I want to invoke different methods of class at same time.
I am creating 2 classes: Main- this instantiate object of Function and Function; this extends thread and has 2 methods.
Main.java
package ok;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println("Welcome to Threading");
Function f1 = new Function();
f1.start();
f1.calling();
f1.calling2();
}
}
Function.java
package ok;
public class Function extends Thread {
public void run() {
// TODO Auto-generated method stub
System.out.println("Run");
for(int y=140;y<170;y++){
System.out.println(y);
}
}
synchronized void calling(){
System.out.println("Let the game begin");
for(int y=40;y<70;y++) {
System.out.println(y);
}
}
synchronized void calling2(){
System.out.println("Let the game begin for me");
for(int y=0;y<40;y++) {
System.out.println(y);
}
}
}
How can I make the methods calling() and calling2() work at the same time?
If I start a thread it goes to run() call and doesn't have any return type. In my program, I need to have return value as a HashMap.
Do I need to create two classes which extends Threads and write logic of calling(), calling2() in run of those two classes?
Please suggest.
Your calling and calling2 methods are synchronized. The very essence of synchronized keyword is to prevent methods from executing concurrently. So in order to invoke both calling and calling2 in parallel you need to drop the synchronized keyword, at least from the method level.
Then, to invoke two methods at the same time, one Thread object is enough - one invocation can be executed in new thread, the other in the "current" thread, like this:
Thread thread = new MyThread();
thread.start(); // body of run() invoked in a new thread
thread.run(); // body of run() invoked in this thread, concurrently
It's better practice to produce separate Runnable objects for such use-cases, though. This has several advantages over the aformentioned approach:
it's more flexible - as the action is decoupled from the execution and encapsulated in a separate object, it becomes more like "data". If you ever feel the need to change computation strategy - e.g. use thread pool - it's trivial to do so with Runnable tasks. Not so with Thread extensions.
it's conceptually more sound, as subclassing a Thread suggests specializing its behaviour, while Runnables are more like "task containers" - favor composition over inheritance.
it's symmetric - no computation is treated differently, it's trivial to change e.g. which one executes where
Last, you seem to want to return something from your methods. For this, you might use a Future - a java concurrency utility class, representing asynchronous computation. In addition to Runnable advantages, it can return a value and offers features like cancellation and state querying.
You have to have the calls for running the methods inside your run() method.
Then you can just call the start() method and both methods will run. But that does not really solve the problem. What you need to do is create two threads and have each of them run their respective threads.
Related
I am using java.
I have an instance a of class A which has a public method foo() running and 2 other threads - threadB and threadC, all running at the same time.
here's class A
public class A {
int val = 0
public void foo(int incValue) {
a += incValue;
}
public static void main (String arg[]) {
MyThread a = new MyThread(this);
new Thread(a).start();
MyThread b = new MyThread(this);
new Thread(b).start();
}
}
here's the thread definition for threadB and threadC:
public class MyThread implements Runnable {
A main = null;
public MyThread(A main) {
this.main = main;
}
public callFoo(int incValue) {
main.foo(incValue);
}
#Override
public void run() {
//valToInc can be a value from a GUI form.
callFoo(valToInc);
}
}
If in threadB invokes callFoo(1) and threadC invokes callFoo(3) at the same time, then:
- Which thread will be able to call the method first?
- What is the result of the val in main class after both executions?
- Will the execution of the method for each thread happen concurrently or one after another?
There is absolutely no difference in how the JVM will invoke two methods "in parallel".
In other words: if you want to know what happens when a method is called, you can look here.
When a method is called "twice" in parallel, then that whole thing ... just happens twice!
Things become interesting when that method is making updates on that class, or in other objects! (like changing a field of your object, or appending a value to a list, ... )
You see, the real complexity of multi-threading is not about running some code in parallel. The real issue is what happens to "shared data".
If you find my answer to general; sorry - that is probably the best you can expect for such a generic question.
If [] threadB invokes callFoo(1) and threadC invokes callFoo(3) at the same time, then: - Which thread will be able to call the method first?
Threads run independently of each other. If there is no synchronization (there's none in your example), then any number of threads can be in calls to the same method at the same time.
Whenever a thread calls a method, it creates an activation record to hold all of the local variables and parameters of that method, and when several threads call the same method at the same time, each thread gets its own activation record. The threads can neither communicate with one another through the args and locals, nor can they interfere with one another's use of the args and locals.
They can, of course communicate and interfere with each other through any shared objects, including objects that may be referenced by the args or the locals.
I'm doing a short course about Threads in Java, in one of my homeworks they asked me: ¿Why you don't should be synchronize the run method? show an example.
I searched about it, and that i think is use synchronized for a run method is not useful, at least commonly. Because the people don't call the run method manually, so the synchronized effect isn't visible creating multiple instances of a object with synchronized run.
So, i would like know if exist another reason or if i'm wrong.
Syncrhonizing the run() method of a Runnable is completely pointless unless you want to share the Runnable among multiple threads and you want to serialize the execution of those threads. Which is basically a contradiction in terms.
If the run method of a Runnable were synchronized, then either
a) you have many runnables (in which case, no need to synchronise, as each one is called on a different object), or else
b) you have one runnable being called in many threads - but then they clearly won't run in parallel -- thus defeating the purpose of having multiple threads!
You may synchronize on run method, nothing wrong with it. I think the reasons behind this advice should be explained to you by the instructor of course.
We need synchronization when there are shared resources (between threads).
Synchronizing on a method is same as synchronizing on this which will block other method calls.
As a counter example, a poor man's Future implementation;
public class SynchronizedRun {
static abstract class Future<T> implements Runnable{
private T value;
public synchronized T getValue(){
return value;
}
protected void setValue(T val){
value = val;
}
}
public static void main(String[] args) {
Future<Integer> longRunningJob = new Future<Integer> (){
#Override
synchronized public void run() {
try {
Thread.sleep(5000);
setValue(42);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
};
new Thread(longRunningJob).start();
System.out.println("getting results");
System.out.println("result = " + longRunningJob.getValue());
}
}
I am pretty new to using multithreading, but I want to invoke a method asynchronously (in a separate Thread) rather than invoking it synchronously. The basic idea is that I'm creating a socket server with an object in memory, so for each client I will have to run something like object.getStuff() asynchronously.
The two constructs I found were:
having the class implement Runnable and threading this and
declaring a runnable class within a method.
Additionally this method needs a return value- will it be necessary to use Executor and Callable to achieve this? Could someone point me in the right direction for implementing this?
I have tried implement option 2, but this doesn't appear to be processing concurrently:
public class Test {
private ExecutorService exec = Executors.newFixedThreadPool(10);
public Thing getStuff(){
class Getter implements Callable<Thing>{
public Thing call(){
//do collection stuff
return Thing;
}
}
Callable<Thing> callable = new Getter();
Future<Thing> future = exec.submit(callable);
return future.get();
}
}
I am instantiating a single test object for the server and calling getStuff() for each client connection.
Threading Tutorial
The Java tutorial on concurrency has a good section on this. It's at https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html. Essentially, you can either implement Runnable or Callable, or inherit from Thread.
Subclassing Thread
You can write a class, including an anonymous inner class, that extends Thread. Instantiate it, then invoke the start() method.
public class MyThread extends Thread {
public void run() {
System.out.println("This is a thread");
}
public static void main(String[] args) {
MyThread m = new MyThread();
m.start();
}
}
Implementing Runnable
You can write a class that implements Runnable, then wrap an instance in a Thread and invoke start(). Very much like the previous.
public class MyRunnable implements Runnable {
public void run() {
System.out.println("This is a thread");
}
public static void main(String[] args) {
MyRunnable r = new MyRunnable();
(new Thread(r)).start();
}
}
Return Value
Runnable doesn't allow for return values. If you need that, you need to implement Callable instead. Callable looks a lot like Runnable, except you override the call() method instead of the run() method, and you need to give it to an ExecutorService.
public class MyCallable implements Callable<Integer> {
public Integer call() {
System.out.println("A thread using Callable<Integer>");
return 42;
}
public static void main(String[] args) {
MyCallable c = new MyCallable();
Future<Integer> f = Executors.newSingleThreadExecutor().submit(c));
System.out.println("The thread returned: " +
f.get());
}
}
The two constructs I found were 1) having the class implement Runnable and threading 'this' and 2) declaring a runnable class within a method.
Option (2) probably is better. Most programs would be improved if they had more classes, not fewer. Each named entity in a program—each package, class, method, whatever—should have just one responsibility. In your option (1), you are asking the class to do two things.
For your option (2), you don't actually have to declare a whole class. You can either use an anonymous inner class, or if you can go with Java8 all the way, you can use a lambda expression. Google for either one to learn more.
Additionally this method needs a return value.
The classic way, is for the Runnable object to return the value through one of its own fields before the thread terminates. Then the parent thread, can examine the object and get the return value afterward.
Will it be necessary to use Executor and Callable to achieve this?
Necessary? A lot of people think that ExecutorService is a Good Thing.
Sounds like you are creating a server that serves multiple clients. Do these clients continually connect and disconnect? The advantage of using a thread pool (i.e., ThreadPoolExecutor) is that it saves your program from continually creating and destroying threads (e.g., every time a client connects/disconnects). Creating and destroying threads is expensive. If you have a lot of clients connecting and disconnecting, then using a thread pool could make a big difference in the performance of your server.
Creating and managing threads by yourself is generally bad approach.
As you already pointed - use Executors utility class to create executor and submit Callables to it.
public class RunWResult implements Runable{
private volatile ResultType var;
//the thread method
public void run(){
...
//generate a result and save it to var
var = someResult();
//notify waiting threads that a result has been generated
synchronized(this){
notify();
}
}
public ResultType runWithResult(){
//run the thread generating a result
Thread t = new Thread(this);
t.start();
//wait for t to create a result
try{
wait();
}catch(InterruptedException e){}
//return the result
return var;
}
}
Looking at the Thread constructors, I see there is one that takes single string parameter. I have the below code, which is kind of useless. I would like to know, how to make a fruitful use of this constructor and make something actually run
public class ThreadTest {
public static void main(String[] args) {
Thread t = new Thread("abc");
t.start();
System.out.println("Complete");
}
}
Or Is it not supposed to be used the way I demonstrated above?
I perfectly know how to write multiple threads and execute :), I am just trying to understand the correct use of this constructor? Should it only be used by calling super(name) by extending Thread and not by the way I am using it above.
The thread class in itself doesn't do all that much. You have to extend it or construct it around a runnable to make it perform a task when run. From the doc:
start(): "Causes this thread to begin execution; the Java Virtual Machine calls the run method of this thread."
run(): "If this thread was constructed using a separate Runnable run object, then that Runnable object's run method is called; otherwise, this method does nothing and returns."
Therefore constructing a new thread in your fashion and starting it does nothing. One use of the Thread(String) constructor is in subclasses:
public class Worker extends Thread{
public Worker(int numb){
super("worker-"+numb);
}
#Override
public void run(){
//Stuff this thread actually does when run
//....
for(int i = 0; i < 10; i++)
System.out.println(Thread.currentThread().getName() + ":" + i);
}
}
To answer your second question in the comments, this is how you would write code that's executed in parallel. Consider the above class plus this main method:
public static void main(String[] args){
Worker w1 = new Worker(1);
Worker w2 = new Worker(2);
w1.start();
w2.start();
}
The run methods of w1 and w2 will be executed in parallel. The order of the print statements will vary between executions of the main method.
This particular constructor is used to specify the 'name' of a thread, which can later be used to distinguish between instances of a specific thread type.
From the official Java API documentation;
Thread
public Thread(String name)
Allocates a new Thread object. This
constructor has the same effect as Thread (null, null, name).
Parameters: name - the name of the new thread
Once you have allocated a Thread a name, you can call the getName() method on the Thread instance to return the name it was given when it was created. This can be useful for debugging or for distinguishing between instances of of the same Thread subclass type.
Extra Reading:
Official Guide - Defining and Starting a Thread
If you simply call this constructor you get a Thread which does nothing. Why? Look at the source code of java.lang.Thread. It has a private Runnable target; class variable. When you call this constructor, the target variable remains set to null (because this constructor simply sets the Thread's name).
Also, the run() method of java.lang.Thread looks like this:
public void run() {
if (target != null) {
target.run();
}
}
So it means that this run() method will do nothing as target is null.
In order to create/start a Thread which really does something useful read here:
The Java tutorial - how to run a thread?
As an addition to my current application, I need to create a separate thread which will periodically do some processing
I've create a new class to do all this, and this class will be loaded on startup of my application.
This is what I have so far :
public class PeriodicChecker extends Thread
{
static
{
Thread t = new Thread(new PeriodicChecker());
while(true)
{
t.run();
try
{
Thread.sleep(5000l);
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}
/**
* Private constructor to prevent instantiation
*/
private PeriodicChecker()
{
}
#Override
public void run()
{
System.out.println("Thread is doing something");
// Actual business logic here, that is repeated
}
}
I want to make constructor private to prevent other people from attempting to instantiate this class accidentally. How can I achieve this?
Also, is there anything bad about my implementation of such requirements? I'm only creating one thread which will run then sleep, have I missed anything obvious? I haven't worked with threads before
Java offers ScheduledExecutorService to schedule and run periodic tasks or tasks with delay. It should provide all the features you need. Timer is another class that offers similar functionalities, but I would recommend the ScheduledExecutorService over Timer for its flexibility of configuration and better error management.
You have some conceptual erros in your code... for example:
You should call start() and not run(), because you are running the method sequentially and not simultaneously.
You can call start() only once, not once in each loop iteration. After that, the thread is in state TERMINATED, you should create a new thread to run it again
You should not create the thread in the static block, it is a bad practice, and maybe the Thread is running before you want it to run.
You should read some examples about thread, it is a little difficult to unserstand at the beginning, and you can have undesired effects very easily.
Here is a little example, that may do something similar to that you want:
public class PeriodicChecker extends Thread
{
#Override
public void run()
{
while(true) {
System.out.println("Thread is doing something");
Thread.sleep(5000);
}
}
}
public OtherClass {
public static void main(String args[]) {
Thread t = new PeriodicChecker();
t.start();
}
}
If you want that none can create a new Thread, you could create a singleton, so you will be sure that none is creating more threads.
I'd recommend you to consider Timer class - it provides functionality for periodic tasks execution.
Also you may take a look at "Timer & TimerTask versus Thread + sleep in Java" question discussion - there you can find some arguments and examples.
First of all to answer your specific question, you have already achieved your objective. You have declared your constructor to be private meaning no external class can call it like new PeriodicChecker().
Looking at your code however, there are a number of other problems:
Firstly, you are creating an instance of your class within its own static constructor. The purpose of a static constructor is to initialise any static state that your class may have, which instances of your class may then depend on. By creating an instance of the class within the static constructor, all of these guarantees go out the window.
Secondly, I don't think your thread is going to behave in the way you expect it to behave, primarily because you don't actually start another thread :). If you intend to start a new thread, you need to call the start() method on that thread object. Calling run() as you do does not actually create a new thread, but simply runs the run() method in the current thread.
Nowadays when you want to create a new thread to do something, the reccomended way of achieving this is to not extend Thread, but instead implement the Runnable interface. This allows you to decouple the mechanism of the thread, from the behaviour you intend to run.
Based on your requirements, I would suggest doing away with a top-level class like this, and instead create either a private inner class within your application start-up code, or even go for an anonymous inner class:
public class Main {
public static void main(String[] args) {
new Thread(new Runnable() {
#Override
public void run() {
while(true) {
System.out.println("Thread is doing something");
Thread.sleep(5000);
}
}
}).start();
}
}
It is almost never right to extend Thread. If you ever find yourself doing this, step back, take a look and ask yourself if you really need to change the way the Thread class works.
Almost all occurances where I see extends Thread the job would be better done implementing the Runnable interface or using some form of Timer.