Implementing flood fill to check for group - Java - java

I have been looking over this flood fill implementation for some time now and keep running into the dreaded stack overflow. I am dropping pieces randomly on a 12x10 grid and calling the checkMatches method after each random piece drop to check for groups of three or more, hence the flood fill use.
EDIT: See comment
public void checkMatches(int x, int y, int type)
{
if (x < 0 || x >= PIECES_WIDE || y < 0 || y >= PIECES_TALL || type == 0)
return;
if (grid[x][y].getType() != type)
return;
int checkL = x;
while (checkL >= 0 && grid[checkL][y].getType() == type)
{
grid[checkL][y].setDestroy(true);
numMatches++;
checkL--;
}
checkL++;
int checkR = x;
while (checkR < PIECES_WIDE - 1 && grid[checkR][y].getType() == type)
{
grid[checkR][y].setDestroy(true);
numMatches++;
checkR++;
}
checkR--;
for (int i = checkL; i <= checkR; i++)
{
if (y > 0 && grid[i][y - 1].getType() == type)
checkMatches(i, y - 1, type);
if (y < PIECES_TALL - 1 && grid[i][y + 1].getType() == type)
checkMatches(i, y + 1, type);
}
}
Then the relevant code to call the method and destroy the pieces if there have been three matched pieces:
checkMatches(x, y, type);
if (numMatches >= 3)
{
for (int i = 0; i < PIECES_WIDE; i++)
{
for (int j = 0; j < PIECES_TALL; j++)
{
if (grid[i][j].isDestroy())
destroyPiece(grid[i][j]);
}
}
} else
{
numMatches = 0;
for (int i = 0; i < PIECES_WIDE; i++)
{
for (int j = 0; j < PIECES_TALL; j++)
{
grid[i][j].setDestroy(false);
}
}
}
My eyes and brain hurt. I know that the recursion is causing the overflow, but I also know that this implementation is possible in some form. Therefore I'm doing something wrong. Thanks in advance.

You need to put a mark on the pieces that you have already found matching. Then you can make a loop to extend your matchings, until you notice that no more pieces have been marked. Then you can stop.

Related

How to find specific neighbors in a two-dimensional array

I have an exercise where I have a 2D array in Java. I take user input, a String, that looks something like "F3 F7" and I mark the coordinates given on the array. Please see below picture.
2DArray
My problem is the fact that I need to check the neighbors of the input to make sure that future inputs do not touch (neither vertically, nor horizontally).
I found the below code in a post here, but I simply do not have the inspiration on how to implement it in order to check only for a specific set in the array.
for (i = 0; i < array.length; i++) {
for (j = 0; j < array[i].length; j++) {
for (x = Math.max(0, i - 1); x <= Math.min(i + 1, array.length); x++) {
for (y = Math.max(0, j - 1); y <= Math.min(j + 1,
array[i].length); y++) {
if (x >= 0 && y >= 0 && x < array.length
&& y < array[i].length) {
if(x!=i || y!=j){
System.out.print(array[x][y] + " ");
}
}
}
}
System.out.println("\n");
}
}

matlab bwmorph(img, 'thin') implementation in Java gone wrong

I am implementing the matlab 'bwmorph(img, 'thin')' algorithm in Java ImageJ. I've searched all over the net pretty much and found some similar implementations that work better, but I can't find the issue in my code. Any ideas?
My code:
public void run(ImageProcessor ip) {
MakeBinary(ip);
int sum2 = processThin(ip);
int sum = -1;
while (sum2 != sum) {
sum = sum2;
sum2 = processThin(ip);
}
}
public int processThin(ImageProcessor ipOriginal) {
int sum = 0;
// first iteration
ImageProcessor ip = ipOriginal.duplicate();
for (int i = 1; i < ip.getWidth() -1; i++)
for (int j = 1; j < ip.getHeight() -1; j++) {
int[] neighbors = selectNeighbors(ip, i, j);
if (G1(neighbors) == 1 && G2(neighbors) >= 2 && G2(neighbors) <= 3 && G3(neighbors) == 0)
ip.putPixel(i,j, 0);
}
// second iteration
for (int i = 1; i < ip.getWidth() -1; i++)
for (int j = 1; j < ip.getHeight()-1; j++) {
int[] neighbors = selectNeighbors(ip, i, j);
if (G1(neighbors) == 1 && G2(neighbors) >= 2 && G2(neighbors) <= 3 && G3prime(neighbors) == 0)
ip.putPixel(i,j, 0);
}
for(int i = 0; i < ip.getWidth(); i++)
for(int j = 0; j < ip.getHeight(); j++) {
if (ip.getPixel(i,j) != 0) sum++;
ipOriginal.putPixel(i, j, ip.getPixel(i, j));
}
return sum;
}
private int G1(int[] input) {
int xh = 0;
for (int i = 1; i <= 4; i++) {
if (input[2 * i - 1] == 0 && (input[2 * i] == 1 || (2 * i + 1 <= 8 ? input[2 * i + 1] == 1 : input[1] == 1)))
xh += 1;
}
return xh;
}
private int G2(int[] input) {
int n1 = 0, n2 = 0;
n1 = toInt(toBool(input[4]) || toBool(input[3])) + toInt(toBool(input[1]) || toBool(input[2])) +
toInt(toBool(input[8]) || toBool(input[7])) + toInt(toBool(input[6]) || toBool(input[5]));
n2 = toInt(toBool(input[2]) || toBool(input[3])) + toInt(toBool(input[1]) || toBool(input[8])) +
toInt(toBool(input[6]) || toBool(input[7])) + toInt(toBool(input[4]) || toBool(input[5]));
return Math.min(n1,n2);
}
private int G3 (int[] input){
return toInt((toBool(input[2]) || toBool(input[3]) || !toBool(input[8])) && toBool(input[1]));
}
private int G3prime (int[] input){
return toInt((toBool(input[6]) || toBool(input[7]) || !toBool(input[4])) && toBool(input[5]));
}
private boolean toBool(int i ){
return i == 1;
}
private int toInt(boolean i) {
return i ? 1 : 0;
}
private int[] selectNeighbors(ImageProcessor ip, int i, int j) {
int[] result = new int[9];
result[1] = ip.getPixel(i+1,j);
result[2] = ip.getPixel(i+1,j+1);
result[3] = ip.getPixel(i,j+1);
result[4] = ip.getPixel(i-1,j+1);
result[5] = ip.getPixel(i-1,j);
result[6] = ip.getPixel(i-1,j-1);
result[7] = ip.getPixel(i,j-1);
result[8] = ip.getPixel(i+1,j-1);
for (int x = 0; x < result.length; x++)
if (result[x] != 0) result[x] = 1;
return result;
}
The main issue appears to be with the horizontal lines, but not only that.
Note: I've added the toBool and toInt methods to deal with convenient data types, the code was binary before and the result is the same apparently.
EDIT:
After editing the code and omitting doing modifications between two iterations, I ended up with this result now.
The code looks like this now.
public int processThin(ImageProcessor ip) {
int sum = 0;
// first iteration
int[][] mask = new int[ip.getWidth()][ip.getHeight()];
for (int i = 1; i < ip.getWidth() -1; i++)
for (int j = 1; j < ip.getHeight() -1; j++) {
int[] neighbors = selectNeighbors(ip, i, j);
if (G1(neighbors) == 1 && G2(neighbors) >= 2 && G2(neighbors) <= 3 && G3(neighbors) == 0)
mask[i][j]++;
}
// second iteration
for (int i = 1; i < ip.getWidth() -1; i++)
for (int j = 1; j < ip.getHeight()-1; j++) {
int[] neighbors = selectNeighbors(ip, i, j);
if (G1(neighbors) == 1 && G2(neighbors) >= 2 && G2(neighbors) <= 3 && G3prime(neighbors) == 0)
mask[i][j]++;
}
for(int i = 0; i < ip.getWidth(); i++)
for(int j = 0; j < ip.getHeight(); j++) {
if (mask[i][j] != 0) sum++;
ip.putPixel(i, j, mask[i][j] > 0 ? 0 : ip.getPixel(i,j));
}
return sum;
}
The problem in your original code is that you write into your input image. In the very first iteration, moving left to right, you remove successive pixels because each has, after modifying the previous pixel, a background pixel as neighbor.
There are different ways to implement the thinning operation, but the simplest one that works in-place like your code does requires two passes through the image for each iteration of the thinning:
Go through the image and mark all candidate pixels. These are the pixels that have a background neighbor. Marking a pixel can be as simple as setting the pixel value to a given constant, for example 42 (assuming background is 0 and foreground is 1 or 255 or whatever you decided on).
Go through the image again and for each marked pixel, determine if removing it would change the geometry of the foreground. If not, remove it. In this test, take the marked pixels that haven't been removed yet as foreground.

(Java) How can I store my x and y values to use them outside of for loops?

I'm coding Conway's Game of Life on Processing 3 and I want to store x and y so that the squares don't change right away, but I don't know how to store it to use later. Any help is appreciated!
void keyPressed() {
for (int x = 0; x < 30; x++) {
for (int y = 0; y < 30; y++) {
int numNeighbours = numNeighbours(x,y);
if (cells[x][y] == true) {
if (numNeighbours > 3 || numNeighbours <= 1) { //underpopulation or overpopulation
}
}
else if (cells[x][y] == false) {
if (numNeighbours == 3) {
}
}
}
}
}
Based on my understanding of your code (and the Game of Life), you don't need to store x and y. What you actually need to do is to store the (x, y) pairs where the cell changes state.
You could do this by creating pairs and adding them to lists.
But a another idea is to use a second array representing the next generation of the game and put all of the new values there; e.g.
for (int x = 0; x < 30; x++) {
for (int y = 0; y < 30; y++) {
int numNeighbours = numNeighbours(x,y);
if (cells[x][y] == true) {
if (numNeighbours > 3 || numNeighbours <= 1) {
cellsNext[x][y] = false;
} else {
cellsNext[x][y] = true;
}
}
else if (cells[x][y] == false) {
if (numNeighbours == 3) {
cellsNext[x][y] = true;
} else {
cellsNext[x][y] = false;
}
}
}
}
Note: that could be simplified / written better, but I have written it as above so that you can see clearly what I have done.

java:generalized 8 queen to work for any initial state using depth first search [duplicate]

i am try to implement 8 queen using depth search for any initial state it work fine for empty board(no queen on the board) ,but i need it to work for initial state if there is a solution,if there is no solution for this initial state it will print there is no solution
Here is my code:
public class depth {
public static void main(String[] args) {
//we create a board
int[][] board = new int[8][8];
board [0][0]=1;
board [1][1]=1;
board [2][2]=1;
board [3][3]=1;
board [4][4]=1;
board [5][5]=1;
board [6][6]=1;
board [7][7]=1;
eightQueen(8, board, 0, 0, false);
System.out.println("the solution as pair");
for(int i=0;i<board.length;i++){
for(int j=0;j<board.length;j++)
if(board[i][j]!=0)
System.out.println(" ("+i+" ,"+j +")");
}
System.out.println("the number of node stored in memory "+count1);
}
public static int count1=0;
public static void eightQueen(int N, int[][] board, int i, int j, boolean found) {
long startTime = System.nanoTime();//time start
if (!found) {
if (IsValid(board, i, j)) {//check if the position is valid
board[i][j] = 1;
System.out.println("[Queen added at (" + i + "," + j + ")");
count1++;
PrintBoard(board);
if (i == N - 1) {//check if its the last queen
found = true;
PrintBoard(board);
double endTime = System.nanoTime();//end the method time
double duration = (endTime - startTime)*Math.pow(10.0, -9.0);
System.out.print("total Time"+"= "+duration+"\n");
}
//call the next step
eightQueen(N, board, i + 1, 0, found);
} else {
//if the position is not valid & if reach the last row we backtracking
while (j >= N - 1) {
int[] a = Backmethod(board, i, j);
i = a[0];
j = a[1];
System.out.println("back at (" + i + "," + j + ")");
PrintBoard(board);
}
//we do the next call
eightQueen(N, board, i, j + 1, false);
}
}
}
public static int[] Backmethod(int[][] board, int i, int j) {
int[] a = new int[2];
for (int x = i; x >= 0; x--) {
for (int y = j; y >= 0; y--) {
//search for the last queen
if (board[x][y] != 0) {
//deletes the last queen and returns the position
board[x][y] = 0;
a[0] = x;
a[1] = y;
return a;
}
}
}
return a;
}
public static boolean IsValid(int[][] board, int i, int j) {
int x;
//check the queens in column
for (x = 0; x < board.length; x++) {
if (board[i][x] != 0) {
return false;
}
}
//check the queens in row
for (x = 0; x < board.length; x++) {
if (board[x][j] != 0) {
return false;
}
}
//check the queens in the diagonals
if (!SafeDiag(board, i, j)) {
return false;
}
return true;
}
public static boolean SafeDiag(int[][] board, int i, int j) {
int xx = i;
int yy = j;
while (yy >= 0 && xx >= 0 && xx < board.length && yy < board.length) {
if (board[xx][yy] != 0) {
return false;
}
yy++;
xx++;
}
xx = i;
yy = j;
while (yy >= 0 && xx >= 0 && xx < board.length && yy < board.length) {
if (board[xx][yy] != 0) {
return false;
}
yy--;
xx--;
}
xx = i;
yy = j;
while (yy >= 0 && xx >= 0 && xx < board.length && yy < board.length) {
if (board[xx][yy] != 0) {
return false;
}
yy--;
xx++;
}
xx = i;
yy = j;
while (yy >= 0 && xx >= 0 && xx < board.length && yy < board.length) {
if (board[xx][yy] != 0) {
return false;
}
yy++;
xx--;
}
return true;
}
public static void PrintBoard(int[][] board) {
System.out.print(" ");
for (int j = 0; j < board.length; j++) {
System.out.print(j);
}
System.out.print("\n");
for (int i = 0; i < board.length; i++) {
System.out.print(i);
for (int j = 0; j < board.length; j++) {
if (board[i][j] == 0) {
System.out.print(" ");
} else {
System.out.print("Q");
}
}
System.out.print("\n");
}
}
}
for example for this initial state it give me the following error:
Exception in thread "main" java.lang.StackOverflowError
i am stuck, i think the error is infinite call for the method how to solve this problem.
any idea will be helpful,thanks in advance.
note:the broad is two dimensional array,when i put (1) it means there queen at this point.
note2:
we i put the initial state as the following it work:
board [0][0]=1;
board [1][1]=1;
board [2][2]=1;
board [3][3]=1;
board [4][4]=1;
board [5][5]=1;
board [6][6]=1;
board [7][1]=1;
[EDIT: Added conditional output tip.]
To add to #StephenC's answer:
This is a heck of a complicated piece of code, especially if you're not experienced in programming Java.
I executed your code, and it outputs this over and over and over and over (and over)
back at (0,0)
01234567
0
1 Q
2 Q
3 Q
4 Q
5 Q
6 Q
7 Q
back at (0,0)
And then crashes with this
Exception in thread "main" java.lang.StackOverflowError
at java.nio.Buffer.<init>(Unknown Source)
...
at java.io.PrintStream.print(Unknown Source)
at java.io.PrintStream.println(Unknown Source)
at Depth.eightQueen(Depth.java:56)
at Depth.eightQueen(Depth.java:60)
at Depth.eightQueen(Depth.java:60)
at Depth.eightQueen(Depth.java:60)
at Depth.eightQueen(Depth.java:60)
...
My first instinct is always to add some System.out.println(...)s to figure out where stuff is going wrong, but that won't work here.
The only two options I see are to
Get familiar with a debugger and use it to step through and analyze why it's never stopping the loop
Break it down man! How can you hope to deal with a massive problem like this without breaking it into digestible chunks???
Not to mention that the concept of 8-queens is complicated to begin with.
One further thought:
System.out.println()s are not useful as currently implemented, because there's infinite output. A debugger is the better solution here, but another option is to somehow limit your output. For example, create a counter at the top
private static final int iITERATIONS = 0;
and instead of
System.out.println("[ANUMBERFORTRACING]: ... USEFUL INFORMATION ...")
use
conditionalSDO((iITERATIONS < 5), "[ANUMBERFORTRACING]: ... USEFUL INFORMATION");
Here is the function:
private static final void conditionalSDO(boolean b_condition, String s_message) {
if(b_condition) {
System.out.println(s_message);
}
}
Another alternative is to not limit the output, but to write it to a file.
I hope this information helps you.
(Note: I edited the OP's code to be compilable.)
You asked for ideas on how to solve it (as distinct from solutions!) so, here's a couple of hints:
Hint #1:
If you get a StackOverflowError in a recursive program it can mean one of two things:
your problem is too "deep", OR
you've got a bug in your code that is causing it to recurse infinitely.
In this case, the depth of the problem is small (8), so this must be a recursion bug.
Hint #2:
If you examine the stack trace, you will see the method names and line numbers for each of the calls in the stack. This ... and some thought ... should help you figure out the pattern of recursion in your code (as implemented!).
Hint #3:
Use a debugger Luke ...
Hint #4:
If you want other people to read your code, pay more attention to style. Your indentation is messed up in the most important method, and you have committed the (IMO) unforgivable sin of ignoring the Java style rules for identifiers. A method name MUST start with a lowercase letter, and a class name MUST start with an uppercase letter.
(I stopped reading your code very quickly ... on principle.)
Try to alter your method IsValid in the lines where for (x = 0; x < board.length - 1; x++).
public static boolean IsValid(int[][] board, int i, int j) {
int x;
//check the queens in column
for (x = 0; x < board.length - 1; x++) {
if (board[i][x] != 0) {
return false;
}
}
//check the queens in row
for (x = 0; x < board.length - 1; x++) {
if (board[x][j] != 0) {
return false;
}
}
//check the queens in the diagonals
if (!SafeDiag(board, i, j)) {
return false;
}
return true;
}

Messed up recursion code for a board game

What I have to do here is to count the number of adjacent white blocks (in 2's) on a square board which is made up of random black(0's) and white(1's) blocks. The white blocks have to be at i+1,j || i-1,j || i,j+1 || i,j-1. Technically diagonals are not counted. I have provided an example below:
[1 0 1]
[1 1 0]
[0 1 0]
Here count == 3 (0,0)(1,0) and (1,0)(1,1) and (1,1)(2,1)
Here is my code:
public int count = 0;
boolean count(int x, int y, int[][] mat)
{
if(x<0 || y<0)
return false;
if(mat[x][y] == 0)
return false;
for(int i = x; i<mat.length; i++)
{
for(int j = y; j<mat[0].length; j++)
{
if(mat[i][j] == 1)
{
mat[i][j] = 0;
if(count(i-1,j,mat))
count++;
if(count(i,j-1,mat))
count++;
if(count(i+1,j,mat))
count++;
if(count(i,j+1,mat))
count++;
}
}
}
return true;
}
Short explanation of what I am trying to do here: I am going about finding 1's on the board and when I find one I change it to a 0 and check its up,down,left,right for a 1. This goes on till I find no adjacent 1's. What is the thing I am missing here? I kind of have a feeling I am looping unnecessarily.
here's a solution without recursion
for(int i = 0; i < mat.length; i++) {
for(int j = 0; j < mat[i].length; j++) {
if(mat[i][j] == 1) {
if(i < mat.length - 1 && mat[i+1][j] == 1) {
count++;
}
if(j < mat[i].length - 1 && mat[i][j+1] == 1) {
count++;
}
}
}
I don't think recursion is the right answer as you should only being going one step deep (to find the adjacent value). Instead just loop through the elements looking to the right and down. Don't look up or left as twain mentioned so that you don't double count matches. Then is it simply:
for (i=0; i<max; i++)
for (j=0; j<max; j++)
if (array[i][j] == 1){
if (i<max-1 && array[i+1][j] == 1) count++;
if (j<max-1 && array[i][j+1] == 1) count++;
}

Categories