Thread Execution not complete in a loop - java

I need to insert 50000 of records to the Database using 10 threads as 5000 per thread.
Ex. thread 1 will insert 1-5000, thread 2 will insert 5001-10000 etc.
I have use the ExecutorService to do this.
Code
ExecutorService threadPool = Executors.newFixedThreadPool(10);
int i=0;
while(i<vVec.size())
{
if(i<vVec.size())
{
DBInsertDetail rrr = (DBInsertDetail)vVec.get(i);
TestThread t1 = new TestThread(rrr);
threadPool.execute(t1);
}
i++;
}
try {
threadPool.shutdown();
boolean bTermination = false;
while (true)
{
bTermination = threadPool.awaitTermination(15, TimeUnit.MINUTES);
if(!bTermination)
{
Log.debug("Awaiting completion of threads.");
}
else
{
Log.debug("Threads Completed."+iTermiVal);
break;
}
if(threadPool.isTerminated())
{
break;
}
}
} catch (Exception e) {}
TestThread class
public class TestThread implements Runnable
{
private volatile DBInsertDetail syncc;
public Thread1(DBInsertDetail syncc) {
this.syncc = syncc;
}
public void run() {
try
{ this.syncc.cardCreProcess(syncc.getIncre(),syncc.getStarterial(),syncc.getCurTblSeq());
Thread.sleep(1000);
} catch (Exception e) {
e.printStackTrace();
}
}
}
DBInsertDetail class
public class DBInsertDetail {
public void cardCreProcess(int iNum,int iCurrSerl,int iCurTblSeq)
{
int iCardCountTest = 0;
try
{
synchronized(this)
{
for (int i = 0; i < iNum; i++)
{
iCurrSerl++;
iCurTblSeq++;
iCardCountTest++;
CmnDet stkDet = new CmnDet();
Data crdData = new Data();
String sNo = crdData.getNextNo(pro, prof, sBranch, iCurrSerl);
stkDet.setNo(sNo);
stkDet.setCod(""+iCurTblSeq);
if (!stkDet.saveToDataBase(con))
{
sErrorMsg +="Error Occured" + "\n";
}
}
}
}catch(Exception ex)
{
ex.printStackTrace();
}
finally{
//commit and return connection
}
}
}
Problem is this will not execute correctly for larger nos. If increase the records per thread 10000, process runs without any error but inserts only a part of batch. Any idea?

This is wrong, read the comment. :) Leaving it due to consistency of the thread
You sleep 1000ms in the thread. That is 1 second.
10000 inserts = 10000 seconds = 166 minutes.
You allow the thread pool 15 minutes to execute, then you shut it down.

Related

Correct way to take from queue?

The code below randomly freezing.
The queue is pre-filled at the start and only taken from after the threads start taking items from it.
I think I'm not using the queue properly. Despite the isEmpty() check, the queue might be empty when one thread tries to take one item, making it to wait indefinitely.
#Override
public void run() {
long milisecs;
try {
while ( ! queue.isEmpty()) { // !!!
milisecs = queue.take(); // !!!
worker(milisecs);
}
} catch (InterruptedException ex) {}
}
For example, it would hang is this scenario happens:
threadA checks if queue.isEmpty(), gets a false and tries to proceed.
threadB take() the last item from the queue
threadA tries to take() an item from an empty queue, making it to hang.
The process "take if queue not empty" should be synched so that the queue doesn't change in between.
What is the proper way to do that?
Full code below. Should take about 1s per run.
package multithreadperformance;
import java.util.ArrayList;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadLocalRandom;
public class MultithreadPerformance implements Runnable {
static int numThreads = 50;
static int numJobs = 5000;
final BlockingQueue<Long> queue = new LinkedBlockingQueue<>();;
static ArrayList<Thread> threads;
public static void main(String[] args) {
MultithreadPerformance bench = new MultithreadPerformance();
bench.go();
}
public void go() {
System.out.print("Go... ");
long t0 = System.nanoTime();
// Fill up the queue of jobs with a random number of miliseconds.
long milisecs, milisecsMax = 20; // ms
//
try {
for (int i = 0; i < numJobs; i++) {
milisecs = ThreadLocalRandom.current().nextLong(milisecsMax);
queue.put(milisecs);
}
} catch (InterruptedException ex) {
System.out.println(ex.toString());
}
// Create all threads
threads = new ArrayList<>();
for(int i = 0; i < numThreads; i++) {
Thread thread = new Thread(this);
thread.setName("Thread" + i);
threads.add(thread);
}
// Start all threads
threads.forEach((thread) -> {thread.start();});
// Join all threads
threads.forEach((thread) -> {try {
thread.join();
} catch (InterruptedException ex) {
System.out.println(ex.toString());
}
});
long et = System.nanoTime() - t0;
System.out.println(String.format("done. Elapsed time %.3f s.", et/1e9));
}
// Worker function
// Sleep a number of miliseconds.
public void worker(long milisecs) throws InterruptedException {
Thread.sleep(milisecs);
}
#Override
public void run() {
long milisecs;
try {
while ( ! queue.isEmpty()) {
milisecs = queue.take();
worker(milisecs);
}
} catch (InterruptedException ex) {
System.out.println(ex.toString());
}
}
}
You could call poll() which will atomically remove the head of the queue or return null if the queue was empty.
Long millisecs;
while ( (millisecs = queue.poll()) != null) {
worker(millisecs);
}
Just have the worker threads block on the queue. When you're done, put n End-Of-Queue messages in the queue with n the number of worker threads and have the worker threads exit their loop when they see an End-Of-Queue message.

Why does multithreaded version take the same amount of time as single threaded version?

I have the following work queue implementation, which I use to limit the number of threads in use. It works by me initially adding a number of Runnable objects to the queue, and when I am ready to begin, I run "begin()". At this point I do not add any more to the queue.
public class WorkQueue {
private final int nThreads;
private final PoolWorker[] threads;
private final LinkedList queue;
Integer runCounter;
boolean hasBegun;
public WorkQueue(int nThreads) {
runCounter = 0;
this.nThreads = nThreads;
queue = new LinkedList();
threads = new PoolWorker[nThreads];
hasBegun = false;
for (int i = 0; i < nThreads; i++) {
threads[i] = new PoolWorker();
threads[i].start();
}
}
public boolean isQueueEmpty() {
synchronized (queue) {
if (queue.isEmpty() && runCounter == 0) {
return true;
} else {
return false;
}
}
}
public void begin() {
hasBegun = true;
synchronized (queue) {
queue.notify();
}
}
public void add(Runnable r) {
if (!hasBegun) {
synchronized (queue) {
queue.addLast(r);
runCounter++;
}
} else {
System.out.println("has begun executing. Cannot add more jobs ");
}
}
private class PoolWorker extends Thread {
public void run() {
Runnable r;
while (true) {
synchronized (queue) {
while (queue.isEmpty()) {
try {
queue.wait();
} catch (InterruptedException ignored) {
}
}
r = (Runnable) queue.removeFirst();
}
// If we don't catch RuntimeException,
// the pool could leak threads
try {
r.run();
synchronized (runCounter) {
runCounter--;
}
} catch (RuntimeException e) {
// You might want to log something here
}
}
}
}
}
This is a runnable I use to keep track of when all the jobs on the work queue have finished:
public class QueueWatcher implements Runnable {
private Thread t;
private String threadName;
private WorkQueue wq;
public QueueWatcher(WorkQueue wq) {
this.threadName = "QueueWatcher";
this.wq = wq;
}
#Override
public void run() {
while (true) {
if (wq.isQueueEmpty()) {
java.util.Date date = new java.util.Date();
System.out.println("Finishing and quiting at:" + date.toString());
System.exit(0);
break;
} else {
try {
Thread.sleep(1000);
} catch (InterruptedException ex) {
Logger.getLogger(PlaneGenerator.class.getName()).log(Level.SEVERE, null, ex);
}
}
}
}
public void start() {
wq.begin();
System.out.println("Starting " + threadName);
if (t == null) {
t = new Thread(this, threadName);
t.setDaemon(false);
t.start();
}
}
}
This is how I use them:
Workqueue wq = new WorkQueue(9); //Get same results regardless of 1,2,3,8,9
QueueWatcher qw = new QueueWatcher(wq);
SomeRunnable1 sm1 = new SomeRunnable1();
SomeRunnable2 sm2 = new SomeRunnable2();
SomeRunnable3 sm3 = new SomeRunnable3();
SomeRunnable4 sm4 = new SomeRunnable4();
SomeRunnable5 sm5 = new SomeRunnable5();
wq.add(sm1);
wq.add(sm2);
wq.add(sm3);
wq.add(sm4);
wq.add(sm5);
qw.start();
But regardless of how many threads I use, the result is always the same - it always takes about 1m 10seconds to complete. This is about the same as when I just did a single threaded version (when everything ran in main()).
If I set wq to (1,2,3--9) threads it is always between 1m8s-1m10s. What is the problem ? The jobs (someRunnable) have nothing to do with each other and cannot block each other.
EDIT: Each of the runnables just read some image files from the filesystems and create new files in a separate directory. The new directory eventually contains about 400 output files.
EDIT: It seems that only one thread is always doing work. I made the following changes:
I let the Woolworker store an Id
PoolWorker(int id){
this.threadId = id;
}
Before running I print the id of the worker.
System.out.println(this.threadId + " got new task");
r.run();
In WorkQueue constructor when creating the poolworkers I do:
for (int i = 0; i < nThreads; i++) {
threads[i] = new PoolWorker(i);
threads[i].start();
}
But it seems that that only thread 0 does any work, as the output is always:
0 got new task
Use queue.notifyAll() to start processing.
Currently you're using queue.notify(), which will only wake a single thread. (The big clue that pointed me to this was when you mentioned only a single thread was running.)
Also, synchronizing on Integer runCounter isn't doing what you think it's doing - runCounter++ is actually assigning a new value to the Integer each time, so you're synchronizing on a lot of different Integer objects.
On a side note, using raw threads and wait/notify paradigms is complicated and error-prone even for the best programmers - it's why Java introduced the java.util.concurrent package, which provide threadsafe BlockingQueue implementations and Executors for easily managing multithreaded apps.

Using CountDownLatch & Object.wait inside recursive block hangs

Problem: While trying to retrieve values inside a recursive block in a phased manner, the execution gets hung.
Description: CountDownLatch & Object.wait are used to achieve the phased manner access of value inside the recursive block. But, the program hangs with following output:
2 < 16
3 < 16
4 < 16
5 < 16
Current total: 5
Inside of wait
Inside of wait
Program:
import java.util.concurrent.*;
public class RecursiveTotalFinder {
private static CountDownLatch latch1;
private static CountDownLatch latch2;
private static CountDownLatch latch3;
public static void main(String... args) {
latch1 = new CountDownLatch(1);
latch2 = new CountDownLatch(1);
latch3 = new CountDownLatch(1);
//Create object
TotalFinder tf = new TotalFinder(latch1,latch2,latch3);
//Start the thread
tf.start();
//Wait for results from TotalFinder
try {
latch1.await();
} catch(InterruptedException ie) {
ie.printStackTrace();
}
//Print the result after 5th iteration
System.out.println("Current total: "+tf.getCurrentTotal());
tf.releaseWaitLock();
tf.resetWaitLock();
//Wait for results again
try {
latch2.await();
} catch(InterruptedException ie) {
ie.printStackTrace();
}
//Print the result after 10th iteration
System.out.println("Current total: "+tf.getCurrentTotal());
tf.releaseWaitLock();
tf.resetWaitLock();
//Wait for results again
try {
latch3.await();
} catch(InterruptedException ie) {
ie.printStackTrace();
}
//Print the result after 15th iteration
System.out.println("Current total: "+tf.getCurrentTotal());
tf.releaseWaitLock();
tf.resetWaitLock();
}
}
class TotalFinder extends Thread{
CountDownLatch tfLatch1;
CountDownLatch tfLatch2;
CountDownLatch tfLatch3;
private static int count = 1;
private static final class Lock { }
private final Object lock = new Lock();
private boolean gotSignalFromMaster = false;
public TotalFinder(CountDownLatch latch1, CountDownLatch latch2,
CountDownLatch latch3) {
tfLatch1 = latch1;
tfLatch2 = latch2;
tfLatch3 = latch3;
}
public void run() {
findTotal(16);
}
//Find total
synchronized void findTotal(int cnt) {
if(count%5==0) {
if(count==5)
tfLatch1.countDown();
if(count==10)
tfLatch2.countDown();
if(count==15)
tfLatch3.countDown();
//Sleep for sometime
try {
Thread.sleep(3000);
} catch(InterruptedException ie) {
ie.printStackTrace();
}
//Wait till current total is printed
synchronized(lock) {
while(gotSignalFromMaster==false) {
try {
System.out.println(" Inside of wait");
lock.wait();
} catch(InterruptedException ie) {
ie.printStackTrace();
}
}
System.out.println("Came outside of wait");
}
}
count +=1;
if(count < cnt) {
System.out.println(count +" < "+cnt);
findTotal(cnt);
}
}
//Return the count value
public int getCurrentTotal() {
return count;
}
//Release lock
public void releaseWaitLock() {
//Sleep for sometime
try {
Thread.sleep(5000);
} catch(InterruptedException ie) {
ie.printStackTrace();
}
synchronized(lock) {
gotSignalFromMaster=true;
lock.notifyAll();
}
}
//Reset wait lock
public void resetWaitLock() {
gotSignalFromMaster = false;
}
}
Analysis:
In my initial analysis it looks like the wait is happening recursively eventhough notifyAll is invoked from the main program.
Help:
Why free lock using notfiyAll after a CountDownLatch didn't take effect? Need someone's help in understanding what exactly is happening in this program.
The main message about wait and notify that I got from JCIP was that I'd probably use them wrongly, so better to avoid using them directly unless strictly necessary. As such, I think that you should reconsider the use of these methods.
In this case, I think that you can do it more elegantly using SynchronousQueue. Perhaps something like this might work:
import java.util.concurrent.*;
public class RecursiveTotalFinder {
public static void main(String... args) throws InterruptedException {
SynchronousQueue<Integer> syncQueue = new SynchronousQueue<>();
//Create object
TotalFinder tf = new TotalFinder(syncQueue, 5);
//Start the thread
tf.start();
for (int i = 0; i < 3; ++i) {
System.out.println("Current total: " + syncQueue.take());
}
}
}
class TotalFinder extends Thread{
private final SynchronousQueue<Integer> syncQueue;
private final int syncEvery;
private int count;
public TotalFinder(SynchronousQueue<Integer> syncQueue,
int syncEvery) {
this.syncQueue = syncQueue;
this.syncEvery = syncEvery;
}
public void run() {
try {
findTotal(16);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new RuntimeException(e);
}
}
//Find total
void findTotal(int cnt) throws InterruptedException {
if((count > 0) && (count%syncEvery==0)) {
syncQueue.put(count);
}
count +=1;
if(count < cnt) {
System.out.println(count +" < "+cnt);
findTotal(cnt);
}
}
}
As to why your original approach doesn't work, it's because the main thread sets gotSignalFromMaster to true and then immediately back to false, and this happens before the other thread is able to check its value. If you stick a bit of a sleep into the resetWaitLock, it proceeds beyond the point where it currently hangs; however, it then hangs at the end instead of terminating.
Note that having to use Thread.sleep to wait for another thread to change some state is a poor approach - not least because it makes your program really slow. Using synchronization utilities leads to faster and much easier-to-reason-about program.

Print Natural Sequence with help of 2 threads(1 is printing even and 2'nd is printing odd)

I have tired this question, and i ended up with some doubts. Please help me out
Doubt : If any thread is in wait state , and no other thread is notifying that one , so will it never come to and end ? Even after using wait(long milliseconds).
For Code : What my requirement is from the code(Please Refer My Code) :
a : Should print "Even Thread Finish " and "Odd Thread Finish" (Order is not imp , but must print both)
b: Also in main function should print " Exit Main Thread"
What is actually happening :
After lot of runs , in some cases , it prints "Even Thread Finish" then hangs here or vice-versa. In some cases it prints both.
Also it never prints "Exit Main Thread".
So How to modify code , so it must print all 3 statement .(Of Course "Exit Main.. " in last , as i am using join for main.)
In brief : Main start-> t1 start -> t2 start ,, then i need t2/t1 finish -> main finish.
Please help me out for this problem
Here is my code :
import javax.sql.CommonDataSource;
public class ThreadTest {
/**
* #param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Share commonObj = new Share();
Thread even = new Thread(new EvenThread(commonObj));
Thread odd = new Thread(new OddThread(commonObj));
even.start();
odd.start();
try {
Thread.currentThread().join();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println("Exit Main Thread");
}
}
class EvenThread implements Runnable {
private Share commShare;
public EvenThread(Share obj) {
// TODO Auto-generated constructor stub
this.commShare = obj;
}
private int number = 2;
public void run() {
System.out.println("Even Thread start");
while (number <= 50) {
if (commShare.flag == true) {
System.out.println("Even Thread" + number);
number += 2;
commShare.flag = false;
synchronized(commShare) {
try {
commShare.notify();
commShare.wait();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
commShare.notify();
}
} else {
synchronized(commShare) {
try {
commShare.notify();
commShare.wait();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
commShare.notify();
}
}
}
System.out.println("Even Thread Finish");
}
}
class OddThread implements Runnable {
private int number = 1;
private Share commShare;
public OddThread(Share obj) {
// TODO Auto-generated constructor stub
this.commShare = obj;
}
public void run() {
System.out.println("Odd Thread start");
while (number <= 50) {
if (commShare.flag == false) {
System.out.println("Odd Thread :" + number);
number += 2;
commShare.flag = true;
synchronized(commShare) {
try {
commShare.notify();
commShare.wait();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
commShare.notify();
}
}
}
System.out.println("Odd Thread Finish");
}
}
class Share {
Share sharedObj;
public boolean flag = false;
}
Although this is not the exact answer of your question, but this implementation is an alternative of your problem .
public class EvenOddThreads {
public static void main(String[] args) {
Thread odd = new Thread(new OddThread(), "oddThread");
Thread even = new Thread(new EvenThread(), "Even Thread");
odd.start();
even.start();
try {
odd.join();
even.join();
System.out.println("Main thread exited");
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
class OddThread implements Runnable{
public void run() {
synchronized (CommonUtil.mLock) {
System.out.println(Thread.currentThread().getName()+"---> job starting");
int i = 1;
while(i<50){
System.out.print(i + "\t");
i = i + 2;
CommonUtil.mLock.notify();
try {
CommonUtil.mLock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("OddThread---> job completed");
CommonUtil.mLock.notify();
}
}
}
class EvenThread implements Runnable{
#Override
public void run() {
synchronized (CommonUtil.mLock) {
System.out.println(Thread.currentThread().getName()+"---> job started");
int i =2;
while(i<50){
System.out.print(i + "\t");
i = i+2;
CommonUtil.mLock.notify();
try {
CommonUtil.mLock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("EvenThread---> job completed");
CommonUtil.mLock.notify();
}
}
}
class CommonUtil{
static final Object mLock= new Object();
}
Output:
oddThread---> job starting
1 Even Thread---> job started
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 EvenThread---> job completed
OddThread---> job completed
Main thread exited
Well, I have spent last three hours reading a Java sychronization tutorial (a very good one) followed by more info about wait, notify and notifyAll, and i ended up with program that uses N threads to count from A to B, set N to 2 and you have odd and even.
pastebin
Also, my program has no comments whatsoever, so make sure you read the tutorial(s) before you try understand this code.
Also it never prints "Exit Main Thread".
That is because maybe because your threads are waiting on the lock for someone to notify() but due to missed signal or no one signalling them, they never get out of waiting state. For that the best solution is to use:
public final void wait(long timeout)
throws InterruptedException
Causes the current thread to wait until either another thread invokes
the notify() method or the notifyAll() method for this object, or a
specified amount of time has elapsed.
This overloaded method will wait for other thread to notify for specific amount of time and then return if timeout occurs. So in case of a missed signal the thread will still resume its work.
NOTE: After returning from wait state always check for
PRE-CONDITION again, as it can be a Spurious Wakeup.
Here is my flavor of program that I coded some time back for the same.
import java.util.concurrent.atomic.AtomicInteger;
public class Main {
private static int range = 10;
private static volatile AtomicInteger present = new AtomicInteger(0);
private static Object lock = new Object();
public static void main(String[] args) {
new Thread(new OddRunnable()).start();
new Thread(new EvenRunnable()).start();
}
static class OddRunnable implements Runnable{
#Override
public void run() {
while(present.get() <= range){
if((present.get() % 2) != 0){
System.out.println(present.get());
present.incrementAndGet();
synchronized (lock) {
lock.notifyAll();
}
}else{
synchronized (lock) {
try {
lock.wait(1000);
} catch (InterruptedException e) {
e.printStackTrace();
break;
}
}
}
}
}
}
static class EvenRunnable implements Runnable{
#Override
public void run() {
while(present.get() <= range){
if((present.get() % 2) == 0){
System.out.println(present.get());
present.incrementAndGet();
synchronized (lock) {
lock.notifyAll();
}
}else{
synchronized (lock) {
try {
lock.wait(1000);
} catch (InterruptedException e) {
e.printStackTrace();
break;
}
}
}
}
}
}
}
See the solution, I have kept a lock that works for notifying the chance of even or odd thread. If even thread finds that the present number is not even it waits on the lock and
hopes that odd thread will notify it when it prints that odd number. And similarly it works for odd thread too.
I am not suggesting that this is the best solution but this is something that came out in the first try, some other options are also possible.
Also I would like to point out that this question though as a practice is good, but do keep in mind that you are not doing anything parallel there.
This could be an exercise on threads and lock monitors, but there is nothing to do in parallel that give you advantages.
In your code when a thread 1 (OddThread or EvenThread) ends his work and prints out "Odd Thread Finish" (or "Even Thread Finish") the other thread 2 is waiting a notify() or a notifyAll() that never will happen because the first is over.
You have to change EvenThread and OddThread adding a synchronized block with a notify call on commShare just after the while cycle. I removed the second if-branch because in this way you don't continue to check the while condition but get a wait on commShare soon.
class EvenThread implements Runnable {
private Share commShare;
private int number = 2;
public EvenThread(Share obj) {
this.commShare = obj;
}
public void run() {
System.out.println("Even Thread start");
while (number <= 50) {
synchronized (commShare) {
if (commShare.flag) {
System.out.println("Even Thread:" + number);
number += 2;
commShare.flag = false;
}
commShare.notify();
try {
commShare.wait();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
synchronized (commShare) {
commShare.notify();
System.out.println("Even Thread Finish");
}
}
}
class OddThread implements Runnable {
private int number = 1;
private Share commShare;
public OddThread(Share obj) {
this.commShare = obj;
}
public void run() {
System.out.println("Odd Thread start");
while (number <= 50) {
synchronized (commShare) {
if (!commShare.flag) {
System.out.println("Odd Thread: " + number);
number += 2;
commShare.flag = true;
}
commShare.notify();
try {
commShare.wait();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
synchronized (commShare) {
commShare.notify();
System.out.println("Odd Thread Finish");
}
}
Finally, in the main you have to join for each thread you started. It's sure that Thread.currentThread() returns just one of yours threads? We have started two threads and those threads we should join.
try {
even.join();
odd.join();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
I will not vote for using wait() and notify(). The things that you can do with wait and notify can be done through more sophisticated tools like semaphore, countDownLatch, CyclicBarrier. You can find this advice in the famous book Effective java in item number 69 prefer concurrency utilities to wait and notify.
Even in this case we don't need this things at all, we can achieve this functionality by a simple volatile boolean variable. And for stopping a thread the best possible way is to use interrupt. After certain amount of time or some predefined condition we can interrupt threads. Please find my implementation attached:
Thread 1 for printing even numbers:
public class MyRunnable1 implements Runnable
{
public static volatile boolean isRun = false;
private int k = 0 ;
#Override
public void run() {
while(!Thread.currentThread().isInterrupted()){
if(isRun){
System.out.println(k);
k+=2;
isRun=false;
MyRunnable2.isRun=true;
}
}
}
}
Thread 2 for printing even numbers:
public class MyRunnable2 implements Runnable{
public static volatile boolean isRun = false;
private int k = 1 ;
#Override
public void run() {
while(!Thread.currentThread().isInterrupted()){
if(isRun){
System.out.println(k);
k+=2;
isRun=false;
MyRunnable1.isRun=true;
}
}
}
}
Now main method which drives the above threads
public class MyMain{
public static void main(String[] args) throws InterruptedException{
Thread t1 = new Thread(new MyRunnable1());
Thread t2 = new Thread(new MyRunnable2());
MyRunnable1.isRun=true;
t1.start();
t2.start();
Thread.currentThread().sleep(1000);
t1.interrupt();
t2.interrupt();
}
}
There may be some places you need to change a bit this is just a skeletal implementation. Hope it helps and please let me know if you need something else.
public class PrintNumbers {
public static class Condition {
private boolean start = false;
public boolean getStart() {
return start;
}
public void setStart(boolean start) {
this.start = start;
}
}
public static void main(String[] args) {
final Object lock = new Object();
// condition used to start the odd number thread first
final Condition condition = new Condition();
Thread oddThread = new Thread(new Runnable() {
public void run() {
synchronized (lock) {
for (int i = 1; i <= 10; i = i + 2) { //For simplicity assume only printing till 10;
System.out.println(i);
//update condition value to signify that odd number thread has printed first
if (condition.getStart() == false) {
condition.setStart(true);
}
lock.notify();
try {
if (i + 2 <= 10) {
lock.wait(); //if more numbers to print, wait;
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
});
Thread evenThread = new Thread(new Runnable() {
public void run() {
synchronized (lock) {
for (int i = 2; i <= 10; i = i + 2) { //For simplicity assume only printing till 10;
// if thread with odd number has not printed first, then wait
while (condition.getStart() == false) {
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(i);
lock.notify();
try {
if (i + 2 <= 10) { //if more numbers to print, wait;
lock.wait();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
});
oddThread.start();
evenThread.start();
}
}
I did it using ReentrantLock with 25 threads . One thread Print One number and it will notify to other .
public class ReentrantLockHolder
{
private Lock lock;
private Condition condition;
public ReentrantLockHolder(Lock lock )
{
this.lock=lock;
this.condition=this.lock.newCondition();
}
public Lock getLock() {
return lock;
}
public void setLock(Lock lock) {
this.lock = lock;
}
public Condition getCondition() {
return condition;
}
public void setCondition(Condition condition) {
this.condition = condition;
}
}
public class PrintThreadUsingReentrantLock implements Runnable
{
private ReentrantLockHolder currHolder;
private ReentrantLockHolder nextHolder;
private PrintWriter writer;
private static int i=0;
public PrintThreadUsingReentrantLock(ReentrantLockHolder currHolder, ReentrantLockHolder nextHolder ,PrintWriter writer)
{
this.currHolder=currHolder;
this.nextHolder=nextHolder;
this.writer=writer;
}
#Override
public void run()
{
while (true)
{
writer.println(Thread.currentThread().getName()+ " "+ ++i);
try{
nextHolder.getLock().lock();
nextHolder.getCondition().signal();
}finally{
nextHolder.getLock().unlock();
}
try {
currHolder.getLock().lock();
currHolder.getCondition().await();
}catch (InterruptedException e)
{
e.printStackTrace();
}
finally{
currHolder.getLock().unlock();
}
}
}
}
public static void main(String[] args)
{
PrintWriter printWriter =null;
try {
printWriter=new PrintWriter(new FileOutputStream(new File("D://myFile.txt")));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
ReentrantLockHolder obj[]=new ReentrantLockHolder[25];
for(int i=0;i<25;i++)
{
obj[i]=new ReentrantLockHolder(new ReentrantLock());
}
for(int i=0;i<25;i++)
{
Thread t1=new Thread(new PrintThreadUsingReentrantLock(obj[i], obj[i+1 == 25 ? 0 : i+1],printWriter ),"T"+i );
t1.start();
}
}
I tried the similar stuff where Thread 1 prints Odd numbers and Thread 2 prints even numbers in a correct order and also when the printing is over, the desired messages as you had suggested will be printed. Please have a look at this code
package practice;
class Test {
private static boolean oddFlag = true;
int count = 1;
private void oddPrinter() {
synchronized (this) {
while(true) {
try {
if(count < 10) {
if(oddFlag) {
Thread.sleep(500);
System.out.println(Thread.currentThread().getName() + ": " + count++);
oddFlag = !oddFlag;
notifyAll();
}
else {
wait();
}
}
else {
System.out.println("Odd Thread finished");
notify();
break;
}
}
catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
private void evenPrinter() {
synchronized (this) {
while (true) {
try {
if(count < 10) {
if(!oddFlag) {
Thread.sleep(500);
System.out.println(Thread.currentThread().getName() + ": " + count++);
oddFlag = !oddFlag;
notify();
}
else {
wait();
}
}
else {
System.out.println("Even Thread finished");
notify();
break;
}
}
catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
public static void main(String[] args) throws InterruptedException{
final Test test = new Test();
Thread t1 = new Thread(new Runnable() {
public void run() {
test.oddPrinter();
}
}, "Thread 1");
Thread t2 = new Thread(new Runnable() {
public void run() {
test.evenPrinter();
}
}, "Thread 2");
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("Main thread finished");
}
}
package test;
public class Interview2 {
public static void main(String[] args) {
Obj obj = new Obj();
Runnable evenThread = ()-> {
synchronized (obj) {
for(int i=2;i<=50;i+=2) {
while(!obj.printEven) {
try {
obj.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(i);
obj.printEven = false;
obj.notify();
}
}
};
Runnable oddThread = ()-> {
synchronized (obj) {
for(int i=1;i<=49;i+=2) {
while(obj.printEven) {
try {
obj.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(i);
obj.printEven = true;
obj.notify();
}
}
};
new Thread(evenThread).start();
new Thread(oddThread).start();
}
}
class Obj {
boolean printEven;
}
This is very generic solution. It uses semaphores to do signaling among threads.
This is general solution where N threads prints M natural numbers in sequence turn by turn.
that is if we have 3 threads and we want to print 7 natural numbers, output would be:
Thread 1 : 1
Thread 2 : 2
Thread 3 : 3
Thread 1 : 4
Thread 2 : 5
Thread 3 : 6
Thread 1 : 7
import java.util.concurrent.Semaphore;
/*
* Logic is based on simple idea
* each thread should wait for previous thread and then notify next thread in circular fashion
* There is no locking required
* Semaphores will do the signaling work among threads.
*/
public class NThreadsMNaturalNumbers {
private static volatile int nextNumberToPrint = 1;
private static int MaxNumberToPrint;
public static void main(String[] args) {
int numberOfThreads = 2;
MaxNumberToPrint = 50;
Semaphore s[] = new Semaphore[numberOfThreads];
// initialize Semaphores
for (int i = 0; i < numberOfThreads; i++) {
s[i] = new Semaphore(0);
}
// Create threads and initialize which thread they wait for and notify to
for (int i = 1; i <= numberOfThreads; i++) {
new Thread(new NumberPrinter("Thread " + i, s[i - 1], s[i % numberOfThreads])).start();
}
s[0].release();// So that First Thread can start Processing
}
private static class NumberPrinter implements Runnable {
private final Semaphore waitFor;
private final Semaphore notifyTo;
private final String name;
public NumberPrinter(String name, Semaphore waitFor, Semaphore notifyTo) {
this.waitFor = waitFor;
this.notifyTo = notifyTo;
this.name = name;
}
#Override
public void run() {
while (NThreadsMNaturalNumbers.nextNumberToPrint <= NThreadsMNaturalNumbers.MaxNumberToPrint) {
waitFor.acquireUninterruptibly();
if (NThreadsMNaturalNumbers.nextNumberToPrint <= NThreadsMNaturalNumbers.MaxNumberToPrint) {
System.out.println(name + " : " + NThreadsMNaturalNumbers.nextNumberToPrint++);
notifyTo.release();
}
}
notifyTo.release();
}
}
}
This Class prints Even Number:
public class EvenThreadDetails extends Thread{
int countNumber;
public EvenThreadDetails(int countNumber) {
this.countNumber=countNumber;
}
#Override
public void run()
{
for (int i = 0; i < countNumber; i++) {
if(i%2==0)
{
System.out.println("Even Number :"+i);
}
try {
Thread.sleep(2);
} catch (InterruptedException ex) {
// code to resume or terminate...
}
}
}
}
This Class prints Odd Numbers:
public class OddThreadDetails extends Thread {
int countNumber;
public OddThreadDetails(int countNumber) {
this.countNumber=countNumber;
}
#Override
public void run()
{
for (int i = 0; i < countNumber; i++) {
if(i%2!=0)
{
System.out.println("Odd Number :"+i);
}
try {
Thread.sleep(2);
} catch (InterruptedException ex) {
// code to resume or terminate...
}
}
}
}
This is Main class:
public class EvenOddDemo {
public static void main(String[] args) throws InterruptedException
{
Thread eventhread= new EvenThreadDetails(100);
Thread oddhread=new OddThreadDetails(100);
eventhread.start();
oddhread.start();
}
}
I have done it this way and its working...
class Printoddeven{
public synchronized void print(String msg){
try {
if(msg.equals("Even"))
{
for(int i=0;i<=10;i+=2){
System.out.println(msg+" "+i);
Thread.sleep(2000);
notify();
wait();
}
}
else{
for(int i=1;i<=10;i+=2){
System.out.println(msg+" "+i);
Thread.sleep(2000);
notify();
wait();
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
class PrintOdd extends Thread{
Printoddeven oddeven;
public PrintOdd(Printoddeven oddeven){
this.oddeven=oddeven;
}
public void run(){
oddeven.print("ODD");
}
}
class PrintEven extends Thread{
Printoddeven oddeven;
public PrintEven(Printoddeven oddeven){
this.oddeven=oddeven;
}
public void run(){
oddeven.print("Even");
}
}
public class mainclass
{
public static void main(String[] args)
{
Printoddeven obj = new Printoddeven();//only one object
PrintEven t1=new PrintEven(obj);
PrintOdd t2=new PrintOdd(obj);
t1.start();
t2.start();
}
}
public class Driver {
static Object lock = new Object();
public static void main(String[] args) {
Thread t1 = new Thread(new Runnable() {
public void run() {
for (int itr = 1; itr < 51; itr = itr + 2) {
synchronized (lock) {
System.out.print(" " + itr);
try {
lock.notify();
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
System.out.println("\nEven Thread Finish ");
}
});
Thread t2 = new Thread(new Runnable() {
public void run() {
for (int itr = 2; itr < 51; itr = itr + 2) {
synchronized (lock) {
System.out.print(" " + itr);
try {
lock.notify();
if(itr==50)
break;
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
System.out.println("\nOdd Thread Finish ");
}
});
try {
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("Exit Main Thread");
} catch (Exception e) {
}
}
}

How do we know threadPoolExecutor has finished execution

I have a parent thread that sends messages to MQ and it manages a ThreadPoolExecutor for worker threads which listen to MQ and writes message to output file. I manage a threadpool of size 5. So when I run my program, I have 5 files with messages. Everything works fine until here. I now need to merge these 5 files in my parent thread.
How do I know ThreadPoolExecutor finished processing so I can start merging files.
public class ParentThread {
private MessageSender messageSender;
private MessageReciever messageReciever;
private Queue jmsQueue;
private Queue jmsReplyQueue;
ExecutorService exec = Executors.newFixedThreadPool(5);
public void sendMessages() {
System.out.println("Sending");
File xmlFile = new File("c:/filename.txt");
List<String> lines = null;
try {
lines = FileUtils.readLines(xmlFile, null);
} catch (IOException e) {
e.printStackTrace();
}
for (String line : lines){
messageSender.sendMessage(line, this.jmsQueue, this.jmsReplyQueue);
}
int count = 0;
while (count < 5) {
messageSender.sendMessage("STOP", this.jmsQueue, this.jmsReplyQueue);
count++;
}
}
public void listenMessages() {
long finishDate = new Date().getTime();
for (int i = 0; i < 5; i++) {
Worker worker = new Worker(i, this.messageReciever, this.jmsReplyQueue);
exec.execute(worker);
}
exec.shutdown();
if(exec.isTerminated()){ //PROBLEM is HERE. Control Never gets here.
long currenttime = new Date().getTime() - finishDate;
System.out.println("time taken: "+currenttime);
mergeFiles();
}
}
}
This is my worker class
public class Worker implements Runnable {
private boolean stop = false;
private MessageReciever messageReciever;
private Queue jmsReplyQueue;
private int processId;
private int count = 0;
private String message;
private File outputFile;
private FileWriter outputFileWriter;
public Worker(int processId, MessageReciever messageReciever,
Queue jmsReplyQueue) {
this.processId = processId;
this.messageReciever = messageReciever;
this.jmsReplyQueue = jmsReplyQueue;
}
public void run() {
openOutputFile();
listenMessages();
}
private void listenMessages() {
while (!stop) {
String message = messageReciever.receiveMessage(null,this.jmsReplyQueue);
count++;
String s = "message: " + message + " Recieved by: "
+ processId + " Total recieved: " + count;
System.out.println(s);
writeOutputFile(s);
if (StringUtils.isNotEmpty(message) && message.equals("STOP")) {
stop = true;
}
}
}
private void openOutputFile() {
try {
outputFile = new File("C:/mahi/Test", "file." + processId);
outputFileWriter = new FileWriter(outputFile);
} catch (IOException e) {
System.out.println("Exception while opening file");
stop = true;
}
}
private void writeOutputFile(String message) {
try {
outputFileWriter.write(message);
outputFileWriter.flush();
} catch (IOException e) {
System.out.println("Exception while writing to file");
stop = true;
}
}
}
How will I know when the ThreadPool has finished processing so I can do my other clean up work?
Thanks
If you Worker class implements Callable instead of Runnable, then you'd be able to see when your threads complete by using a Future object to see if the Thread has returned some result (e.g. boolean which would tell you whether it has finished execution or not).
Take a look in section "8. Futures and Callables" # website below, it has exactly what you need imo:
http://www.vogella.com/articles/JavaConcurrency/article.html
Edit: So after all of the Futures indicate that their respective Callable's execution is complete, its safe to assume your executor has finished execution and can be shutdown/terminated manually.
Something like this:
exec.shutdown();
// waiting for executors to finish their jobs
while (!exec.awaitTermination(50, TimeUnit.MILLISECONDS));
// perform clean up work
You can use a thread for monitoring ThreadPoolExecutor like that
import java.util.concurrent.ThreadPoolExecutor;
public class MyMonitorThread implements Runnable {
private ThreadPoolExecutor executor;
private int seconds;
private boolean run=true;
public MyMonitorThread(ThreadPoolExecutor executor, int delay)
{
this.executor = executor;
this.seconds=delay;
}
public void shutdown(){
this.run=false;
}
#Override
public void run()
{
while(run){
System.out.println(
String.format("[monitor] [%d/%d] Active: %d, Completed: %d, Task: %d, isShutdown: %s, isTerminated: %s",
this.executor.getPoolSize(),
this.executor.getCorePoolSize(),
this.executor.getActiveCount(),
this.executor.getCompletedTaskCount(),
this.executor.getTaskCount(),
this.executor.isShutdown(),
this.executor.isTerminated()));
try {
Thread.sleep(seconds*1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
And add
MyMonitorThread monitor = new MyMonitorThread(executorPool, 3);
Thread monitorThread = new Thread(monitor);
monitorThread.start();
to your class where ThreadPoolExecutor is located.
It will show your threadpoolexecutors states in every 3 seconds.

Categories