Which code snippet executes faster? - java

I can do same thing by two types of code snippet.
First Way:
String makeDate = Integer.toString(now.year) + Integer.toString(now.month) + Integer.toString(now.monthDay);
Or Second Way:
String makeDate = now.year + "" + now.month + "" + now.monthDay;
My question is:
Which method is preferable [First way or Second way]?
Which code snippet will execute faster?

The two snippits you show are nearly identical.
a String in Java is immutable; it can't be changed. When using the concatenation operator (+) the compiler actually generates code using a StringBuilder
For example your second snippit becomes:
String makeDate = new StringBuilder()
.append(now.year)
.append("")
.append(now.month)
.append("")
.append(now.monthDay)
.toString();
You can look at the generated bytecode to see this. Java comes with a program javap that allows you to look at your compiled .class.
I created a simple main() to provide minimal bytecode:
public static void main(String[] args)
{
String makeDate = Integer.toString(1) + Integer.toString(1) + Integer.toString(1);
System.out.println(makeDate);
}
Which produces:
public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:
stack=2, locals=2, args_size=1
0: new #2 // class java/lang/StringBuilder
3: dup
4: invokespecial #3 // Method java/lang/StringBuilder."<init>":()V
7: iconst_1
8: invokestatic #4 // Method java/lang/Integer.toString:(I)Ljava/lang/String;
11: invokevirtual #5 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
14: iconst_1
15: invokestatic #4 // Method java/lang/Integer.toString:(I)Ljava/lang/String;
18: invokevirtual #5 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
21: iconst_1
22: invokestatic #4 // Method java/lang/Integer.toString:(I)Ljava/lang/String;
25: invokevirtual #5 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
28: invokevirtual #6 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
31: astore_1
32: getstatic #7 // Field java/lang/System.out:Ljava/io/PrintStream;
35: aload_1
36: invokevirtual #8 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
39: return
Versus:
public static void main(String[] args)
{
int i = 1;
String makeDate = i + "" + i + "" + i;
System.out.println(makeDate);
}
Produces:
public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:
stack=2, locals=3, args_size=1
0: iconst_1
1: istore_1
2: new #2 // class java/lang/StringBuilder
5: dup
6: invokespecial #3 // Method java/lang/StringBuilder."<init>":()V
9: iload_1
10: invokevirtual #4 // Method java/lang/StringBuilder.append:(I)Ljava/lang/StringBuilder;
13: ldc #5 // String
15: invokevirtual #6 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
18: iload_1
19: invokevirtual #4 // Method java/lang/StringBuilder.append:(I)Ljava/lang/StringBuilder;
22: ldc #5 // String
24: invokevirtual #6 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
27: iload_1
28: invokevirtual #4 // Method java/lang/StringBuilder.append:(I)Ljava/lang/StringBuilder;
31: invokevirtual #7 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
34: astore_2
35: getstatic #8 // Field java/lang/System.out:Ljava/io/PrintStream;
38: aload_2
39: invokevirtual #9 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
42: return
Technically the latter is probably faster at some scale that is nearly immeasurable (< 1ns) but for all practical purposes it doesn't matter; use whichever you like.

Related

How does final keyword work with string immutability? [duplicate]

This question already has an answer here:
How is concatenation of final strings done in Java?
(1 answer)
Closed 2 years ago.
I have the following code. I understand the concept of java string immutability and string constant pool. I don't understand why 'name1 == name2' results false and 'name2 == name3' results true in the following program. How are the string variables name1, name2, and name3 placed in the string constant pool?
public class Test {
public static void main(String[] args) {
final String firstName = "John";
String lastName = "Smith";
String name1 = firstName + lastName;
String name2 = firstName + "Smith";
String name3 = "John" + "Smith";
System.out.println(name1 == name2);
System.out.println(name2 == name3);
}
}
Output:
false
true
The answer is fairly simple: As a shortcut, java treats certain concepts as a so-called 'compile time constant' (CTC). The idea is to entirely inline a variable, at the compilation level (which is extraordinary; normally javac basically just bashes your java source file into a class file using very simple and easily understood transformations, and the fancypants optimizations occur at runtime during hotspot).
For example, if you do this:
Save to UserOfBatch.java:
class BatchOConstants {
public static final int HELLO = 5;
}
public class UserOfBatch {
public static void main(String[] args) {
System.out.println(BatchOConstants.HELLO);
}
}
Run on the command line:
> javac UserOfBatch.java
> java UserOfBatch
5
> javap -c UserOfBatch # javap prints bytecode
public static void main(java.lang.String[]);
Code:
0: getstatic #7 // Field java/lang/System.out:Ljava/io/PrintStream;
3: iconst_5
4: invokevirtual #15 // Method java/io/PrintStream.println:(I)V
7: return
Check out line 3 up there. iconst_5. That 5? It was hardcoded!!
No reference to BatchOConstants remains. Let's test that:
on command line:
> rm BatchOConstants.class
> java UserOfBatch
5
Wow. The code ran even though it's missing the very class file that should be providing that 5, thus proving, it was 'hardcoded' by the compiler itself and not the runtime.
Another way to 'observe' CTC-ness of any value is annoparams. An annotation parameter must be hardcoded into the class file by javac, so you can't pass expressions. Given:
public #interface Foo {
long value();
I can't write: #Foo(System.currentTimeMillis()), because System.cTM obviously isn't a compile time constant. But I can write #Foo(SomeClass.SOME_STATIC_FINAL_LONG_FIELD) assuming that the value assigned to S_S_F_L_F is a compile time constant. If it's not, that #Foo(...) code would not compile. If it is, it will compile: CTC-ness now determines whether your code compiles or not.
There are specific rules about when the compiler is allowed to construe something as a 'compile time constant' and go on an inlining spree. For example, null is not an inline constant, ever. Oversimplifying, but:
For fields, the field must be static and final and have a primitive or String type, initialized on the spot (in the same breath, not later in a static block), with a constant expression, that isn't null.
For local variables, the rules are very similar, except, the need for them to be static is obviously waived as they cannot be. Other than that, all the fixins apply: final, primitive-or-String, non-null, initialized on the spot, and with a constant expression.
Unfortunately, CTC-ness of a local is harder to directly observe. The code you wrote is a fine way to indirectly observe it though. You've proven with your prints that firstName is CTC and lastName is not.
We can observe a select few things though. So let's take your code, compile it, and toss it at javap to witness the results. Via Jonas Konrad's online javap tool, let's analyse:
public Main() {
final String a = "hello";
String b = "world";
String c = a + "!";
String d = b + "!";
System.out.println(c == "hello!");
System.out.println(d == "world!");
}
The relevant parts:
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: ldc #7 // String hello
6: astore_1
start local 1 // java.lang.String a
7: ldc #9 // String world
9: astore_2
start local 2 // java.lang.String b
10: ldc #11 // String hello!
12: astore_3
start local 3 // java.lang.String c
13: aload_2
14: invokedynamic #13, 0 // InvokeDynamic #0:makeConcatWithConstants:(Ljava/lang/String;)Ljava/lang/String;
19: astore 4
start local 4 // java.lang.String d
Note how 'start local 2' (which is c; javap starts counting at 0) shows just loading hello! as a complete constant, but 'start local 3' (which is d) shows loading 2 constants and invoking makeConcat to tie em together.
run javap -c Test after you compiled the code,
you will see that
Compiled from "Test.java"
public class Test {
public Test();
Code:
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
public static void main(java.lang.String[]);
Code:
0: ldc #2 // String Smith
2: astore_2
3: aload_2
4: invokedynamic #3, 0 // InvokeDynamic #0:makeConcatWithConstants:(Ljava/lang/String;)Ljava/lang/String;
9: astore_3
10: ldc #4 // String JohnSmith
12: astore 4
14: ldc #4 // String JohnSmith
16: astore 5
18: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream;
21: aload_3
22: aload 4
24: if_acmpne 31
27: iconst_1
28: goto 32
31: iconst_0
32: invokevirtual #6 // Method java/io/PrintStream.println:(Z)V
35: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream;
38: aload 4
40: aload 5
42: if_acmpne 49
45: iconst_1
46: goto 50
49: iconst_0
50: invokevirtual #6 // Method java/io/PrintStream.println:(Z)V
53: return
}
As you can see
4: invokedynamic #3, 0 // InvokeDynamic #0:makeConcatWithConstants:(Ljava/lang/String;)Ljava/lang/String;
in public static void main(java.lang.String[]);, this is the actual compiled byte code when running firstname + lastname. So generated String will not have the same hashcode as "JohnSmith" in constant pool.
where as on
10: ldc #4 // String JohnSmith
and
14: ldc #4 // String JohnSmith
this is the byte code generated by the compiler when doing both
firstname + "Smith" and "John" + "Smith" which means both actually reading from the constant pool.
This is the reason why when you comparing name1 with name2 using == it will return false. since name2 and name3 reference the same string from the constant pool. Hench it return true when compare with ==.
This is the reason why it is not a good idea to compare 2 string with ==. Please use String.equals() when doing String comparison.
since both
Let's look at the bytecode with final:
public class Test {
public Test();
Code:
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
public static void main(java.lang.String[]);
Code:
0: ldc #7 // String Smith
2: astore_1
3: aload_1
4: invokedynamic #9, 0 // InvokeDynamic #0:makeConcatWithConstants:(Ljava/lang/String;)Ljava/lang/String;
9: astore_2
10: ldc #13 // String JohnSmith
12: astore_3
13: ldc #13 // String JohnSmith
15: astore 4
17: getstatic #15 // Field java/lang/System.out:Ljava/io/PrintStream;
20: aload_2
21: aload_3
22: if_acmpne 29
25: iconst_1
26: goto 30
29: iconst_0
30: invokevirtual #21 // Method java/io/PrintStream.println:(Z)V
33: getstatic #15 // Field java/lang/System.out:Ljava/io/PrintStream;
36: aload_3
37: aload 4
39: if_acmpne 46
42: iconst_1
43: goto 47
46: iconst_0
47: invokevirtual #21 // Method java/io/PrintStream.println:(Z)V
50: return
}
And the bytecode without final:
public class Test {
public Test();
Code:
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
public static void main(java.lang.String[]);
Code:
0: ldc #7 // String John
2: astore_1
3: ldc #9 // String Smith
5: astore_2
6: aload_1
7: aload_2
8: invokedynamic #11, 0 // InvokeDynamic #0:makeConcatWithConstants:(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;
13: astore_3
14: aload_1
15: invokedynamic #15, 0 // InvokeDynamic #1:makeConcatWithConstants:(Ljava/lang/String;)Ljava/lang/String;
20: astore 4
22: ldc #18 // String JohnSmith
24: astore 5
26: getstatic #20 // Field java/lang/System.out:Ljava/io/PrintStream;
29: aload_3
30: aload 4
32: if_acmpne 39
35: iconst_1
36: goto 40
39: iconst_0
40: invokevirtual #26 // Method java/io/PrintStream.println:(Z)V
43: getstatic #20 // Field java/lang/System.out:Ljava/io/PrintStream;
46: aload 4
48: aload 5
50: if_acmpne 57
53: iconst_1
54: goto 58
57: iconst_0
58: invokevirtual #26 // Method java/io/PrintStream.println:(Z)V
61: return
}
As you can see, with final, Java recognizes both the left and right hand sides of + to be constant, so it replaces the concatenation with the constant string "JohnSmith" at compile time. The only call to makeConcatWithConstants (to concatenate strings) is made for firstName + lastName, since lastName isn't final.
In the second example, there are two calls to makeConcatWithConstants, one for firstName + lastName and another for firstName + "Smith", since Java doesn't recognize firstName as a constant.
That's why name1 == name2 is false in your example: name2 is a constant "JohnSmith" in the string pool, whereas name1 is dynamically computed at runtime. However, name2 and name3 are both constants in the string pool, which is why name2 == name3 is true.

Does Java compiler optimize stream filtering?

Let's have a case:
x.stream().filter(X::isFlag).filter(this::isOtherFlag).reduce(...)
Does it differ from this one?
x.stream().filter(predicate(X::isFlag).and(this::isOtherFlag)).reduce(...)
Functionally, the two statements are equivalent. However, consider the two following blocks of code and their respective bytecodes:
public static void main(String[] args) {
List<String> list = List.of("Seven", "Eight", "Nine");
list.stream().filter(s -> s.length() >= 5)
.filter(s -> s.contains("n"))
.forEach(System.out::println);
}
public static void main(java.lang.String[]);
Code:
0: ldc #16 // String Seven
2: ldc #18 // String Eight
4: ldc #20 // String Nine
6: invokestatic #22 // InterfaceMethod java/util/List.of:(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/util/List;
9: astore_1
10: aload_1
11: invokeinterface #28, 1 // InterfaceMethod java/util/List.stream:()Ljava/util/stream/Stream;
16: invokedynamic #35, 0 // InvokeDynamic #0:test:()Ljava/util/function/Predicate;
21: invokeinterface #36, 2 // InterfaceMethod java/util/stream/Stream.filter:(Ljava/util/function/Predicate;)Ljava/util/stream/Stream;
26: invokedynamic #42, 0 // InvokeDynamic #1:test:()Ljava/util/function/Predicate;
31: invokeinterface #36, 2 // InterfaceMethod java/util/stream/Stream.filter:(Ljava/util/function/Predicate;)Ljava/util/stream/Stream;
36: getstatic #43 // Field java/lang/System.out:Ljava/io/PrintStream;
39: invokedynamic #52, 0 // InvokeDynamic #2:accept:(Ljava/io/PrintStream;)Ljava/util/function/Consumer;
44: invokeinterface #53, 2 // InterfaceMethod java/util/stream/Stream.forEach:(Ljava/util/function/Consumer;)V
49: return
-
public static void main(String[] args) {
List<String> list = List.of("Seven", "Eight", "Nine");
list.stream().filter(s -> s.length() >= 5 && s.contains("n"))
.forEach(System.out::println);
}
public static void main(java.lang.String[]);
Code:
0: ldc #16 // String Seven
2: ldc #18 // String Eight
4: ldc #20 // String Nine
6: invokestatic #22 // InterfaceMethod java/util/List.of:(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/util/List;
9: astore_1
10: aload_1
11: invokeinterface #28, 1 // InterfaceMethod java/util/List.stream:()Ljava/util/stream/Stream;
16: invokedynamic #35, 0 // InvokeDynamic #0:test:()Ljava/util/function/Predicate;
21: invokeinterface #36, 2 // InterfaceMethod java/util/stream/Stream.filter:(Ljava/util/function/Predicate;)Ljava/util/stream/Stream;
26: getstatic #42 // Field java/lang/System.out:Ljava/io/PrintStream;
29: invokedynamic #51, 0 // InvokeDynamic #1:accept:(Ljava/io/PrintStream;)Ljava/util/function/Consumer;
34: invokeinterface #52, 2 // InterfaceMethod java/util/stream/Stream.forEach:(Ljava/util/function/Consumer;)V
39: return
We can see that, in the second example, one call to invokedynamic and invokeinterface are missing (which makes sense as we omitted a call to filter). I'm sure someone could assist with me with the static analysis of this bytecode (I can post verbose files if needed), but the Java compiler clearly treats the single call to filter as a single Predicate<String> rather than splitting it at the operator &&, shortening the bytecode slightly.

How many objects will be created and how many objects will be available for garbage collection?

String str = "test";
str = str + "test2";
str = str + "test3";
str = str + "test4";
str = str + "test5";
How many objects will be created from the above code and how many objects will be available for garbage collection?
Can someone please explain this?
How many objects will be created
At runtime, 4, i.e. the four computed values of str, excluding the initial value which comes from the constant pool.
and how many objects will be available for garbage collection?
At the end of this code but before str goes out of scope, three, i.e. the three intermediate values of str.
Note that I am counting Strings. Each String will have an associated char[] which is another object.
However if the surrounding code is such that the JVM can determine that str cannot change between these lines of code it could be as low as one and zero respectively.
The JavaC is very odd regarding String manipulation. For example, why dont they use String.concat when you do "String += otherString"?
Instead, Java creates a StringBuilder (or StringBuffer, depending on the Java version) for each line ended with ; that you have concatenating Strings.
I placed your code in a test program (TCTestWin) and called from command line:
javap -c TCTestWin.class
These are the results:
0: ldc #15 // String test
2: astore_1
3: new #17 // class java/lang/StringBuilder
6: dup
7: aload_1
8: invokestatic #19 // Method java/lang/String.valueOf:(Ljava/lang/Object;)Ljava/lang/String;
11: invokespecial #25 // Method java/lang/StringBuilder."<init>":(Ljava/lang/String;)V
14: ldc #28 // String test2
16: invokevirtual #30 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
19: invokevirtual #34 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
22: astore_1
23: new #17 // class java/lang/StringBuilder
26: dup
27: aload_1
28: invokestatic #19 // Method java/lang/String.valueOf:(Ljava/lang/Object;)Ljava/lang/String;
31: invokespecial #25 // Method java/lang/StringBuilder."<init>":(Ljava/lang/String;)V
34: ldc #38 // String test3
36: invokevirtual #30 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
39: invokevirtual #34 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
42: astore_1
43: new #17 // class java/lang/StringBuilder
46: dup
47: aload_1
48: invokestatic #19 // Method java/lang/String.valueOf:(Ljava/lang/Object;)Ljava/lang/String;
51: invokespecial #25 // Method java/lang/StringBuilder."<init>":(Ljava/lang/String;)V
54: ldc #40 // String test4
56: invokevirtual #30 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
59: invokevirtual #34 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
62: astore_1
63: new #17 // class java/lang/StringBuilder
66: dup
67: aload_1
68: invokestatic #19 // Method java/lang/String.valueOf:(Ljava/lang/Object;)Ljava/lang/String;
71: invokespecial #25 // Method java/lang/StringBuilder."<init>":(Ljava/lang/String;)V
74: ldc #42 // String test5
76: invokevirtual #30 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
79: invokevirtual #34 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
82: astore_1
83: return
As you can see, for each line, JavaC creates a StringBuilder, appends the String, and continues.
Such code, specially when used inside a loop, will rush the Garbage Collector.
There are three better ways to do it:
Use concat instead:
String str = "test";
str = str.concat("test2");
str = str.concat("test3");
str = str.concat("test4");
str = str.concat("test5");
Use a single line of concatenation, which will create a single StringBuilder. Remember that each ; will create another StringBuilder. Note that in the concatenation of constant Strings below, the Java compiler will create a single String. However, if you add one or more String variables, then the StringBuilder will be created.
String str = "test" + "test2" + "test3" + "test4" + "test5";
Create a StringBuilder yourself, do the concatenation, and REUSE the StringBuilder. This has the best performance, specially when doing things in a loop.
StringBuilder sb = new StringBuilder(512);
for (int i = 0; i < 10000; i++)
{
sb.setLength(0);
sb.append("test");
sb.append("test2");
sb.append("test3");
sb.append("test4");
sb.append("test5");
sb.append(i);
String s = sb.toString();
}
So, from the code above, 4 different StringBuilders will be created. After the final String, all StringBuilders will be collected.

Can a java compiler optimize this code away?

Is a java compiler or runtime ( or any other language compiler ) smart enough to realize branch 3 can never happen , and optimize it away? I've seen this kind of "defensive programming" with many beginning developers, and wonder if this dead weight stays in the bytecode.
import java.util.Random;
class Example
{
public static void main(String[] args) {
int x = new Random().nextInt() % 10;
if ( x < 5 )
{
System.out.println("Case 1");
}
else
if ( x >= 5 )
{
System.out.println("Case 2");
}
else
{
System.out.println("Case 3");
}
}
}
or even this more blunt case
boolean bool = new Random().nextBoolean();
if ( bool )
{
System.out.println("Case 1");
}
else
if ( bool )
{
System.out.println("Case 2");
}
The Java 8 compiler I have doesn't seem to optimize it away. Using "javap -c" to examine the byte code after compiling:
public static void main(java.lang.String[]);
Code:
0: new #2 // class java/util/Random
3: dup
4: invokespecial #3 // Method java/util/Random."<init>":()V
7: invokevirtual #4 // Method java/util/Random.nextInt:()I
10: bipush 10
12: irem
13: istore_1
14: iload_1
15: iconst_5
16: if_icmpge 30
19: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream;
22: ldc #6 // String Case 1
24: invokevirtual #7 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
27: goto 54
30: iload_1
31: iconst_5
32: if_icmplt 46
35: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream;
38: ldc #8 // String Case 2
40: invokevirtual #7 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
43: goto 54
46: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream;
49: ldc #9 // String Case 3
51: invokevirtual #7 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
54: return
}
The string "Case 3" still exists in the byte code.

Why can't I have a duplicate case in my switch statement?

I understand that this will fail to compile:
int caseNum = 2;
switch(caseNum)
{
case 2:
System.out.println("Happy");
break;
case 2:
System.out.println("Birthday");
break;
case 2:
System.out.println("To the ground!");
break;
default:
System.out.println("<3");
break;
}
I know that the case statements are conflicting and that the compiler "doesn't know which 'case 2' I am talking about". A few peers of mine and myself were wondering behind the scenes what the conflict is and had heard that switch statements are converted into hash-maps. Is that the case, does a switch statement become a hash-map during compile time and the conflict in the mapping create the error?
So far I have looked around Stack Overflow and Google for an answer, and the information must be out there already, but I am unsure how to express the question correctly it would appear. Thanks in advance!
A hash map is just one way that a switch statement could be compiled, but in any case, you can imagine having duplicate cases as trying to have multiple values for the same key in a regular HashMap. The compiler doesn't know which one of the values corresponds to the key, and so emits an error.
switch statements could also be compiled into a jump table, in which case this is still ambiguous for a very similar reason -- you have multiple different possibilities for the same jump location.
switch statements could also be compiled into a binary search, in which case you still have the same problem -- multiple different results for the same key being searched for.
Just in case you were curious, I did a small test case to see what javac would compile the switch to. From this (slightly modified) source:
public static void main(final String[] args) {
final int caseNum = 2;
switch (caseNum) {
case 1:
System.out.println("Happy");
break;
case 2:
System.out.println("Birthday");
break;
case 3:
System.out.println("To the ground!");
break;
default:
System.out.println("<3");
break;
}
}
You get this bytecode:
public static void main(java.lang.String[]);
Code:
0: iconst_2
1: tableswitch { // 1 to 3
1: 28
2: 39
3: 50
default: 61
}
28: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
31: ldc #3 // String Happy
33: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
36: goto 69
39: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
42: ldc #5 // String Birthday
44: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
47: goto 69
50: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
53: ldc #6 // String To the ground!
55: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
58: goto 69
61: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
64: ldc #7 // String <3
66: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
69: return
So at least for this small switch, a jump table seems to be used. I have heard that the way switches are compiled depends partly on their size, but I don't know the exact point at which the implementation changes. 20 cases still seem to be implemented as a jump table...
Turns out String switch statements are implemented a bit differently. From this source:
public static void main(final String[] args) {
final String caseNum = "2";
switch (caseNum) {
case "1":
System.out.println("Happy");
break;
case "2":
System.out.println("Birthday");
break;
case "3":
System.out.println("To the ground!");
break;
default:
System.out.println("<3");
break;
}
}
You get this bytecode:
public static void main(java.lang.String[]);
Code:
0: ldc #2 // String 2
2: astore_2
3: iconst_m1
4: istore_3
5: aload_2
6: invokevirtual #3 // Method java/lang/String.hashCode:()I
9: tableswitch { // 49 to 51
49: 36
50: 50
51: 64
default: 75
}
36: aload_2
37: ldc #4 // String 1
39: invokevirtual #5 // Method java/lang/String.equals:(Ljava/lang/Object;)Z
42: ifeq 75
45: iconst_0
46: istore_3
47: goto 75
50: aload_2
51: ldc #2 // String 2
53: invokevirtual #5 // Method java/lang/String.equals:(Ljava/lang/Object;)Z
56: ifeq 75
59: iconst_1
60: istore_3
61: goto 75
64: aload_2
65: ldc #6 // String 3
67: invokevirtual #5 // Method java/lang/String.equals:(Ljava/lang/Object;)Z
70: ifeq 75
73: iconst_2
74: istore_3
75: iload_3
76: tableswitch { // 0 to 2
0: 104
1: 115
2: 126
default: 137
}
104: getstatic #7 // Field java/lang/System.out:Ljava/io/PrintStream;
107: ldc #8 // String Happy
109: invokevirtual #9 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
112: goto 145
115: getstatic #7 // Field java/lang/System.out:Ljava/io/PrintStream;
118: ldc #10 // String Birthday
120: invokevirtual #9 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
123: goto 145
126: getstatic #7 // Field java/lang/System.out:Ljava/io/PrintStream;
129: ldc #11 // String To the ground!
131: invokevirtual #9 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
134: goto 145
137: getstatic #7 // Field java/lang/System.out:Ljava/io/PrintStream;
140: ldc #12 // String <3
142: invokevirtual #9 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
145: return
So you still have jump tables, but you have two. Bit of a roundabout process -- take the hash code, switch on that, based on the case load another constant, and from that do a "normal" switch (I think). But same basic process, I suppose?
Historically, switch statements were/could be implemented as jump tables (i.e. a mapping of value to destination address). Depending on the implementation of the table, it may be impossible to have two entries for the same value pointing to different addresses. Even if it were possible, how would you handle that duplicate value? Return from the first handler and then go to second handler? Never execute the second handler?
It makes no sense to allow this.

Categories