So on an spring 3 app I'm building, it would be convenient to be able to read a value from configuration, and then based off of the value read, choose between two implementations of an interface and then build a bean of that object.
I have the config file setup (using util:properties), and other java code is accessing it just fine, but I'm uncertain about how to reference it in my application context xml file, and how to code this conditional logic. Or am I going about this incorrectly?
You probably want something similar to this:
#Configuration
public class MyConfiguration {
#Autowired
ApplicationContext applicationContext;
#Value("${someProperty}")
String someProperty = "B";
#Bean(name="myBean")
public MyInterface ehCacheManager() {
if ("A".equals(someProperty)) {
return new MyInterfaceA();
} else {
return new MyInterfaceB();
}
}
}
You can then differentiate by some property which interface implementation to use.
Related
Edit Fixed by changing package.
I have this configuration file for spring framework
#Configuration
public class AppConfig {
#Bean(initMethod = "populateCache")
public AccountRepository accountRepository(){
return new JdbcAccountRepository();
}
}
JdbcAccountRepository looks like this.
#Repository
public class JdbcAccountRepository implements AccountRepository {
#Override
public Account findByAccountId(long
return new SavingAccount();
}
public void populateCache() {
System.out.println("Populating Cache");
}
public void clearCache(){
System.out.println("Clearing Cache");
}
}
I'm new to spring framework and trying to use initMethod or destroyMethod. Both of these method are showing following errors.
Caused by: org.springframework.beans.factory.support.BeanDefinitionValidationException: Could not find an init method named 'populateCache' on bean with name 'accountRepository'
Here is my main method.
public class BeanLifeCycleDemo {
public static void main(String[] args) {
ConfigurableApplicationContext applicationContext = new
AnnotationConfigApplicationContext(AppConfig.class);
AccountRepository bean = applicationContext.getBean(AccountRepository.class);
applicationContext.close();
}
}
Edit
I was practicing from a book and had created many packages for different chapters. Error was it was importing different JdbcAccountRepository from different package that did not have that method. I fixed it and it works now. I got hinted at this from answers.
Like you said, if you are mixing configurations types, it can be confusing. Besides, even if you created a Bean of type AccountRepository, because Spring does a lot of things at runtime, it can call your initMethod, even if the compiler couldn't.
So yes, if you have many beans with the same type, Spring can be confused an know which one to call, hence your exception.
Oh and by the way, having a Configuration creating the accountRepoisitory Bean, you can remove the #Repository from your JdbcAccountRepository... It is either #Configuration + #Bean or #Component/Repository/Service + #ComponentScan.
TL;DR
Here is more information and how Spring creates your bean : What object are injected by Spring ?
#Bean(initMethod = "populateCache")
public AccountRepository accountRepository(){
return new JdbcAccountRepository();
}
With this code, Spring will :
Detect that you want to add a Bean in the application Context
The bean information are retrieved from the method signature. In your case, it will create a bean of type AccountRepository named accountRepository... That's all Spring knows, it won't look inside your method body.
Once Spring is done analysing your classpath, or scanning the bean definitions, it will start instanciating your object.
It will therefor creates your bean accountRepository of type AccountRepository.
But Spring is "clever" and nice with us. Even if you couldn't write this code without your compiler yelling at you, Spring can still call your method.
To make sure, try writing this code :
AccountRepository accountRepository = new JdbcAccountRepository();
accountRepository.populateCache(); // Compiler error => the method is not found.
But it works for Spring... Magic.
My recommandation, but you might thinking the same now: If you have classes across many packages to answer different business case, then rely on #Configuration classes. #ComponentScan is great to kickstart your development, but reach its limit when your application grows...
You mix two different ways of spring bean declaration:
Using #Configuration classes. Spring finds all beans annotated with #Configuration and uses them as a reference to what beans should be created.
So if you follow this path of configuration - don't use #Repository on beans. Spring will detect it anyway
Using #Repository - other way around - you don't need to use #Configuration in this case. If you decide to use #Repository put #PostConstruct annotation on the method and spring will call it, in this case remove #Configuration altogether (or at least remove #Bean method that creates JdbcAccountRepository)
Annotate populateCache method with #PostConstruct and remove initMethod from #Bean. It will work.
So the package I'm trying to use is here:
https://github.com/spring-projects/spring-batch-extensions/tree/master/spring-batch-excel
and on that page is the spring bean configuration for that package. I'm new to spring, and I don't understand how to actually write code that uses the bean.
The config looks like this:
#Bean
public PoiItemReader excelReader() {
PoiItemReader reader = new PoiItemReader();
reader.setResource(new ClassPathResource("/path/to/your/excel/file"));
reader.setRowMapper(rowMapper());
return reader;
}
#Bean
public RowMapper rowMapper() {
return new PassThroughRowMapper();
}
So if I have another class called reader somewhere, how do I use this bean configuration to get the lines from the excel file that PoiItemReader gets from .setRowMapper()?
The row mapper has a list of arrays that split the values in the excel rows, but I don't know how to get that list.
Do I call the excelReader() method?
PoiItemReader doesn't have any useful methods associated with it, so I don't think I'm supposed to do that.
From your code snippet, it looks like you're using #Configuration on the class that declares your beans.
Using Java Configuration is one of the ways to define your beans so that spring will understand them and inject property at runtime.
An alternative way is using annotations like #Service, #Component, #Controller and so forth (an answer provided by maneesh)
So the first thing to understand in Spring is that there are many ways of configuration (there is also an old-way, using XML and Groovy based configuration).
Now when you write a spring application, usually you use Spring Beans from other Spring Beans.
So, if you configure bean A to have a reference on Bean B, Spring will inject it for you. Example:
public class A {
private B b;
public A(B b) {
this.b = b;
}
public void doSomething() {
b.foo();
}
}
public class B {
public void foo() {...}
}
The "java config" way for defining these beans can look like this:
#Configuration
public class MyConfiguration {
#Bean
public A a(B b) {
return new A(b);
}
#Bean
public B b() {
return new B();
}
}
In your example, you've used an alternative syntax for Configurations (line reader.setRowMapper(rowMapper());:
#Configuration
public class MyConfiguration {
#Bean
public A a() {
return new A(b());
}
#Bean
public B B() {
return new B();
}
}
It looks like from A you just call a method that creates B. But it is not quite like that, in fact, spring is supposed to wrap your configuration in some kind of runtime proxy so that, for example, if you call b() many times (for many beans), it will always return the same instance, because B has a singleton scope. All-in-all Configuration classes should be considered like a Java DSL to create beans and not a regular code.
Now the last question to consider is where all this configuration gets started. The answer to this really depends on the environment you're running it. Usually, spring is already integrated into existing projects that run on-top of tomcat or other servers, or if it's a Spring Boot application it already provides "well known" integration ways. So you might just ask someone from your project (I assume it's not a homework or something) how does your application is integrated with spring, it's beyond the scope of this question.
you should declare #Service or #Component over the class where you want to read file, and use #Autowired annotation to use PoiItemReader
#Service
public class SomeclassName {
#Autowired
private PoiItemReader excelReader;
public void somemethod() {
//do some reading stuff here using excelReader
}
}
Need some help in spring here.
In our project we use XML and annotation configurations (Spring 4.1)
Recently I've faced the following task:
I have a list of beans of scope prototype, all of them implement the same interface.
In addition I have one singleton bean that has execute method. Inside the method the bean should access the list of those prototype beans.
Every time the 'execute' method gets executed I would like to get the access to the different instances of those prototype beans).
In singleton I don't have the whole list of beans known in advance, so I just #Autowire the whole collection so that every bean implementation known in the application context will be loaded.
interface SomeInterface {
}
class PrototypeBean1 implements SomeInterface {
...
}
class PrototypeBean2 implements SomeInterface {
...
}
class MySingletonBean {
#Autowire (????)
List<SomeInterface> allPrototypeBeansLoadedIntoTheApplicationContext;
public void execute() {
// this one is called many times,
// so I would like to get different lists of
//"allPrototypeBeansLoadedIntoTheApplicationContext"
// with different actuals bean upon every invocation
// how do I achieve this???
}
}
So my question is: What is the most clean way to achieve this? Ideally I would like to get a solution totally decoupled from spring interfaces (like injecting ApplicationContext/BeanFactory stuff)
I don't mind to use Aop here (performance is not that critical), but I can't really wrap my head around a clean spring solution. So any help will be appreciated.
Thanks in advance
I have been trying to achieve similar goal with Spring and after reading Spring docs using either ServiceLocatorFactoryBean or method injection (with #Lookup) came up and looked promising.
However after tried both approach results turned out to be frustrating. Neither way supports returning beans in List. And I got this exception:
No qualifying bean of type 'java.util.List' available
Apparently Spring treated the return type as a regular Object.
So eventually my solution became creating a new object to wrap the list as return type.
#Component
#Scope("prototype")
public class ProcessorList
{
private List<Processor> processors;
public ProcessorList(List<Processor> processors)
{
this.processors = processors;
}
public List<Processor> getProcessors()
{
return processors;
}
public void setProcessors(List<ChangeSetProcessor> processors)
{
this.processors = processors;
}
}
then create a Factory class for the List Object:
#Component
public interface ProcessorFactory
{
ProcessorList getProcessorList();
}
Then use ServiceLocatorFactoryBean to register the factory:
#Configuration
public class MyConfiguration{
#Bean
public FactoryBean serviceLocatorFactoryBean()
{
ServiceLocatorFactoryBean factoryBean = new ServiceLocatorFactoryBean();
factoryBean.setServiceLocatorInterface(ProcessorFactory.class);
return factoryBean;
}
}
Finally implement the interface and make sure mark them all with #Scope("prototype")
Now you'll get new instance each time you use the factory method!
It's similar to use method injection if you prefer.
I writing application using spring-boot-starter-jdbc (v1.3.0).
The problem that I met: Instance of BeanPropertyRowMapper fails as it cannot convert from java.sql.Timestamp to java.time.LocalDateTime.
In order to copy this problem, I implemented
org.springframework.core.convert.converter.Converter for these types.
public class TimeStampToLocalDateTimeConverter implements Converter<Timestamp, LocalDateTime> {
#Override
public LocalDateTime convert(Timestamp s) {
return s.toLocalDateTime();
}
}
My question is: How do I make available TimeStampToLocalDateTimeConverter for BeanPropertyRowMapper.
More general question, how do I register my converters, in order to make them available system wide?
The following code bring us to NullPointerException on initialization stage:
private Set<Converter> getConverters() {
Set<Converter> converters = new HashSet<Converter>();
converters.add(new TimeStampToLocalDateTimeConverter());
converters.add(new LocalDateTimeToTimestampConverter());
return converters;
}
#Bean(name="conversionService")
public ConversionService getConversionService() {
ConversionServiceFactoryBean bean = new ConversionServiceFactoryBean();
bean.setConverters(getConverters());
bean.afterPropertiesSet();
return bean.getObject();
}
Thank you.
All custom conversion service has to be registered with the FormatterRegistry. Try creating a new configuration and register the conversion service by implementing the WebMvcConfigurer
#Configuration
public class WebConfig implements WebMvcConfigurer {
#Override
public void addFormatters(FormatterRegistry registry) {
registry.addConverter(new TimeStampToLocalDateTimeConverter());
}
}
Hope this works.
I'll copy my answer from https://stackoverflow.com/a/72781591/140707 since I think the two questions are similar (so the answer applies to both).
Existing answers didn't work for me:
Customizing via WebMvcConfigurerAdapter.addFormatters (or simply annotating the converter with #Component) only works in the WebMvc context and I want my custom converter to be available everywhere, including #Value injections on any bean.
Defining a ConversionService bean (via ConversionServiceFactoryBean #Bean or #Component) causes Spring Boot to replace the default ApplicationConversionService on the SpringApplication bean factory with the custom bean you've defined, which will probably be based on DefaultConversionService (in AbstractApplicationContext.finishBeanFactoryInitialization). The problem is that Spring Boot adds some handy converters such as StringToDurationConverter to the standard set in DefaultConversionService, so by replacing it you lose those conversions. This may not be an issue for you if you don't use them, but it means that solution won't work for everyone.
I created the following #Configuration class which did the trick for me. It basically adds custom converters to the ConversionService instance used by Environment (which is then passed on to BeanFactory). This maintains as much backwards compatibility as possible while still adding your custom converter into the conversion services in use.
#Configuration
public class ConversionServiceConfiguration {
#Autowired
private ConfigurableEnvironment environment;
#PostConstruct
public void addCustomConverters() {
ConfigurableConversionService conversionService = environment.getConversionService();
conversionService.addConverter(new MyCustomConverter());
}
}
Obviously you can autowire a list of custom converters into this configuration class and loop over them to add them to the conversion service instead of the hard-coded way of doing it above, if you want the process to be more automatic.
To make sure this configuration class gets run before any beans are instantiated that might require the converter to have been added to the ConversionService, add it as a primary source in your spring application's run() call:
#SpringBootApplication
public class MySpringBootApplication {
public static void main(String[] args) {
SpringApplication.run(new Class<?>[] { MySpringBootApplication.class, ConversionServiceConfiguration.class }, args);
}
}
If you don't do this, it might work, or not, depending on the order in which your classes end up in the Spring Boot JAR, which determines the order in which they are scanned. (I found this out the hard way: it worked when compiling locally with an Oracle JDK, but not on our CI server which was using a Azul Zulu JDK.)
Note that for this to work in #WebMvcTests, I had to also combine this configuration class along with my Spring Boot application class into a #ContextConfiguration:
#WebMvcTest(controllers = MyController.class)
#ContextConfiguration(classes = { MySpringBootApplication.class, ConversionServiceConfiguration.class })
#TestPropertySource(properties = { /* ... properties to inject into beans, possibly using your custom converter ... */ })
class MyControllerTest {
// ...
}
I suggest to use #Autowired and the related dependency injection mechanism of spring to use a single ConversionService instance throughout your application. The ConversionService will be instantiated within the configuration.
All Converters to be available application wide receive an annotation (e.g. #AutoRegistered). On application start a #Component FormatterRegistrar (Type name itself is a bit misleading, yes it is "...Registrar" as it does the registering. And #Component as it is fully spring managed and requires dependency injection) will receive #AutoRegistered List of all annotated Converters.
See this thread for concrete implementation details. We use this mechanism within our project and it works out like a charm.
org.springframework.web.servlet.config.annotation.WebMvcConfigurer or any on its implementation is one stop place for any kind of customization in spring boot project. It prvoides various methods, for your Converter requirement.
Just create a new Converter by extending org.springframework.core.convert.converter.Converter<S, T>. Then register it with Spring by your class overriding method org.springframework.web.servlet.config.annotation.WebMvcConfigurer.addFormatters(FormatterRegistry)
Note there are Other types of Converter also which basically starts from ConditionalConverter.
Trying adding
#Converter(autoApply = true)
Its needs to be placed over the convertor class. This works for me in case of Convertor needed for Localdate for interacting to DB.
#Converter(autoApply = true)
public class LocalDateAttributeConverter implements AttributeConverter<LocalDate, Date> {
#Override
public Date convertToDatabaseColumn(LocalDate locDate) {
return (locDate == null ? null : Date.valueOf(locDate));
}
#Override
public LocalDate convertToEntityAttribute(Date sqlDate) {
return (sqlDate == null ? null : sqlDate.toLocalDate());
}
}
This is now applied automatically while interacting with DB.
In my code, I don't want to load all the beans defined in the XXApplicationConfig class.
XXApplicationConfig is a #Configuration annotated file which has bunch of spring beans defined.
So, I want to load only AppBean from XXApplicationConfig class while testing to reduce loading test time and also differentiate what I am testing. I also want to load the class using XXApplicationConfig class to make sure the bean configuration defined is correct as well.
This is my Test class ( modified ) to test AppBean class.
Could you let me know if this is the right approach and suggest how to make it better? Currently, this approach seems to be working. But, not sure if it is correct way of approaching it.
#ContextConfiguration(loader=AnnotationConfigContextLoader.class)
#RunWith(SpringJUnit4ClassRunner.class)
public class ApplicationTest {
#Configuration
#PropertySources(value = {#PropertySource("classpath:test.properties")})
static class MyTestConfiguration {
#Bean
public static PropertySourcesPlaceholderConfigurer propertySourcesPlaceHolderConfigurer() {
return new PropertySourcesPlaceholderConfigurer();
}
#Bean
public XXApplicationConfig xxAppConfig() {
return new XXApplicationConfig();
}
#Bean
public CustomTestService customTestService() {
return new CustomTestService();
}
#Bean
public AppBean appBean() throws Exception {
return XXApplicationConfig().appBean();
}
}
#Autowired
private AppBean appBean;
#Test
public void testAppBean() {
test appBean.doSomething();
}
}
If you want to test just one object, just create one object of that class, using the constructor of that class. Spring beans are designed to be POJOs. The Spring context is just a convenient way of creating and connecting objects. Nothing stops you creating and connecting them yourself.
If you can instantiated the class you want to test and manually inject all the dependencies it required via constructor and/or setter getters, then you don't need to use Spring in your test.
However, if your bean:
uses private fields annotated with #Autowired or #Value without corresponding getters/setters.
depends on many other beans.
the behavior you want to test depends on Spring AOP/Proxies (you use #Transactional or #Cacheable for example).
Then you will need Spring to wired the bean. I personally prefer to define a a minimal #Configuration class for these cases.
Then again, if your bean meets the conditions on the list you should consider refactoring the bean to minimize its dependencies and facilitate testing.