;
protected float warpingDistance;
/**
* Constructor
*
* #param query
* #param templete
*/
public DTW(float[] sample, float[] templete) {
seq1 = sample;
seq2 = templete;
n = seq1.length;
m = seq2.length;
K = 1;
warpingPath = new int[n + m][2]; // max(n, m) <= K < n + m
warpingDistance = 0;
this.compute();
}
public void clear() {
seq1 = null;
seq2 = null;
warpingPath = null;
n = 0;
m = 0;
K = 0;
warpingDistance = 0;
System.gc();
Runtime.getRuntime().freeMemory();
}
public void compute() {
float accumulatedDistance = 0;
float[][] d = new float[n][m]; // local distances
float[][] D = new float[n][m]; // global distances
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
d[i][j] = distanceBetween(seq1[i], seq2[j]);
}
}
D[0][0] = d[0][0];
for (int i = 1; i < n; i++) {
D[i][0] = d[i][0] + D[i - 1][0];
}
for (int j = 1; j < m; j++) {
D[0][j] = d[0][j] + D[0][j - 1];
}
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
accumulatedDistance = Math.min(Math.min(D[i-1][j], D[i-1][j-1]), D[i][j-1]);
accumulatedDistance += d[i][j];
D[i][j] = accumulatedDistance;
}
}
accumulatedDistance = D[n - 1][m - 1];
int i = n - 1;
int j = m - 1;
int minIndex = 1;
warpingPath[K - 1][0] = i;
warpingPath[K - 1][1] = j;
while ((i + j) != 0) {
if (i == 0) {
j -= 1;
} else if (j == 0) {
i -= 1;
} else { // i != 0 && j != 0
float[] array = { D[i - 1][j], D[i][j - 1], D[i - 1][j - 1] };
minIndex = this.getIndexOfMinimum(array);
if (minIndex == 0) {
i -= 1;
} else if (minIndex == 1) {
j -= 1;
} else if (minIndex == 2) {
i -= 1;
j -= 1;
}
} // end else
K++;
warpingPath[K - 1][0] = i;
warpingPath[K - 1][1] = j;
} // end while
warpingDistance = accumulatedDistance / K;
//this.reversePath(warpingPath);
//Clear
this.clear();
//d = null;
//D = null;
//warpingPath = null;
//accumulatedDistance = 0;
}
/**
* Changes the order of the warping path (increasing order)
*
* #param path the warping path in reverse order
*/
/*
protected void reversePath(int[][] path) {
int[][] newPath = new int[K][2];
for (int i = 0; i < K; i++) {
for (int j = 0; j < 2; j++) {
newPath[i][j] = path[K - i - 1][j];
}
}
warpingPath = newPath;
}
*/
/**
* Returns the warping distance
*
* #return
*/
public float getDistance() {
return warpingDistance;
}
/**
* Computes a distance between two points
*
* #param p1 the point 1
* #param p2 the point 2
* #return the distance between two points
*/
protected float distanceBetween(float p1, float p2) {
return (p1 - p2) * (p1 - p2);
}
/**
* Finds the index of the minimum element from the given array
*
* #param array the array containing numeric values
* #return the min value among elements
*/
protected int getIndexOfMinimum(float[] array) {
int index = 0;
float val = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] < val) {
val = array[i];
index = i;
}
}
return index;
}
/**
* Returns a string that displays the warping distance and path
*/
public String toString() {
String retVal = "Warping Distance: " + warpingDistance + "\n";
/*
retVal += "Warping Path: {";
for (int i = 0; i < K; i++) {
retVal += "(" + warpingPath[i][0] + ", " +warpingPath[i][1] + ")";
retVal += (i == K - 1) ? "}" : ", ";
}
*/
return retVal;
}
/**
* Tests this class
*
* #param args ignored
*/
public static void main(String[] args) {
float[] n2 = {1, 2, 3, 4, 5, 9, 19, 49.7555f};
float[] n1 = {1, 2, 3, 4};
DTW dtw = new DTW(n1, n2);
System.out.println(dtw);
}
}

Sorting multidimensional array without sort method?

I was tasked with creating a 2D array (10-by-10), filling it with random numbers (from 10 to 99), and other tasks. I am, however, having difficulty sorting each row of this array in ascending order without using the array sort() method.
My sorting method does not sort. Instead, it prints out values diagonally, from the top leftmost corner to the bottom right corner. What should I do to sort the numbers?
Here is my code:
public class Program3
{
public static void main(String args[])
{
int[][] arrayOne = new int[10][10];
int[][] arrayTwo = new int[10][10];
arrayTwo = fillArray(arrayOne);
System.out.println("");
looper(arrayTwo);
System.out.println("");
sorter(arrayTwo);
}
public static int randomRange(int min, int max)
{
// Where (int)(Math.random() * ((upperbound - lowerbound) + 1) + lowerbound);
return (int)(Math.random()* ((max - min) + 1) + min);
}
public static int[][] fillArray(int x[][])
{
for (int row = 0; row < x.length; row++)
{
for (int column = 0; column < x[row].length; column++)
{
x[row][column] = randomRange(10,99);
System.out.print(x[row][column] + "\t");
}
System.out.println();
}
return x;
}
public static void looper(int y[][])
{
for (int row = 0; row < y.length; row++)
{
for (int column = 0; column < y[row].length; column++)
{
if (y[row][column]%2 == 0)
{
y[row][column] = 2 * y[row][column];
if (y[row][column]%10 == 0)
{
y[row][column] = y[row][column]/10;
}
}
else if (y[row][column] == 59)
{
y[row][column] = 99;
}
System.out.print(y[row][column] + "\t");
}
System.out.println();
}
//return y;
}
public static void sorter(int[][] z)
{
int temp = 0;
int tempTwo = 0;
int lowest;
int bravo = 0;
int bravoBefore = -1;
for (int alpha = 0; alpha < z.length; alpha++)
{
//System.out.println(alpha + "a");
lowest = z[alpha][bravoBefore + 1];
bravoBefore++;
for (bravo = alpha + 1; bravo < z[alpha].length; bravo++)
{
//System.out.println(alpha + "b");
temp = bravo;
if((z[alpha][bravo]) < lowest)
{
temp = bravo;
lowest = z[alpha][bravo];
//System.out.println(lowest + " " + temp);
//System.out.println(alpha + "c" + temp);
tempTwo = z[alpha][bravo];
z[alpha][bravo] = z[alpha][temp];
z[alpha][temp] = tempTwo;
//System.out.println(alpha + "d" + temp);
}
}
System.out.print(z[alpha][bravoBefore] + "\t");
}
/*
for (int alpha = 0; alpha < z.length; alpha++)
{
for (int bravo = 0; bravo < z.length - 1; bravo++)
{
if(Integer.valueOf(z[alpha][bravo]) < Integer.valueOf(z[alpha - 1][bravo]))
{
int[][] temp = z[alpha - 1][bravo];
z[alpha-1][bravo] = z[alpha][bravo];
z[alpha][bravo] = temp;
}
}
}
*/
}
}
for(int k = 0; k < arr.length; k++)
{
for(int p = 0; p < arr[k].length; p++)
{
least = arr[k][p];
for(int i = k; i < arr.length; i++)
{
if(i == k)
z = p + 1;
else
z = 0;
for(;z < arr[i].length; z++)
{
if(arr[i][z] <= small)
{
least = array[i][z];
row = i;
col = z;
}
}
}
arr[row][col] = arr[k][p];
arr[k][p] = least;
System.out.print(arr[k][p] + " ");
}
System.out.println();
}
Hope this code helps . Happy coding
let x is our unsorted array;
int t1=0;
int i1=0;
int j1=0;
int n=0;
boolean f1=false;
for(int i=0;i<x.length;i++){
for(int j=0;j<x[i].length;j++){
t1=x[i][j];
for(int m=i;m<x.length;m++){
if(m==i)n=j+1;
else n=0;
for(;n<x[m].length;n++){
if(x[m][n]<=t1){
t1=x[m][n];
i1=m;
j1=n;
f1=true;
}
}
}
if(f1){
x[i1][j1]=x[i][j];
x[i][j]=t1;
f1=false;
}
}
}
//now x is sorted; "-";

Categories