Difference b/w intrinsic locking, client side locking & extrinsic locking? - java

what is the difference b/w intrinsic locking, client side locking & extrinsic locking ?
What is the best way to create a thread safe class ?
which kind of locking is prefered & why ?

I would highly recommend you to read "Java Concurrency In Practice" by Brian Goetz. It is an excellent book that will help you to understand all the concepts about concurrency!
About your questions, I am not sure if I can answer them all, but I can give it a try. Most of the times, if the question is "what is the best way to lock" etc, the answer is always it depends on what problem you try to solve.
Question 1:
What you try to compare here are not exactly comparable;
Java provides a built in mechanism for locking, the synchronized block. Every object can implicitly act as a lock for purposes of synchronization; these built-in locks are called intrinsic locks.
What is interesting with the term intrinsic is that the ownership of a lock is per thread and not per method invocation. That means that only one thread can hold the lock at a given time. What you might also find interesting is the term reentrancy, which allows the same thread to acquire the same lock again. Intrinsic locks are reentrant.
Client side locking, if I understand what you mean, is something different. When you don't have a thread safe class, your clients need to take care about this. They need to hold locks so they can make sure that there are not any race conditions.
Extrinsic locking is, instead of using the built in mechanism of synchronized block which gives you implicit locks to specifically use explicit locks. It is kind of more sophisticate way of locking. There are many advantages (for example you can set priorities). A good starting point is the java documentation about locks
Question 2:
It depends :) The easiest for me is to try to keep everything immutable. When something is immutable, I don't need to care about thread safety anymore
Question 3:
I kind of answered it on your first question

Explicit - locking using concurrent lock utilities like Lock interface. eg - ConcurrentHashMap
Intrinsic - locking using synchronized.
Client side locking - Classes like ConcurrentHashMap doesn't support Client side locking because get method is not using any kind of lock. so although you put a lock over its object like synchronized (object of ConcurrentHashMap) still some other thread can access object of ConcurrentHashMap.
Classes having all set get methods Explicit or Intrinsic locks are supporting client side locking. As some client code come and lock over that object. below is example of Vector
public static Object getLast(Vector list) {
synchronized (list) {
int lastIndex = list.size() - 1;
return list.get(lastIndex);
}
}
public static void deleteLast(Vector list) {
synchronized (list) {
int lastIndex = list.size() - 1;
list.remove(lastIndex);
}
}

Here are some links that discuss the different locking schemes:
Explicit versus Intrinsic
Client side locking and when to avoid it
I don't know that there is a "best" way to create a thread safe class, it depends on what you are trying to achieve exactly. Usually you don't have to make the whole class thread safe, only guard the resources that different threads all have access to, such as common lists etc.

Related

is reentrant lock is complete replacement for synchronisation?

I gone through the article "http://www.ibm.com/developerworks/java/library/j-jtp10264/".They mentioned that "The Lock framework is a compatible replacement for synchronisation". I understood that by using Reentrant locks we can hold the lock across the methods, wait for the lock for certain period of time (It is not possible using synchronised block (or) methods). My doubt is, is it possible to replace the application with synchronisation mechanism with Reentrant locks?
For example, I want to implement a thread safe stack data structure, where all the push, pop, getTop methods are synchronised, so in multi threaded environment, only one thread can able to access one synchronised method at a time (If one thread is using push method, no other threads can able to access push, pop, getTop (or) any other synchronised methods of Stack class). Is it possible to implement same thread safe stack data structure using Reentrant lock? If possible, please provide an example to understand this.
Anything you can do with synchronized you can also do with ReentrantLock but not vice-versa. That being said, if all you need are lock/unlock semantics I would suggest synchronized as it's, in my opinion, more readable.
The answer is "Yes".
lock - unlock pair used instead of synchronize( ) { ... }.
await and signal in Condition is replacement for wait and notify.
Brian Goetz discusses this in "Java Concurrency in Practice" in chapter 13.4:
ReentrantLock is an advanced tool for situations where intrinsic locking is not practical. Use it if you need its advanced features: timed, polled, or interruptible lock acquisition, fair queueing, or non-block-structured locking. Otherwise, prefer synchronized.
I absolutely agree because IMHO this:
synchronized (lock) {
// ...
}
Is way more readable and less error prone than this:
try {
lock.lock();
// ...
} finally {
lock.unlock();
}
Long story short: from a technical point of view, yes, you could replace synchronized with ReentrantLock, but I wouldn't do it per se.
Also checkout these questions:
Synchronization vs Lock
Why use a ReentrantLock if one can use synchronized(this)?
ReentrantLock is one of the alternatives to synchronization.
A reentrant mutual exclusion Lock with the same basic behavior and semantics as the implicit monitor lock accessed using synchronized methods and statements, but with extended capabilities.
Refer to this question for other alternatives to synchronization (Concurrent Collections, Atomic variables, Executors, ThreadLocal variables):
Avoid synchronized(this) in Java?

Thread safety static variables

i read
thread safety for static variables and i understand it and i agree with it but
In book java se 7 programmer exam 804 can some one explain to me
public void run() {
synchronized(SharedCounter.class) {
SharedCounter.count++;
}
}
However, this code is inefficient since it acquires and releases the
lock every time just to increment the value of count.
can someone explain to me the above quote
The code is not particularly inefficient. It could be slightly more efficient. The main problem is that it is fragile: if any developer forgets to synchronize its access to the global SharedCounter.count variable, you have a thread-safety issue. Indeed, since i++ is not an atomic operation and since changing the value of a variable without synchronization doesn't make the variables new value visible to other threads, Every access to i must be done in a synchronized way.
The synchronization is thus not correctly encapsulated in a single class. Generally, accessing global public fields is bad design. It's even worse in a multi-threaded environment.
Using an AtomicInteger solves the encapsulation problem, and makes it slightly more efficient at the same time.
Synchronizing can be expensive, so it shouldn't be used carelessly. There are better ways such as using AtomicInteger.incrementAndGet(); which uses different mechanisms to handle the synchronization.
It's inefficient compared to using intrinsic CPU instructions which can do atomic increments without using a lock. See http://en.wikipedia.org/wiki/Fetch-and-add and http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/AtomicInteger.html

Fastest Way for Java to write mutexes?

Mutexes are pretty common in many programming languages, like e.g. C/C++. I miss them in Java. However, there are multiple ways I could write my own class Mutex:
Using a simple synchronized keyword on Mutex.
Using a binary semaphore.
Using atomic variables, like discussed here.
...?
What is the fastest (best runtime) way? I think synchronized is most common, but what about performance?
Mutexes are pretty common in many programming languages, like e.g. C/C++. I miss them in Java.
Not sure I follow you (especially because you give the answer in your question).
public class SomeClass {
private final Object mutex = new Object();
public void someMethodThatNeedsAMutex() {
synchronized(mutex) {
//here you hold the mutex
}
}
}
Alternatively, you can simply make the whole method synchronized, which is equivalent to using this as the mutex object:
public class SomeClass {
public synchronized void someMethodThatNeedsAMutex() {
//here you hold the mutex
}
}
What is the fastest (best runtime) way?
Acquiring / releasing a monitor is not going to be a significant performance issue per se (you can read this blog post to see an analysis of the impact). But if you have many threads fighting for the lock, it will create contention and degrade performance.
In that case, the best strategy is to not use mutexes by using "lock-free" algorithms if you are mostly reading data (as pointed out by Marko in the comments, lock-free uses CAS operations, which may involve retrying writes many times if you have lots of writing threads, eventually leading to worse performance) or even better, by avoiding to share too much stuff across threads.
The opposite is the case: Java designers solved it so well that you don't even recognize it: you don't need a first-class Mutex object, just the synchronized modifier.
If you have a special case where you want to juggle your mutexes in a non-nesting fashion, there's always the ReentrantLock and java.util.concurrent offers a cornucopia of synchronization tools that go way beyond the crude mutex.
In Java each object can be uses as Mutex.
This objects are typicaly named "lock" or "mutex".
You can create that object for yourself which is the prefered variant, because it avoids external access to that lock:
// usually a field in the class
private Object mutex = new Object();
// later in methods
synchronized(mutex) {
// mutual exclusive section for all that uses synchronized
// ob this mutex object
}
Faster is to avoid the mutex, by thinking what happens if another thread reads an non actual value. In some situations this would produce wrong calculation results, in other results only in a minimal delay. (but faster than with syncing)
Detailed explanation in book
Java Concurreny in practise
.
What is the fastest (best runtime) way?
That depends on many things. For example, ReentrantLock used to perform better under contention than using synchronized, but that changed when a new HotSpot version, optimizing synchronized locking, was released. So there's nothing inherent in any way of locking that favors one flavor of mutexes over the other (from a performance point of view) - in fact, the "best" solution can change with the data you're processing and the machine you're running on.
Also, why did the inventors of Java not solve this question for me?
They did - in several ways: synchronized, Locks, atomic variables, and a whole slew of other utilities in java.util.concurrent.
You can run micro benchmarks of each variant, like atomic, synchronized, locked. As others have pointed out, it depends a lot on the machine and number of threads in use. In my own experiments incrementing long integers, I found that with only one thread on a Xeon W3520, synchronized wins over atomic: Atomic/Sync/Lock: 8.4/6.2/21.8, in nanos per increment operation.
This is of course a border case since there is never any contention. Of course, in that case, we can also look at unsynchronized single-threads long increment, which comes out six times faster than atomic.
With 4 threads I get 21.8/40.2/57.3. Note that these are all increments across all threads, so we actually see a slowdown. It gets a bit better for locks with 64 threads: 22.2/45.1/45.9.
Another test on a 4-way/64T machine using Xeon E7-4820 yields for 1 thread: 9.1/7.8/29.1, 4 threads: 18.2/29.1/55.2 and 64 Threads: 53.7/402/420.
One more data point, this time a dual Xeon X5560, 1T: 6.6/5.8/17.8, 4T: 29.7/81.5/121, 64T: 31.2/73.4/71.6.
So, on a multi-socket machine, there is a heavy cache coherency tax.
you can use java.util.concurrent.locks.Lock in the same way as the mutex or java.util.concurrent.Semaphore. But using synchronized-keyword is a better way :-)
Regards
Andrej

Java Thread - Synchronization issue

From Sun's tutorial:
Synchronized methods enable a simple strategy for preventing thread interference and memory consistency errors: if an object is visible to more than one thread, all reads or writes to that object's variables are done through synchronized methods. (An important exception: final fields, which cannot be modified after the object is constructed, can be safely read through non-synchronized methods, once the object is constructed) This strategy is effective, but can present problems with liveness, as we'll see later in this lesson.
Q1. Is the above statements mean that if an object of a class is going to be shared among multiple threads, then all instance methods of that class (except getters of final fields) should be made synchronized, since instance methods process instance variables?
In order to understand concurrency in Java, I recommend the invaluable Java Concurrency in Practice.
In response to your specific question, although synchronizing all methods is a quick-and-dirty way to accomplish thread safety, it does not scale well at all. Consider the much maligned Vector class. Every method is synchronized, and it works terribly, because iteration is still not thread safe.
No. It means that synchronized methods are a way to achieve thread safety, but they're not the only way and, by themselves, they don't guarantee complete safety in all situations.
Not necessarily. You can synchronize (e.g. place a lock on dedicated object) part of the method where you access object's variables, for example. In other cases, you may delegate job to some inner object(s) which already handles synchronization issues.
There are lots of choices, it all depends on the algorithm you're implementing. Although, 'synchronized' keywords is usually the simplest one.
edit
There is no comprehensive tutorial on that, each situation is unique. Learning it is like learning a foreign language: never ends :)
But there are certainly helpful resources. In particular, there is a series of interesting articles on Heinz Kabutz's website.
http://www.javaspecialists.eu/archive/Issue152.html
(see the full list on the page)
If other people have any links I'd be interested to see also. I find the whole topic to be quite confusing (and, probably, most difficult part of core java), especially since new concurrency mechanisms were introduced in java 5.
Have fun!
In the most general form yes.
Immutable objects need not be synchronized.
Also, you can use individual monitors/locks for the mutable instance variables (or groups there of) which will help with liveliness. As well as only synchronize the portions where data is changed, rather than the entire method.
synchronized methodName vs synchronized( object )
That's correct, and is one alternative. I think it would be more efficient to synchronize access to that object only instead synchronize all it's methods.
While the difference may be subtle, it would be useful if you use that same object in a single thread
ie ( using synchronized keyword on the method )
class SomeClass {
private int clickCount = 0;
public synchronized void click(){
clickCount++;
}
}
When a class is defined like this, only one thread at a time may invoke the click method.
What happens if this method is invoked too frequently in a single threaded app? You'll spend some extra time checking if that thread can get the object lock when it is not needed.
class Main {
public static void main( String [] args ) {
SomeClass someObject = new SomeClass();
for( int i = 0 ; i < Integer.MAX_VALUE ; i++ ) {
someObject.click();
}
}
}
In this case, the check to see if the thread can lock the object will be invoked unnecessarily Integer.MAX_VALUE ( 2 147 483 647 ) times.
So removing the synchronized keyword in this situation will run much faster.
So, how would you do that in a multithread application?
You just synchronize the object:
synchronized ( someObject ) {
someObject.click();
}
Vector vs ArrayList
As an additional note, this usage ( syncrhonized methodName vs. syncrhonized( object ) ) is, by the way, one of the reasons why java.util.Vector is now replaced by java.util.ArrayList. Many of the Vector methods are synchronized.
Most of the times a list is used in a single threaded app or piece of code ( ie code inside jsp/servlets is executed in a single thread ), and the extra synchronization of Vector doesn't help to performance.
Same goes for Hashtable being replaced by HashMap
In fact getters a should be synchronized too or fields are to be made volatile. That is because when you get some value, you're probably interested in a most recent version of the value. You see, synchronized block semantics provides not only atomicity of execution (e.g. it guarantees that only one thread executes this block at one time), but also a visibility. It means that when thread enters synchronized block it invalidates its local cache and when it goes out it dumps any variables that have been modified back to main memory. volatile variables has the same visibility semantics.
No. Even getters have to be synchronized, except when they access only final fields. The reason is, that, for example, when accessing a long value, there is a tiny change that another thread currently writes it, and you read it while just the first 4 bytes have been written while the other 4 bytes remain the old value.
Yes, that's correct. All methods that modify data or access data that may be modified by a different thread need to be synchronized on the same monitor.
The easy way is to mark the methods as synchronized. If these are long-running methods, you may want to only synchronize that parts that the the reading/writing. In this case you would definie the monitor, along with wait() and notify().
The simple answer is yes.
If an object of the class is going to be shared by multiple threads, you need to syncronize the getters and setters to prevent data inconsistency.
If all the threads would have seperate copy of object, then there is no need to syncronize the methods. If your instance methods are more than mere set and get, you must analyze the threat of threads waiting for a long running getter/setter to finish.
You could use synchronized methods, synchronized blocks, concurrency tools such as Semaphore or if you really want to get down and dirty you could use Atomic References. Other options include declaring member variables as volatile and using classes like AtomicInteger instead of Integer.
It all depends on the situation, but there are a wide range of concurrency tools available - these are just some of them.
Synchronization can result in hold-wait deadlock where two threads each have the lock of an object, and are trying to acquire the lock of the other thread's object.
Synchronization must also be global for a class, and an easy mistake to make is to forget to synchronize a method. When a thread holds the lock for an object, other threads can still access non synchronized methods of that object.

Avoid synchronized(this) in Java?

Whenever a question pops up on SO about Java synchronization, some people are very eager to point out that synchronized(this) should be avoided. Instead, they claim, a lock on a private reference is to be preferred.
Some of the given reasons are:
some evil code may steal your lock (very popular this one, also has an "accidentally" variant)
all synchronized methods within the same class use the exact same lock, which reduces throughput
you are (unnecessarily) exposing too much information
Other people, including me, argue that synchronized(this) is an idiom that is used a lot (also in Java libraries), is safe and well understood. It should not be avoided because you have a bug and you don't have a clue of what is going on in your multithreaded program. In other words: if it is applicable, then use it.
I am interested in seeing some real-world examples (no foobar stuff) where avoiding a lock on this is preferable when synchronized(this) would also do the job.
Therefore: should you always avoid synchronized(this) and replace it with a lock on a private reference?
Some further info (updated as answers are given):
we are talking about instance synchronization
both implicit (synchronized methods) and explicit form of synchronized(this) are considered
if you quote Bloch or other authorities on the subject, don't leave out the parts you don't like (e.g. Effective Java, item on Thread Safety: Typically it is the lock on the instance itself, but there are exceptions.)
if you need granularity in your locking other than synchronized(this) provides, then synchronized(this) is not applicable so that's not the issue
I'll cover each point separately.
Some evil code may steal your lock (very popular this one, also has an
"accidentally" variant)
I'm more worried about accidentally. What it amounts to is that this use of this is part of your class' exposed interface, and should be documented. Sometimes the ability of other code to use your lock is desired. This is true of things like Collections.synchronizedMap (see the javadoc).
All synchronized methods within the same class use the exact same
lock, which reduces throughput
This is overly simplistic thinking; just getting rid of synchronized(this) won't solve the problem. Proper synchronization for throughput will take more thought.
You are (unnecessarily) exposing too much information
This is a variant of #1. Use of synchronized(this) is part of your interface. If you don't want/need this exposed, don't do it.
Well, firstly it should be pointed out that:
public void blah() {
synchronized (this) {
// do stuff
}
}
is semantically equivalent to:
public synchronized void blah() {
// do stuff
}
which is one reason not to use synchronized(this). You might argue that you can do stuff around the synchronized(this) block. The usual reason is to try and avoid having to do the synchronized check at all, which leads to all sorts of concurrency problems, specifically the double checked-locking problem, which just goes to show how difficult it can be to make a relatively simple check threadsafe.
A private lock is a defensive mechanism, which is never a bad idea.
Also, as you alluded to, private locks can control granularity. One set of operations on an object might be totally unrelated to another but synchronized(this) will mutually exclude access to all of them.
synchronized(this) just really doesn't give you anything.
While you are using synchronized(this) you are using the class instance as a lock itself. This means that while lock is acquired by thread 1, the thread 2 should wait.
Suppose the following code:
public void method1() {
// do something ...
synchronized(this) {
a ++;
}
// ................
}
public void method2() {
// do something ...
synchronized(this) {
b ++;
}
// ................
}
Method 1 modifying the variable a and method 2 modifying the variable b, the concurrent modification of the same variable by two threads should be avoided and it is. BUT while thread1 modifying a and thread2 modifying b it can be performed without any race condition.
Unfortunately, the above code will not allow this since we are using the same reference for a lock; This means that threads even if they are not in a race condition should wait and obviously the code sacrifices concurrency of the program.
The solution is to use 2 different locks for two different variables:
public class Test {
private Object lockA = new Object();
private Object lockB = new Object();
public void method1() {
// do something ...
synchronized(lockA) {
a ++;
}
// ................
}
public void method2() {
// do something ...
synchronized(lockB) {
b ++;
}
// ................
}
}
The above example uses more fine grained locks (2 locks instead one (lockA and lockB for variables a and b respectively) and as a result allows better concurrency, on the other hand it became more complex than the first example ...
While I agree about not adhering blindly to dogmatic rules, does the "lock stealing" scenario seem so eccentric to you? A thread could indeed acquire the lock on your object "externally"(synchronized(theObject) {...}), blocking other threads waiting on synchronized instance methods.
If you don't believe in malicious code, consider that this code could come from third parties (for instance if you develop some sort of application server).
The "accidental" version seems less likely, but as they say, "make something idiot-proof and someone will invent a better idiot".
So I agree with the it-depends-on-what-the-class-does school of thought.
Edit following eljenso's first 3 comments:
I've never experienced the lock stealing problem but here is an imaginary scenario:
Let's say your system is a servlet container, and the object we're considering is the ServletContext implementation. Its getAttribute method must be thread-safe, as context attributes are shared data; so you declare it as synchronized. Let's also imagine that you provide a public hosting service based on your container implementation.
I'm your customer and deploy my "good" servlet on your site. It happens that my code contains a call to getAttribute.
A hacker, disguised as another customer, deploys his malicious servlet on your site. It contains the following code in the init method:
synchronized (this.getServletConfig().getServletContext()) {
while (true) {}
}
Assuming we share the same servlet context (allowed by the spec as long as the two servlets are on the same virtual host), my call on getAttribute is locked forever. The hacker has achieved a DoS on my servlet.
This attack is not possible if getAttribute is synchronized on a private lock, because 3rd-party code cannot acquire this lock.
I admit that the example is contrived and an oversimplistic view of how a servlet container works, but IMHO it proves the point.
So I would make my design choice based on security consideration: will I have complete control over the code that has access to the instances? What would be the consequence of a thread's holding a lock on an instance indefinitely?
It depends on the situation.
If There is only one sharing entity or more than one.
See full working example here
A small introduction.
Threads and shareable entities
It is possible for multiple threads to access same entity, for eg multiple connectionThreads sharing a single messageQueue. Since the threads run concurrently there may be a chance of overriding one's data by another which may be a messed up situation.
So we need some way to ensure that shareable entity is accessed only by one thread at a time. (CONCURRENCY).
Synchronized block
synchronized() block is a way to ensure concurrent access of shareable entity.
First, a small analogy
Suppose There are two-person P1, P2 (threads) a Washbasin (shareable entity) inside a washroom and there is a door (lock).
Now we want one person to use washbasin at a time.
An approach is to lock the door by P1 when the door is locked P2 waits until p1 completes his work
P1 unlocks the door
then only p1 can use washbasin.
syntax.
synchronized(this)
{
SHARED_ENTITY.....
}
"this" provided the intrinsic lock associated with the class (Java developer designed Object class in such a way that each object can work as monitor).
Above approach works fine when there are only one shared entity and multiple threads (1: N).
N shareable entities-M threads
Now think of a situation when there is two washbasin inside a washroom and only one door. If we are using the previous approach, only p1 can use one washbasin at a time while p2 will wait outside. It is wastage of resource as no one is using B2 (washbasin).
A wiser approach would be to create a smaller room inside washroom and provide them one door per washbasin. In this way, P1 can access B1 and P2 can access B2 and vice-versa.
washbasin1;
washbasin2;
Object lock1=new Object();
Object lock2=new Object();
synchronized(lock1)
{
washbasin1;
}
synchronized(lock2)
{
washbasin2;
}
See more on Threads----> here
There seems a different consensus in the C# and Java camps on this. The majority of Java code I have seen uses:
// apply mutex to this instance
synchronized(this) {
// do work here
}
whereas the majority of C# code opts for the arguably safer:
// instance level lock object
private readonly object _syncObj = new object();
...
// apply mutex to private instance level field (a System.Object usually)
lock(_syncObj)
{
// do work here
}
The C# idiom is certainly safer. As mentioned previously, no malicious / accidental access to the lock can be made from outside the instance. Java code has this risk too, but it seems that the Java community has gravitated over time to the slightly less safe, but slightly more terse version.
That's not meant as a dig against Java, just a reflection of my experience working on both languages.
Make your data immutable if it is possible ( final variables)
If you can't avoid mutation of shared data across multiple threads, use high level programming constructs [e.g. granular Lock API ]
A Lock provides exclusive access to a shared resource: only one thread at a time can acquire the lock and all access to the shared resource requires that the lock be acquired first.
Sample code to use ReentrantLock which implements Lock interface
class X {
private final ReentrantLock lock = new ReentrantLock();
// ...
public void m() {
lock.lock(); // block until condition holds
try {
// ... method body
} finally {
lock.unlock()
}
}
}
Advantages of Lock over Synchronized(this)
The use of synchronized methods or statements forces all lock acquisition and release to occur in a block-structured way.
Lock implementations provide additional functionality over the use of synchronized methods and statements by providing
A non-blocking attempt to acquire a lock (tryLock())
An attempt to acquire the lock that can be interrupted (lockInterruptibly())
An attempt to acquire the lock that can timeout (tryLock(long, TimeUnit)).
A Lock class can also provide behavior and semantics that is quite different from that of the implicit monitor lock, such as
guaranteed ordering
non-re entrant usage
Deadlock detection
Have a look at this SE question regarding various type of Locks:
Synchronization vs Lock
You can achieve thread safety by using advanced concurrency API instead of Synchronied blocks. This documentation page provides good programming constructs to achieve thread safety.
Lock Objects support locking idioms that simplify many concurrent applications.
Executors define a high-level API for launching and managing threads. Executor implementations provided by java.util.concurrent provide thread pool management suitable for large-scale applications.
Concurrent Collections make it easier to manage large collections of data, and can greatly reduce the need for synchronization.
Atomic Variables have features that minimize synchronization and help avoid memory consistency errors.
ThreadLocalRandom (in JDK 7) provides efficient generation of pseudorandom numbers from multiple threads.
Refer to java.util.concurrent and java.util.concurrent.atomic packages too for other programming constructs.
The java.util.concurrent package has vastly reduced the complexity of my thread safe code. I only have anecdotal evidence to go on, but most work I have seen with synchronized(x) appears to be re-implementing a Lock, Semaphore, or Latch, but using the lower-level monitors.
With this in mind, synchronizing using any of these mechanisms is analogous to synchronizing on an internal object, rather than leaking a lock. This is beneficial in that you have absolute certainty that you control the entry into the monitor by two or more threads.
If you've decided that:
the thing you need to do is lock on
the current object; and
you want to
lock it with granularity smaller than
a whole method;
then I don't see the a taboo over synchronizezd(this).
Some people deliberately use synchronized(this) (instead of marking the method synchronized) inside the whole contents of a method because they think it's "clearer to the reader" which object is actually being synchronized on. So long as people are making an informed choice (e.g. understand that by doing so they're actually inserting extra bytecodes into the method and this could have a knock-on effect on potential optimisations), I don't particularly see a problem with this. You should always document the concurrent behaviour of your program, so I don't see the "'synchronized' publishes the behaviour" argument as being so compelling.
As to the question of which object's lock you should use, I think there's nothing wrong with synchronizing on the current object if this would be expected by the logic of what you're doing and how your class would typically be used. For example, with a collection, the object that you would logically expect to lock is generally the collection itself.
I think there is a good explanation on why each of these are vital techniques under your belt in a book called Java Concurrency In Practice by Brian Goetz. He makes one point very clear - you must use the same lock "EVERYWHERE" to protect the state of your object. Synchronised method and synchronising on an object often go hand in hand. E.g. Vector synchronises all its methods. If you have a handle to a vector object and are going to do "put if absent" then merely Vector synchronising its own individual methods isn't going to protect you from corruption of state. You need to synchronise using synchronised (vectorHandle). This will result in the SAME lock being acquired by every thread which has a handle to the vector and will protect overall state of the vector. This is called client side locking. We do know as a matter of fact vector does synchronised (this) / synchronises all its methods and hence synchronising on the object vectorHandle will result in proper synchronisation of vector objects state. Its foolish to believe that you are thread safe just because you are using a thread safe collection. This is precisely the reason ConcurrentHashMap explicitly introduced putIfAbsent method - to make such operations atomic.
In summary
Synchronising at method level allows client side locking.
If you have a private lock object - it makes client side locking impossible. This is fine if you know that your class doesn't have "put if absent" type of functionality.
If you are designing a library - then synchronising on this or synchronising the method is often wiser. Because you are rarely in a position to decide how your class is going to be used.
Had Vector used a private lock object - it would have been impossible to get "put if absent" right. The client code will never gain a handle to the private lock thus breaking the fundamental rule of using the EXACT SAME LOCK to protect its state.
Synchronising on this or synchronised methods do have a problem as others have pointed out - someone could get a lock and never release it. All other threads would keep waiting for the lock to be released.
So know what you are doing and adopt the one that's correct.
Someone argued that having a private lock object gives you better granularity - e.g. if two operations are unrelated - they could be guarded by different locks resulting in better throughput. But this i think is design smell and not code smell - if two operations are completely unrelated why are they part of the SAME class? Why should a class club unrelated functionalities at all? May be a utility class? Hmmmm - some util providing string manipulation and calendar date formatting through the same instance?? ... doesn't make any sense to me at least!!
No, you shouldn't always. However, I tend to avoid it when there are multiple concerns on a particular object that only need to be threadsafe in respect to themselves. For example, you might have a mutable data object that has "label" and "parent" fields; these need to be threadsafe, but changing one need not block the other from being written/read. (In practice I would avoid this by declaring the fields volatile and/or using java.util.concurrent's AtomicFoo wrappers).
Synchronization in general is a bit clumsy, as it slaps a big lock down rather than thinking exactly how threads might be allowed to work around each other. Using synchronized(this) is even clumsier and anti-social, as it's saying "no-one may change anything on this class while I hold the lock". How often do you actually need to do that?
I would much rather have more granular locks; even if you do want to stop everything from changing (perhaps you're serialising the object), you can just acquire all of the locks to achieve the same thing, plus it's more explicit that way. When you use synchronized(this), it's not clear exactly why you're synchronizing, or what the side effects might be. If you use synchronized(labelMonitor), or even better labelLock.getWriteLock().lock(), it's clear what you are doing and what the effects of your critical section are limited to.
Short answer: You have to understand the difference and make choice depending on the code.
Long answer: In general I would rather try to avoid synchronize(this) to reduce contention but private locks add complexity you have to be aware of. So use the right synchronization for the right job. If you are not so experienced with multi-threaded programming I would rather stick to instance locking and read up on this topic. (That said: just using synchronize(this) does not automatically make your class fully thread-safe.) This is a not an easy topic but once you get used to it, the answer whether to use synchronize(this) or not comes naturally.
A lock is used for either visibility or for protecting some data from concurrent modification which may lead to race.
When you need to just make primitive type operations to be atomic there are available options like AtomicInteger and the likes.
But suppose you have two integers which are related to each other like x and y co-ordinates, which are related to each other and should be changed in an atomic manner. Then you would protect them using a same lock.
A lock should only protect the state that is related to each other. No less and no more. If you use synchronized(this) in each method then even if the state of the class is unrelated all the threads will face contention even if updating unrelated state.
class Point{
private int x;
private int y;
public Point(int x, int y){
this.x = x;
this.y = y;
}
//mutating methods should be guarded by same lock
public synchronized void changeCoordinates(int x, int y){
this.x = x;
this.y = y;
}
}
In the above example I have only one method which mutates both x and y and not two different methods as x and y are related and if I had given two different methods for mutating x and y separately then it would not have been thread safe.
This example is just to demonstrate and not necessarily the way it should be implemented. The best way to do it would be to make it IMMUTABLE.
Now in opposition to Point example, there is an example of TwoCounters already provided by #Andreas where the state which is being protected by two different locks as the state is unrelated to each other.
The process of using different locks to protect unrelated states is called Lock Striping or Lock Splitting
The reason not to synchronize on this is that sometimes you need more than one lock (the second lock often gets removed after some additional thinking, but you still need it in the intermediate state). If you lock on this, you always have to remember which one of the two locks is this; if you lock on a private Object, the variable name tells you that.
From the reader's viewpoint, if you see locking on this, you always have to answer the two questions:
what kind of access is protected by this?
is one lock really enough, didn't someone introduce a bug?
An example:
class BadObject {
private Something mStuff;
synchronized setStuff(Something stuff) {
mStuff = stuff;
}
synchronized getStuff(Something stuff) {
return mStuff;
}
private MyListener myListener = new MyListener() {
public void onMyEvent(...) {
setStuff(...);
}
}
synchronized void longOperation(MyListener l) {
...
l.onMyEvent(...);
...
}
}
If two threads begin longOperation() on two different instances of BadObject, they acquire
their locks; when it's time to invoke l.onMyEvent(...), we have a deadlock because neither of the threads may acquire the other object's lock.
In this example we may eliminate the deadlock by using two locks, one for short operations and one for long ones.
As already said here synchronized block can use user-defined variable as lock object, when synchronized function uses only "this". And of course you can manipulate with areas of your function which should be synchronized and so on.
But everyone says that no difference between synchronized function and block which covers whole function using "this" as lock object. That is not true, difference is in byte code which will be generated in both situations. In case of synchronized block usage should be allocated local variable which holds reference to "this". And as result we will have a little bit larger size of function (not relevant if you have only few number of functions).
More detailed explanation of the difference you can find here:
http://www.artima.com/insidejvm/ed2/threadsynchP.html
Also usage of synchronized block is not good due to following point of view:
The synchronized keyword is very limited in one area: when exiting a synchronized block, all threads that are waiting for that lock must be unblocked, but only one of those threads gets to take the lock; all the others see that the lock is taken and go back to the blocked state. That's not just a lot of wasted processing cycles: often the context switch to unblock a thread also involves paging memory off the disk, and that's very, very, expensive.
For more details in this area I would recommend you read this article:
http://java.dzone.com/articles/synchronized-considered
This is really just supplementary to the other answers, but if your main objection to using private objects for locking is that it clutters your class with fields that are not related to the business logic then Project Lombok has #Synchronized to generate the boilerplate at compile-time:
#Synchronized
public int foo() {
return 0;
}
compiles to
private final Object $lock = new Object[0];
public int foo() {
synchronized($lock) {
return 0;
}
}
A good example for use synchronized(this).
// add listener
public final synchronized void addListener(IListener l) {listeners.add(l);}
// remove listener
public final synchronized void removeListener(IListener l) {listeners.remove(l);}
// routine that raise events
public void run() {
// some code here...
Set ls;
synchronized(this) {
ls = listeners.clone();
}
for (IListener l : ls) { l.processEvent(event); }
// some code here...
}
As you can see here, we use synchronize on this to easy cooperate of lengthly (possibly infinite loop of run method) with some synchronized methods there.
Of course it can be very easily rewritten with using synchronized on private field. But sometimes, when we already have some design with synchronized methods (i.e. legacy class, we derive from, synchronized(this) can be the only solution).
It depends on the task you want to do, but I wouldn't use it. Also, check if the thread-save-ness you want to accompish couldn't be done by synchronize(this) in the first place? There are also some nice locks in the API that might help you :)
I only want to mention a possible solution for unique private references in atomic parts of code without dependencies. You can use a static Hashmap with locks and a simple static method named atomic() that creates required references automatically using stack information (full class name and line number). Then you can use this method in synchronize statements without writing new lock object.
// Synchronization objects (locks)
private static HashMap<String, Object> locks = new HashMap<String, Object>();
// Simple method
private static Object atomic() {
StackTraceElement [] stack = Thread.currentThread().getStackTrace(); // get execution point
StackTraceElement exepoint = stack[2];
// creates unique key from class name and line number using execution point
String key = String.format("%s#%d", exepoint.getClassName(), exepoint.getLineNumber());
Object lock = locks.get(key); // use old or create new lock
if (lock == null) {
lock = new Object();
locks.put(key, lock);
}
return lock; // return reference to lock
}
// Synchronized code
void dosomething1() {
// start commands
synchronized (atomic()) {
// atomic commands 1
...
}
// other command
}
// Synchronized code
void dosomething2() {
// start commands
synchronized (atomic()) {
// atomic commands 2
...
}
// other command
}
Avoid using synchronized(this) as a locking mechanism: This locks the whole class instance and can cause deadlocks. In such cases, refactor the code to lock only a specific method or variable, that way whole class doesn't get locked. Synchronised can be used inside method level.
Instead of using synchronized(this), below code shows how you could just lock a method.
public void foo() {
if(operation = null) {
synchronized(foo) {
if (operation == null) {
// enter your code that this method has to handle...
}
}
}
}
My two cents in 2019 even though this question could have been settled already.
Locking on 'this' is not bad if you know what you are doing but behind the scene locking on 'this' is (which unfortunately what synchronized keyword in method definition allows).
If you actually want users of your class to be able to 'steal' your lock (i.e. prevent other threads from dealing with it), you actually want all the synchronized methods to wait while another sync method is running and so on.
It should be intentional and well thought off (and hence documented to help your users understand it).
To further elaborate, in the reverse you must know what you are 'gaining' (or 'losing' out on) if you lock on a non accessible lock (nobody can 'steal' your lock, you are in total control and so on...).
The problem for me is that synchronized keyword in the method definition signature makes it just too easy for programmers not to think about what to lock on which is a mighty important thing to think about if you don't want to run into problems in a multi-threaded program.
One can't argue that 'typically' you don't want users of your class to be able to do these stuff or that 'typically' you want...It depends on what functionality you are coding. You can't make a thumb rule as you can't predict all the use cases.
Consider for e.g. the printwriter which uses an internal lock but then people struggle to use it from multiple threads if they don't want their output to interleave.
Should your lock be accessible outside of the class or not is your decision as a programmer on the basis of what functionality the class has. It is part of the api. You can't move away for instance from synchronized(this) to synchronized(provateObjet) without risking breaking changes in the code using it.
Note 1: I know you can achieve whatever synchronized(this) 'achieves' by using a explicit lock object and exposing it but I think it is unnecessary if your behaviour is well documented and you actually know what locking on 'this' means.
Note 2: I don't concur with the argument that if some code is accidentally stealing your lock its a bug and you have to solve it. This in a way is same argument as saying I can make all my methods public even if they are not meant to be public. If someone is 'accidentally' calling my intended to be private method its a bug. Why enable this accident in the first place!!! If ability to steal your lock is a problem for your class don't allow it. As simple as that.
Let me put the conclusion first - locking on private fields does not work for slightly more complicated multi-threaded program. This is because multi-threading is a global problem. It is impossible to localize synchronization unless you write in a very defensive way (e.g. copy everything on passing to other threads).
Here is the long explanation:
Synchronization includes 3 parts: Atomicity, Visibility and Ordering
Synchronized block is very coarse level of synchronization. It enforces visibility and ordering just as what you expected. But for atomicity, it does not provide much protection. Atomicity requires global knowledge of the program rather than local knowledge. (And that makes multi-threading programming very hard)
Let's say we have a class Account having method deposit and withdraw. They are both synchronized based on a private lock like this:
class Account {
private Object lock = new Object();
void withdraw(int amount) {
synchronized(lock) {
// ...
}
}
void deposit(int amount) {
synchronized(lock) {
// ...
}
}
}
Considering we need to implement a higher-level class which handles transfer, like this:
class AccountManager {
void transfer(Account fromAcc, Account toAcc, int amount) {
if (fromAcc.getBalance() > amount) {
fromAcc.setBalance(fromAcc.getBalance() - amount);
toAcc.setBalance(toAcc.getBalance + amount);
}
}
}
Assuming we have 2 accounts now,
Account john;
Account marry;
If the Account.deposit() and Account.withdraw() are locked with internal lock only. That will cause problem when we have 2 threads working:
// Some thread
void threadA() {
john.withdraw(500);
}
// Another thread
void threadB() {
accountManager.transfer(john, marry, 100);
}
Because it is possible for both threadA and threadB run at the same time. And thread B finishes the conditional check, thread A withdraws, and thread B withdraws again. This means we can withdraw $100 from John even if his account has no enough money. This will break atomicity.
You may propose that: why not adding withdraw() and deposit() to AccountManager then? But under this proposal, we need to create a multi-thread safe Map which maps from different accounts to their locks. We need to delete the lock after execution (otherwise will leak memory). And we also need to ensure no other one accesses the Account.withdraw() directly. This will introduce a lots of subtle bugs.
The correct and most idiomatic way is to expose the lock in the Account. And let the AccountManager to use the lock. But in this case, why not just use the object itself then?
class Account {
synchronized void withdraw(int amount) {
// ...
}
synchronized void deposit(int amount) {
// ...
}
}
class AccountManager {
void transfer(Account fromAcc, Account toAcc, int amount) {
// Ensure locking order to prevent deadlock
Account firstLock = fromAcc.hashCode() < toAcc.hashCode() ? fromAcc : toAcc;
Account secondLock = fromAcc.hashCode() < toAcc.hashCode() ? toAcc : fromAcc;
synchronized(firstLock) {
synchronized(secondLock) {
if (fromAcc.getBalance() > amount) {
fromAcc.setBalance(fromAcc.getBalance() - amount);
toAcc.setBalance(toAcc.getBalance + amount);
}
}
}
}
}
To conclude in simple English, private lock does not work for slightly more complicated multi-threaded program.
(Reposted from https://stackoverflow.com/a/67877650/474197)
I think points one (somebody else using your lock) and two (all methods using the same lock needlessly) can happen in any fairly large application. Especially when there's no good communication between developers.
It's not cast in stone, it's mostly an issue of good practice and preventing errors.

Categories