Related
when programming in Java I practically always, just out of habit, write something like this:
public List<String> foo() {
return new ArrayList<String>();
}
Most of the time without even thinking about it. Now, the question is: should I always specify the interface as the return type? Or is it advisable to use the actual implementation of the interface, and if so, under what circumstances?
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList:
List bar = foo();
List myList = bar instanceof LinkedList ? new ArrayList(bar) : bar;
but that just seems horrible and my coworkers would probably lynch me in the cafeteria. And rightfully so.
What do you guys think? What are your guidelines, when do you tend towards the abstract solution, and when do you reveal details of your implementation for potential performance gains?
Return the appropriate interface to hide implementation details. Your clients should only care about what your object offers, not how you implemented it. If you start with a private ArrayList, and decide later on that something else (e.g., LinkedLisk, skip list, etc.) is more appropriate you can change the implementation without affecting clients if you return the interface. The moment you return a concrete type the opportunity is lost.
For instance, if I know that I will
primarily access the data in the list
randomly, a LinkedList would be bad.
But if my library function only
returns the interface, I simply don't
know. To be on the safe side I might
even need to copy the list explicitly
over to an ArrayList.
As everybody else has mentioned, you just mustn't care about how the library has implemented the functionality, to reduce coupling and increasing maintainability of the library.
If you, as a library client, can demonstrate that the implementation is performing badly for your use case, you can then contact the person in charge and discuss about the best path to follow (a new method for this case or just changing the implementation).
That said, your example reeks of premature optimization.
If the method is or can be critical, it might mention the implementation details in the documentation.
Without being able to justify it with reams of CS quotes (I'm self taught), I've always gone by the mantra of "Accept the least derived, return the most derived," when designing classes and it has stood me well over the years.
I guess that means in terms of interface versus concrete return is that if you are trying to reduce dependencies and/or decouple, returning the interface is generally more useful. However, if the concrete class implements more than that interface, it is usually more useful to the callers of your method to get the concrete class back (i.e. the "most derived") rather than aribtrarily restrict them to a subset of that returned object's functionality - unless you actually need to restrict them. Then again, you could also just increase the coverage of the interface. Needless restrictions like this I compare to thoughtless sealing of classes; you never know. Just to talk a bit about the former part of that mantra (for other readers), accepting the least derived also gives maximum flexibility for callers of your method.
-Oisin
Sorry to disagree, but I think the basic rule is as follows:
For input arguments use the most generic.
For output values, the most specific.
So, in this case you want to declare the implementation as:
public ArrayList<String> foo() {
return new ArrayList<String>();
}
Rationale:
The input case is already known and explained by everyone: use the interface, period. However, the output case can look counter-intuitive.
You want to return the implementation because you want the client to have the most information about what is receiving. In this case, more knowledge is more power.
Example 1: the client wants to get the 5th element:
return Collection: must iterate until 5th element vs return List:
return List: list.get(4)
Example 2: the client wants to remove the 5th element:
return List: must create a new list without the specified element (list.remove() is optional).
return ArrayList: arrayList.remove(4)
So it's a big truth that using interfaces is great because it promotes reusability, reduces coupling, improves maintainability and makes people happy ... but only when used as input.
So, again, the rule can be stated as:
Be flexible for what you offer.
Be informative with what you deliver.
So, next time, please return the implementation.
In OO programming, we want to encapsulate as much as possible the data. Hide as much as possible the actual implementation, abstracting the types as high as possible.
In this context, I would answer only return what is meaningful. Does it makes sense at all for the return value to be the concrete class? Aka in your example, ask yourself: will anyone use a LinkedList-specific method on the return value of foo?
If no, just use the higher-level Interface. It's much more flexible, and allows you to change the backend
If yes, ask yourself: can't I refactor my code to return the higher-level interface? :)
The more abstract is your code, the less changes your are required to do when changing a backend. It's as simple as that.
If, on the other hand, you end up casting the return values to the concrete class, well that's a strong sign that you should probably return instead the concrete class. Your users/teammates should not have to know about more or less implicit contracts: if you need to use the concrete methods, just return the concrete class, for clarity.
In a nutshell: code abstract, but explicitly :)
In general, for a public facing interface such as APIs, returning the interface (such as List) over the concrete implementation (such as ArrayList) would be better.
The use of a ArrayList or LinkedList is an implementation detail of the library that should be considered for the most common use case of that library. And of course, internally, having private methods handing off LinkedLists wouldn't necessarily be a bad thing, if it provides facilities that would make the processing easier.
There is no reason that a concrete class shouldn't be used in the implementation, unless there is a good reason to believe that some other List class would be used later on. But then again, changing the implementation details shouldn't be as painful as long as the public facing portion is well-designed.
The library itself should be a black box to its consumers, so they don't really have to worry about what's going on internally. That also means that the library should be designed so that it is designed to be used in the way it is intended.
It doesn't matter all that much whether an API method returns an interface or a concrete class; despite what everyone here says, you almost never change the implementiation class once the code is written.
What's far more important: always use minimum-scope interfaces for your method parameters! That way, clients have maximal freedom and can use classes your code doesn't even know about.
When an API method returns ArrayList, I have absolutely no qualms with that, but when it demands an ArrayList (or, all to common, Vector) parameter, I consider hunting down the programmer and hurting him, because it means that I can't use Arrays.asList(), Collections.singletonList() or Collections.EMPTY_LIST.
As a rule, I only pass back internal implementations if I am in some private, inner workings of a library, and even so only sparingly. For everything that is public and likely to be called from the outside of my module I use interfaces, and also the Factory pattern.
Using interfaces in such a way has proven to be a very reliable way to write reusable code.
The main question has been answered already and you should always use the interface. I however would just like to comment on
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList.
If you are returning a data structure that you know has poor random access performance -- O(n) and typically a LOT of data -- there are other interfaces you should be specifying instead of List, like Iterable so that anyone using the library will be fully aware that only sequential access is available.
Picking the right type to return isn't just about interface versus concrete implementation, it is also about selecting the right interface.
You use interface to abstract away from the actual implementation. The interface is basically just a blueprint for what your implementation can do.
Interfaces are good design because they allow you to change implementation details without having to fear that any of its consumers are directly affected, as long as you implementation still does what your interface says it does.
To work with interfaces you would instantiate them like this:
IParser parser = new Parser();
Now IParser would be your interface, and Parser would be your implementation. Now when you work with the parser object from above, you will work against the interface (IParser), which in turn will work against your implementation (Parser).
That means that you can change the inner workings of Parser as much as you want, it will never affect code that works against your IParser parser interface.
In general use the interface in all cases if you have no need of the functionality of the concrete class. Note that for lists, Java has added a RandomAccess marker class primarily to distinguish a common case where an algorithm may need to know if get(i) is constant time or not.
For uses of code, Michael above is right that being as generic as possible in the method parameters is often even more important. This is especially true when testing such a method.
You'll find (or have found) that as you return interfaces, they permeate through your code. e.g. you return an interface from method A and you have to then pass an interface to method B.
What you're doing is programming by contract, albeit in a limited fashion.
This gives you enormous scope to change implementations under the covers (provided these new objects fulfill the existing contracts/expected behaviours).
Given all of this, you have benefits in terms of choosing your implementation, and how you can substitute behaviours (including testing - using mocking, for example). In case you hadn't guessed, I'm all in favour of this and try to reduce to (or introduce) interfaces wherever possible.
when programming in Java I practically always, just out of habit, write something like this:
public List<String> foo() {
return new ArrayList<String>();
}
Most of the time without even thinking about it. Now, the question is: should I always specify the interface as the return type? Or is it advisable to use the actual implementation of the interface, and if so, under what circumstances?
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList:
List bar = foo();
List myList = bar instanceof LinkedList ? new ArrayList(bar) : bar;
but that just seems horrible and my coworkers would probably lynch me in the cafeteria. And rightfully so.
What do you guys think? What are your guidelines, when do you tend towards the abstract solution, and when do you reveal details of your implementation for potential performance gains?
Return the appropriate interface to hide implementation details. Your clients should only care about what your object offers, not how you implemented it. If you start with a private ArrayList, and decide later on that something else (e.g., LinkedLisk, skip list, etc.) is more appropriate you can change the implementation without affecting clients if you return the interface. The moment you return a concrete type the opportunity is lost.
For instance, if I know that I will
primarily access the data in the list
randomly, a LinkedList would be bad.
But if my library function only
returns the interface, I simply don't
know. To be on the safe side I might
even need to copy the list explicitly
over to an ArrayList.
As everybody else has mentioned, you just mustn't care about how the library has implemented the functionality, to reduce coupling and increasing maintainability of the library.
If you, as a library client, can demonstrate that the implementation is performing badly for your use case, you can then contact the person in charge and discuss about the best path to follow (a new method for this case or just changing the implementation).
That said, your example reeks of premature optimization.
If the method is or can be critical, it might mention the implementation details in the documentation.
Without being able to justify it with reams of CS quotes (I'm self taught), I've always gone by the mantra of "Accept the least derived, return the most derived," when designing classes and it has stood me well over the years.
I guess that means in terms of interface versus concrete return is that if you are trying to reduce dependencies and/or decouple, returning the interface is generally more useful. However, if the concrete class implements more than that interface, it is usually more useful to the callers of your method to get the concrete class back (i.e. the "most derived") rather than aribtrarily restrict them to a subset of that returned object's functionality - unless you actually need to restrict them. Then again, you could also just increase the coverage of the interface. Needless restrictions like this I compare to thoughtless sealing of classes; you never know. Just to talk a bit about the former part of that mantra (for other readers), accepting the least derived also gives maximum flexibility for callers of your method.
-Oisin
Sorry to disagree, but I think the basic rule is as follows:
For input arguments use the most generic.
For output values, the most specific.
So, in this case you want to declare the implementation as:
public ArrayList<String> foo() {
return new ArrayList<String>();
}
Rationale:
The input case is already known and explained by everyone: use the interface, period. However, the output case can look counter-intuitive.
You want to return the implementation because you want the client to have the most information about what is receiving. In this case, more knowledge is more power.
Example 1: the client wants to get the 5th element:
return Collection: must iterate until 5th element vs return List:
return List: list.get(4)
Example 2: the client wants to remove the 5th element:
return List: must create a new list without the specified element (list.remove() is optional).
return ArrayList: arrayList.remove(4)
So it's a big truth that using interfaces is great because it promotes reusability, reduces coupling, improves maintainability and makes people happy ... but only when used as input.
So, again, the rule can be stated as:
Be flexible for what you offer.
Be informative with what you deliver.
So, next time, please return the implementation.
In OO programming, we want to encapsulate as much as possible the data. Hide as much as possible the actual implementation, abstracting the types as high as possible.
In this context, I would answer only return what is meaningful. Does it makes sense at all for the return value to be the concrete class? Aka in your example, ask yourself: will anyone use a LinkedList-specific method on the return value of foo?
If no, just use the higher-level Interface. It's much more flexible, and allows you to change the backend
If yes, ask yourself: can't I refactor my code to return the higher-level interface? :)
The more abstract is your code, the less changes your are required to do when changing a backend. It's as simple as that.
If, on the other hand, you end up casting the return values to the concrete class, well that's a strong sign that you should probably return instead the concrete class. Your users/teammates should not have to know about more or less implicit contracts: if you need to use the concrete methods, just return the concrete class, for clarity.
In a nutshell: code abstract, but explicitly :)
In general, for a public facing interface such as APIs, returning the interface (such as List) over the concrete implementation (such as ArrayList) would be better.
The use of a ArrayList or LinkedList is an implementation detail of the library that should be considered for the most common use case of that library. And of course, internally, having private methods handing off LinkedLists wouldn't necessarily be a bad thing, if it provides facilities that would make the processing easier.
There is no reason that a concrete class shouldn't be used in the implementation, unless there is a good reason to believe that some other List class would be used later on. But then again, changing the implementation details shouldn't be as painful as long as the public facing portion is well-designed.
The library itself should be a black box to its consumers, so they don't really have to worry about what's going on internally. That also means that the library should be designed so that it is designed to be used in the way it is intended.
It doesn't matter all that much whether an API method returns an interface or a concrete class; despite what everyone here says, you almost never change the implementiation class once the code is written.
What's far more important: always use minimum-scope interfaces for your method parameters! That way, clients have maximal freedom and can use classes your code doesn't even know about.
When an API method returns ArrayList, I have absolutely no qualms with that, but when it demands an ArrayList (or, all to common, Vector) parameter, I consider hunting down the programmer and hurting him, because it means that I can't use Arrays.asList(), Collections.singletonList() or Collections.EMPTY_LIST.
As a rule, I only pass back internal implementations if I am in some private, inner workings of a library, and even so only sparingly. For everything that is public and likely to be called from the outside of my module I use interfaces, and also the Factory pattern.
Using interfaces in such a way has proven to be a very reliable way to write reusable code.
The main question has been answered already and you should always use the interface. I however would just like to comment on
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList.
If you are returning a data structure that you know has poor random access performance -- O(n) and typically a LOT of data -- there are other interfaces you should be specifying instead of List, like Iterable so that anyone using the library will be fully aware that only sequential access is available.
Picking the right type to return isn't just about interface versus concrete implementation, it is also about selecting the right interface.
You use interface to abstract away from the actual implementation. The interface is basically just a blueprint for what your implementation can do.
Interfaces are good design because they allow you to change implementation details without having to fear that any of its consumers are directly affected, as long as you implementation still does what your interface says it does.
To work with interfaces you would instantiate them like this:
IParser parser = new Parser();
Now IParser would be your interface, and Parser would be your implementation. Now when you work with the parser object from above, you will work against the interface (IParser), which in turn will work against your implementation (Parser).
That means that you can change the inner workings of Parser as much as you want, it will never affect code that works against your IParser parser interface.
In general use the interface in all cases if you have no need of the functionality of the concrete class. Note that for lists, Java has added a RandomAccess marker class primarily to distinguish a common case where an algorithm may need to know if get(i) is constant time or not.
For uses of code, Michael above is right that being as generic as possible in the method parameters is often even more important. This is especially true when testing such a method.
You'll find (or have found) that as you return interfaces, they permeate through your code. e.g. you return an interface from method A and you have to then pass an interface to method B.
What you're doing is programming by contract, albeit in a limited fashion.
This gives you enormous scope to change implementations under the covers (provided these new objects fulfill the existing contracts/expected behaviours).
Given all of this, you have benefits in terms of choosing your implementation, and how you can substitute behaviours (including testing - using mocking, for example). In case you hadn't guessed, I'm all in favour of this and try to reduce to (or introduce) interfaces wherever possible.
In golang, interfaces are extremely important for decoupling and composing code, and thus, an advanced go program might easily define 1000s of interfaces .
How do we evolve these interfaces over time, to ensure that they remain minimal?
Are there commonly used go tools which check for unused functions ?
Are there best practices for annotating go functions with something similar to java's #Override, which ensures that a declared function is properly implementing a expected contract?
Typically in the java language, it is easy to keep code tightly bound to an interface specification because the advanced tooling allows us to find and remove functions which aren't referenced at all (usually this is highlighted automatically for you in any common IDE).
Are there commonly used go tools which check for unused functions ?
Sort of, but it is really hard to be sure for exported interfaces. oracle can be used to find references to types or methods, but only if you have all of the code that references you availible on your gopath.
can you ensure a type implements a contract?
If you attempt to use a type as an interface, the compiler will complain if it does not have all of the methods. I generally do this by exporting interfaces but not implementations, and making a constructor:
type MyInterface interface{
Foo()
}
type impl struct{}
func (i *impl) Foo(){}
func NewImpl() MyInterface{
return &impl{}
}
This will not compile if impl does not implement all of the required functions.
In go, it is not needed to declare that you implement an interface. This allows you to implement an interface without even referencing the package it is defined in. This is pretty much exactly the opposite of "tightly binding to an interface specification", but it does allow for some interesting usage patterns.
What your asking for isn't really a part of Go. There are no best practices for annotating that a function satisfies an interface. I would personally say the only clear best practice is to document which interfaces your types implement so that people can know. If you want to test explicitly (at compile time) if a type implements an interface you can do so using assignment, check out my answer here on the topic; How to check if an object has a particular method?
If you're just looking to take inventory of your code base to do some clean up I would recommend using that assignment method for all your types to generate compile time errors regarding what they don't implement, scale down the declarations until it compiles. In doing so you should become aware of the disparity between what might be implemented and what actually is.
Go is also lacking in IDE options. As a result some of those friendly features like "find all references" aren't there. You can use text searching tricks to get around this, like searching func TheName to get only the declaration and .TheName( to get all invocations. I'm sure you'll get used to it pretty quickly if you continue to use this tooling.
I know its commonly accepted to cast all List implementations down to List. Whether it is a variable, method return, or a method parameter using an ArrayList, CopyOnWriteArrayList, etc.
List<Market> mkts = new ArrayList<>();
When I'm using a Guava ImmutableList, I have the sense it can arguably be an exception to this rule (especially if I'm building in-house, complicated business applications and not a public API). Because if I cast it down to list, the deprecated mutator methods will no longer be flagged as deprecated. Also, it no longer is identified as an immutable object which is a very important part of its functionality and identity.
List<Market> mkts = ImmutableList.of(mkt1,mkt2,mkt3);
Therefore it makes sense to pass it around as an ImmutableList right? I could even argue that its a good policy for an internal API to only accept ImmutableList, so mutability and multithreading on the client side won't wreck anything inside the libary.
ImmutableList<Market> mkts = ImmutableList.of(mkt1,mkt2,mkt3);
I know there is a risk of ImmutableList itself becoming deprecated, and the day Oracle decides to create its own ImmutableList will require a lot of refactoring. But is it arguable the pros of maintaining an ImmutableList cast can outweigh the cons?
I agree with your rationale. If you are using the Guava collection library and your lists are immutable then passing them as ImmutableList is a good idea.
However:
I know there is a risk of ImmutableList itself becoming deprecated, and the day Oracle decides to create its own ImmutableList will require a lot of refactoring.
The first scenario seems unlikely, but it is a risk you take whenever you use any 3rd-party library. But the flipside is that you could chose to not upgrade your application's Guava version if they (Google) gratuitously deprecated a class or method that you relied on.
UPDATE
Louis Wasserman (who works for Google) said in a comment:
"Guava provides pretty strong compatibility guarantees for non-#Beta APIs."
So we can discount the possibility of gratuitous API changes.
The second scenario is even more unlikely (IMO). And you can be sure that if Oracle did add an immutable list class or interface, that would not require you to refactor. Oracle tries really hard to avoid breaking existing code when they enhance the standard APIs.
But having said that, it is really up to you to weigh up the pros and cons ... and how you would deal with the cons should the eventuate.
Unfortunately, there's no corresponding interface in Java (and most probably never will be). So my take is to pretend that ImmutableList is an interface. :D But seriously, it add important information which shouldn't get lost.
The ancient rule it all comes from actually states something like "program against interfaces". IIRC at the time the rules was created, there was no Java around and "interface" means programming interface, i.e., the contract, not java interface.
A method like
void strange(ArrayList list) {...}
is obviously strange, as there's no reason not to use List. A signature containing ImmutableList has a good reason.
I know there is a risk of ImmutableList itself becoming deprecated, and the day Oracle decides to create its own ImmutableList will require a lot of refactoring.
You mean Java 18? Let's see, but Guava's ImmutableList is pretty good and there's not much point in designing such a class differently. So you can hope that most changes will be in your imports only. And by 2050 there'll be worse problems than this.
Keep using List rather than ImmutableList! There is no problem with that and no reason for your API to start using ImmutableLists explicitly for several reasons:
ImmutableList is Guava only and unlikely to become standard Java at any point. Don't tie your code and coding habits to a third party library (even if it is a cool one like Guava).
Using immutable objects is good practice in Java and of particular importance when developing an API (see Effective Java Item 15 - minimize mutability). It is a general concept that can be taken for granted and does not need to be conveyed in the name of interfaces. Equally, you would not consider calling a User class that is designed for inheritance UserThatCanBeSubclassed.
In the name of stability your API should NEVER start modifying a List that was passed into it and ALWAYS make a defensive copy when passing a List to a client. Introducing ImmutableList here would lure you and the clients of your API into a false sense of security and entice them to violate that rule.
I understand your dilemma.
Personnaly, I would advise to keep using List as the reference type (to be future-proof and benefit from polymorphism), and use an #Immutable annotation to convey the information that it is immutable.
Annotations are more visible than plain javadoc comments, and you can even use the one from JSR-305 (ex-JCIP).
Some static analysis tools can even detect it and verify that your object is not mutated.
I would rather stay with just List for method parameter. There is no much benefit to enforce the caller to pass ImmutableList - it's your own method and you won't mutate list anyway, but you'd have method more reusable and generic.
As a return type, I would go with ImmutableList to let method users know that this list cannot be modified.
when programming in Java I practically always, just out of habit, write something like this:
public List<String> foo() {
return new ArrayList<String>();
}
Most of the time without even thinking about it. Now, the question is: should I always specify the interface as the return type? Or is it advisable to use the actual implementation of the interface, and if so, under what circumstances?
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList:
List bar = foo();
List myList = bar instanceof LinkedList ? new ArrayList(bar) : bar;
but that just seems horrible and my coworkers would probably lynch me in the cafeteria. And rightfully so.
What do you guys think? What are your guidelines, when do you tend towards the abstract solution, and when do you reveal details of your implementation for potential performance gains?
Return the appropriate interface to hide implementation details. Your clients should only care about what your object offers, not how you implemented it. If you start with a private ArrayList, and decide later on that something else (e.g., LinkedLisk, skip list, etc.) is more appropriate you can change the implementation without affecting clients if you return the interface. The moment you return a concrete type the opportunity is lost.
For instance, if I know that I will
primarily access the data in the list
randomly, a LinkedList would be bad.
But if my library function only
returns the interface, I simply don't
know. To be on the safe side I might
even need to copy the list explicitly
over to an ArrayList.
As everybody else has mentioned, you just mustn't care about how the library has implemented the functionality, to reduce coupling and increasing maintainability of the library.
If you, as a library client, can demonstrate that the implementation is performing badly for your use case, you can then contact the person in charge and discuss about the best path to follow (a new method for this case or just changing the implementation).
That said, your example reeks of premature optimization.
If the method is or can be critical, it might mention the implementation details in the documentation.
Without being able to justify it with reams of CS quotes (I'm self taught), I've always gone by the mantra of "Accept the least derived, return the most derived," when designing classes and it has stood me well over the years.
I guess that means in terms of interface versus concrete return is that if you are trying to reduce dependencies and/or decouple, returning the interface is generally more useful. However, if the concrete class implements more than that interface, it is usually more useful to the callers of your method to get the concrete class back (i.e. the "most derived") rather than aribtrarily restrict them to a subset of that returned object's functionality - unless you actually need to restrict them. Then again, you could also just increase the coverage of the interface. Needless restrictions like this I compare to thoughtless sealing of classes; you never know. Just to talk a bit about the former part of that mantra (for other readers), accepting the least derived also gives maximum flexibility for callers of your method.
-Oisin
Sorry to disagree, but I think the basic rule is as follows:
For input arguments use the most generic.
For output values, the most specific.
So, in this case you want to declare the implementation as:
public ArrayList<String> foo() {
return new ArrayList<String>();
}
Rationale:
The input case is already known and explained by everyone: use the interface, period. However, the output case can look counter-intuitive.
You want to return the implementation because you want the client to have the most information about what is receiving. In this case, more knowledge is more power.
Example 1: the client wants to get the 5th element:
return Collection: must iterate until 5th element vs return List:
return List: list.get(4)
Example 2: the client wants to remove the 5th element:
return List: must create a new list without the specified element (list.remove() is optional).
return ArrayList: arrayList.remove(4)
So it's a big truth that using interfaces is great because it promotes reusability, reduces coupling, improves maintainability and makes people happy ... but only when used as input.
So, again, the rule can be stated as:
Be flexible for what you offer.
Be informative with what you deliver.
So, next time, please return the implementation.
In OO programming, we want to encapsulate as much as possible the data. Hide as much as possible the actual implementation, abstracting the types as high as possible.
In this context, I would answer only return what is meaningful. Does it makes sense at all for the return value to be the concrete class? Aka in your example, ask yourself: will anyone use a LinkedList-specific method on the return value of foo?
If no, just use the higher-level Interface. It's much more flexible, and allows you to change the backend
If yes, ask yourself: can't I refactor my code to return the higher-level interface? :)
The more abstract is your code, the less changes your are required to do when changing a backend. It's as simple as that.
If, on the other hand, you end up casting the return values to the concrete class, well that's a strong sign that you should probably return instead the concrete class. Your users/teammates should not have to know about more or less implicit contracts: if you need to use the concrete methods, just return the concrete class, for clarity.
In a nutshell: code abstract, but explicitly :)
In general, for a public facing interface such as APIs, returning the interface (such as List) over the concrete implementation (such as ArrayList) would be better.
The use of a ArrayList or LinkedList is an implementation detail of the library that should be considered for the most common use case of that library. And of course, internally, having private methods handing off LinkedLists wouldn't necessarily be a bad thing, if it provides facilities that would make the processing easier.
There is no reason that a concrete class shouldn't be used in the implementation, unless there is a good reason to believe that some other List class would be used later on. But then again, changing the implementation details shouldn't be as painful as long as the public facing portion is well-designed.
The library itself should be a black box to its consumers, so they don't really have to worry about what's going on internally. That also means that the library should be designed so that it is designed to be used in the way it is intended.
It doesn't matter all that much whether an API method returns an interface or a concrete class; despite what everyone here says, you almost never change the implementiation class once the code is written.
What's far more important: always use minimum-scope interfaces for your method parameters! That way, clients have maximal freedom and can use classes your code doesn't even know about.
When an API method returns ArrayList, I have absolutely no qualms with that, but when it demands an ArrayList (or, all to common, Vector) parameter, I consider hunting down the programmer and hurting him, because it means that I can't use Arrays.asList(), Collections.singletonList() or Collections.EMPTY_LIST.
As a rule, I only pass back internal implementations if I am in some private, inner workings of a library, and even so only sparingly. For everything that is public and likely to be called from the outside of my module I use interfaces, and also the Factory pattern.
Using interfaces in such a way has proven to be a very reliable way to write reusable code.
The main question has been answered already and you should always use the interface. I however would just like to comment on
It is obvious that using the interface has a lot of advantages (that's why it's there). In most cases it doesn't really matter what concrete implementation is used by a library function. But maybe there are cases where it does matter. For instance, if I know that I will primarily access the data in the list randomly, a LinkedList would be bad. But if my library function only returns the interface, I simply don't know. To be on the safe side I might even need to copy the list explicitly over to an ArrayList.
If you are returning a data structure that you know has poor random access performance -- O(n) and typically a LOT of data -- there are other interfaces you should be specifying instead of List, like Iterable so that anyone using the library will be fully aware that only sequential access is available.
Picking the right type to return isn't just about interface versus concrete implementation, it is also about selecting the right interface.
You use interface to abstract away from the actual implementation. The interface is basically just a blueprint for what your implementation can do.
Interfaces are good design because they allow you to change implementation details without having to fear that any of its consumers are directly affected, as long as you implementation still does what your interface says it does.
To work with interfaces you would instantiate them like this:
IParser parser = new Parser();
Now IParser would be your interface, and Parser would be your implementation. Now when you work with the parser object from above, you will work against the interface (IParser), which in turn will work against your implementation (Parser).
That means that you can change the inner workings of Parser as much as you want, it will never affect code that works against your IParser parser interface.
In general use the interface in all cases if you have no need of the functionality of the concrete class. Note that for lists, Java has added a RandomAccess marker class primarily to distinguish a common case where an algorithm may need to know if get(i) is constant time or not.
For uses of code, Michael above is right that being as generic as possible in the method parameters is often even more important. This is especially true when testing such a method.
You'll find (or have found) that as you return interfaces, they permeate through your code. e.g. you return an interface from method A and you have to then pass an interface to method B.
What you're doing is programming by contract, albeit in a limited fashion.
This gives you enormous scope to change implementations under the covers (provided these new objects fulfill the existing contracts/expected behaviours).
Given all of this, you have benefits in terms of choosing your implementation, and how you can substitute behaviours (including testing - using mocking, for example). In case you hadn't guessed, I'm all in favour of this and try to reduce to (or introduce) interfaces wherever possible.