java unique number less then 12 characters - java

I have a user case which involves generating a number which a user enters into a website to link a transaction to their account.
So I have the following code which generates a random 12 digit number:
public String getRedemptionCode(long utid, long userId) {
long nano = System.nanoTime();
long temp = nano + utid + 1232;
long redemptionCode = temp + userId + 5465;
if (redemptionCode < 0) {
redemptionCode = Math.abs(redemptionCode);
}
String redemptionCodeFinal = StringUtils.rightPad(String.valueOf(redemptionCode), 12, '1');
redemptionCodeFinal = redemptionCodeFinal.substring(0, 12);
return redemptionCodeFinal;
}
This method takes in two params which are generated by a DB.
What I need to understand is:
Is this random? I have a test which ran this method 1 million times and it always seem to be random.
Can I cut this down to 8 characters?

No it is neither unique nor random.
It is not "random" in the sense of highly entropic / uncorrelated with other values.
The only source of non-determinism is System.nanoTime, so all the entropy comes from a few of the least significant bits of the system clock. Simply adding numbers like 1232 and 5465 does not make the result less correlated with subsequent results.
Is this random? I have a test which ran this method 1 million times and it always seem to be random.
If this code is used in multiple threads on the same machine, or on multiple machines with synced clocks, you will see duplicates more quickly.
Since there is low entropy, you are likely to see duplicates by random chance fairly quickly. Math.se addresses the likelihood depending on how many of these you generate.
Can I cut this down to 8 characters?
Only if you don't lose entropy. Consider two ways of truncating a timestamp:
long time = ...; // Least significant bits have randomness.
String s = "" + time;
// Cut off the right-most, most entropic bits
String bad = time.substring(0, 8);
// Cut off the left-most, least entropic bits
String better = time.substring(time.length() - 8);
Since it is a straightforward calculation from an increasing counter, an attacker who can try multiple times can predict the value produced in a way that they would not be able to had you used a crypto-strong random number generator like java.util.SecureRandom.

Is this random?
You are asking, is your function based on System.nanoTime() a random number generator (RNG)?
The definition of RNG is: generator, which generates numbers that lack any pattern.
So, are numbers returned from your function without any pattern?
No, they have an easily-observable pattern, because they depend on System.nanoTime() (system clock).
Can I cut this down to 8 characters?
Yes, you can, but it's still not random. Adding or padding won't help too.
Use SecureRandom instead.

Related

Ensuring No Random Sequence Is Repeated Indefinitely

I'm attempting to generate a random string of length X. I want to ensure that no two sequences are ever identically produced, even if this code is being run on multiple machines and at the same time.
"list" is the list of characters I'm using, "min" and "max" are the range of indexes, and "length" is the desired length of the String.
Currently, I am using System.nanoTime() as the seed for the Random object. While I realize it is likely improbable for 2 machines to run at the exact same time down to the nano second and produce the same output, I want to make this a foolproof solution.
How can I increase the randomness of this code so that no 2 strings will ever be the same without increasing the length of the string or increasing the number of characters available to be included in the string?
String seq = "";
for (int i = 0; i < length; i++)
{
Random rnd = new Random();
rnd.setSeed(System.nanoTime());
int randomNum = rnd.nextInt((max - min) + 1) + min;
seq = seq + list[randomNum];
}
return seq;
This is not possible in principle: if you generate a String with length n of k different characters there are exactly k^n possible Strings. Once you generated as much Strings, repetitions will occur, in practice much earlier.
When running on a single machine, you might remember generated Strings and only output new ones, but on two machines without synchronization even this will not be possible.
Furthermore, taking system nanos into account will not help, since the same Strings might occur in different positions of the generated sequences.
But if you are asking that the sequence of the generated Strings must differ for two machines, your solution is probably fine, but ...
there might be a correlation between the boot times of the involved machines which can in turn increase the chance of a collision of System.nanoTime().
As the Javadoc for System.nanoTime() says, the accuracy of the returned long might be worse than the precision, i.e. not every possible long value might be returned actually.
BTW, new Random()would have the same effect as your code, since System.nanoTime() is used internally for seeding in this case.
You could use SecureRandom or the built-in UUID system.
The UUID library generates unique random strings for you.
(see https://docs.oracle.com/javase/7/docs/api/java/util/UUID.html)
Using UUIDs:
import java.util.UUID;
public class GetRandString {
public static void main(String[] args) {
UUID uuid = UUID.randomUUID();
String randString = uuid.toString();
System.out.println("Random string: " + randString);
}
}
You second option is SecureRandom (https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html).
Another stackoverflow question answers how to generate a SecureRandom string: How to generate a SecureRandom string of length n in Java?

Java program to generate a unique and random six alpha numeric code

I need to generate a reservation code of 6 alpha numeric characters, that is random and unique in java.
Tried using UUID.randomuuid().toString(), However the id is too long and the requirement demands that it should only be 6 characters.
What approaches are possible to achieve this?
Just to clarify, (Since this question is getting marked as duplicate).
The other solutions I've found are simply generating random characters, which is not enough in this case. I need to reasonably ensure that a random code is not generated again.
Consider using the hashids library to generate salted hashes of integers (your database ids or other random integers which is probably better).
http://hashids.org/java/
Hashids hashids = new Hashids("this is my salt",6);
String id = hashids.encode(1, 2, 3);
long[] numbers = hashids.decode(id);
You have 36 characters in the alphanumeric character set (0-9 digits + a-z letters). With 6 places you achieve 366 = 2.176.782.336 different options, that is slightly larger than 231.
Therefore you can use Unix time to create a unique ID. However, you must assure that no ID generated within the same second.
If you cannot guarantee that, you end up with a (synchronized) counter within your class. Also, if you want to survive a JVM restart, you should save the current value (e.g. to a database, file, etc. whatever options you have).
Despite its name, UUIDs are not unique. It's simply extremely unlikely to get a 128 bit collision. With 6 (less than 32 bit) it's very likely that you get a collision if you just hash stuff or generate a random string.
If the uniqueness constraint is necessary then you need to
generate a random 6 character string
Check if you generated that string before by querying your database
If you generated it before, go back to 1
Another way would be to use a pseadorandom permutation (PRP) of size 32 bit. Block ciphers are modeled as PRP functions, but there aren't many that support 32 bit block sizes. Some are Speck by the NSA and the Hasty Pudding Cipher.
With a PRP you could for example take an already unique value like your database primary key and encrypt it with the block cipher. If the input is not bigger than 32 bit then the output will still be unique.
Then you would run Base62 (or at least Base 41) over the output and remove the padding characters to get a 6 character output.
if you do a substring that value may not be unique
for more info please see following similar link
Generating 8-character only UUIDs
Lets say your corpus is the collection of alpha numberic letters. a-zA-Z0-9.
char[] corpus = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".toCharArray();
We can use SecureRandom to generate a seed, which will ask the OS for entropy, depending on the os. The trick here is to keep a uniform distribution, each byte has 255 values, but we only need around 62 so I will propose rejection sampling.
int generated = 0;
int desired=6;
char[] result= new char[desired];
while(generated<desired){
byte[] ran = SecureRandom.getSeed(desired);
for(byte b: ran){
if(b>=0&&b<corpus.length){
result[generated] = corpus[b];
generated+=1;
if(generated==desired) break;
}
}
}
Improvements could include, smarter wrapping of generated values.
When can we expect a repeat? Lets stick with the corpus of 62 and assume that the distribution is completely random. In that case we have the birthday problem. That gives us N = 62^6 possiblities. We want to find n where the chance of a repeat around 10%.
p(r)= 1 - N!/(N^n (N-n)!)
And using the approximation given in the wikipedia page.
n = sqrt(-ln(0.9)2N)
Which gives us about 109000 numbers for 10% chance. For a 0.1% chance it woul take about 10000 numbers.
you can trying to make substring out of your generated UUID.
String uuid = UUID.randomUUID().toString();
System.out.println("uuid = " + uuid.substring(0,5);

Random.nextInt(int) is [slightly] biased

Namely, it will never generate more than 16 even numbers in a row with some specific upperBound parameters:
Random random = new Random();
int c = 0;
int max = 17;
int upperBound = 18;
while (c <= max) {
int nextInt = random.nextInt(upperBound);
boolean even = nextInt % 2 == 0;
if (even) {
c++;
} else {
c = 0;
}
}
In this example the code will loop forever, while when upperBound is, for example, 16, it terminates quickly.
What can be the reason of this behavior? There are some notes in the method's javadoc, but I failed to understand them.
UPD1: The code seems to terminate with odd upper bounds, but may stuck with even ones
UPD2:
I modified the code to capture the statistics of c as suggested in the comments:
Random random = new Random();
int c = 0;
long trials = 1 << 58;
int max = 20;
int[] stat = new int[max + 1];
while (trials > 0) {
while (c <= max && trials > 0) {
int nextInt = random.nextInt(18);
boolean even = nextInt % 2 == 0;
if (even) {
c++;
} else {
stat[c] = stat[c] + 1;
c = 0;
}
trials--;
}
}
System.out.println(Arrays.toString(stat));
Now it tries to reach 20 evens in the row - to get better statistics, and the upperBound is still 18.
The results turned out to be more than surprising:
[16776448, 8386560, 4195328, 2104576, 1044736,
518144, 264704, 132096, 68864, 29952, 15104,
12032, 1792, 3072, 256, 512, 0, 256, 0, 0]
At first it decreases as expected by the factor of 2, but note the last line! Here it goes crazy and the captured statistics seem to be completely weird.
Here is a bar plot in log scale:
How c gets the value 17 256 times is yet another mystery
http://docs.oracle.com/javase/6/docs/api/java/util/Random.html:
An instance of this class is used to generate a stream of
pseudorandom numbers. The class uses a 48-bit seed, which is modified
using a linear congruential formula. (See Donald Knuth, The Art of
Computer Programming, Volume 3, Section 3.2.1.)
If two instances of Random are created with the same seed, and the
same sequence of method calls is made for each, they will generate and
return identical sequences of numbers. [...]
It is a pseudo-random number generator. This means that you are not actually rolling a dice but rather use a formula to calculate the next "random" value based on the current random value. To creat the illusion of randomisation a seed is used. The seed is the first value used with the formula to generate the random value.
Apparently javas random implementation (the "formula"), does not generate more than 16 even numbers in a row.
This behaviour is the reason why the seed is usually initialized with the time. Deepending on when you start your program you will get different results.
The benefits of this approach are that you can generate repeatable results. If you have a game generating "random" maps, you can remember the seed to regenerate the same map if you want to play it again, for instance.
For true random numbers some operating systems provide special devices that generate "randomness" from external events like mousemovements or network traffic. However i do not know how to tap into those with java.
From the Java doc for secureRandom:
Many SecureRandom implementations are in the form of a pseudo-random
number generator (PRNG), which means they use a deterministic
algorithm to produce a pseudo-random sequence from a true random seed.
Other implementations may produce true random numbers, and yet others
may use a combination of both techniques.
Note that secureRandom does NOT guarantee true random numbers either.
Why changing the seed does not help
Lets assume random numbers would only have the range 0-7.
Now we use the following formula to generate the next "random" number:
next = (current + 3) % 8
the sequence becomes 0 3 6 1 4 7 2 5.
If you now take the seed 3 all you do is to change the starting point.
In this simple implementation that only uses the previous value, every value may occur only once before the sequence wraps arround and starts again. Otherwise there would be an unreachable part.
E.g. imagine the sequence 0 3 6 1 3 4 7 2 5. The numbers 0,4,7,2 and 5 would never be generated more than once(deepending on the seed they might be generated never), since once the sequence loops 3,6,1,3,6,1,... .
Simplified pseudo random number generators can be thought of a permutation of all numbers in the range and you use the seed as a starting point. If they are more advanced you would have to replace the permutation with a list in which the same numbers might occur multiple times.
More complex generators can have an internal state, allowing the same number to occur several times in the sequence, since the state lets the generator know where to continue.
The implementation of Random uses a simple linear congruential formula. Such formulae have a natural periodicity and all sorts of non-random patterns in the sequence they generate.
What you are seeing is an artefact of one of these patterns ... nothing deliberate. It is not an example of bias. Rather it is an example of auto-correlation.
If you need better (more "random") numbers, then you need to use SecureRandom rather than Random.
And the answer to "why was it implemented that way is" ... performance. A call to Random.nextInt can be completed in tens or hundreds of clock cycles. A call to SecureRandom is likely to be at least 2 orders of magnitude slower, possibly more.
For portability, Java specifies that implementations must use the inferior LCG method for java.util.Random. This method is completely unacceptable for any serious use of random numbers like complex simulations or Monte Carlo methods. Use an add-on library with a better PRNG algorithm, like Marsaglia's MWC or KISS. Mersenne Twister and Lagged Fibonacci Generators are often OK as well.
I'm sure there are Java libraries for these algorithms. I have a C library with Java bindings if that will work for you: ojrandlib.

Consistent random numbers across versions and platforms

I need/want to get random (well, not entirely) numbers to use for password generation.
What I do: Currently I am generating them with SecureRandom.
I am obtaining the object with
SecureRandom sec = SecureRandom.getInstance("SHA1PRNG", "SUN");
and then seeding it like this
sec.setSeed(seed);
Target: A (preferably fast) way to create random numbers, which are cryptographically at least a safe as the SHA1PRNG SecureRandom implementation. These need to be the same on different versions of the JRE and Android.
EDIT: The seed is generated from user input.
Problem: With SecureRandom.getInstance("SHA1PRNG", "SUN"); it fails like this:
java.security.NoSuchProviderException: SUN. Omitting , "SUN" produces random numbers, but those are different than the default (JRE 7) numbers.
Question: How can I achieve my Target?
You don't want it to be predictable: I want, because I need the predictability so that the same preconditions result in the same output. If they are not the same, its impossible hard to do what the user expects from the application.
EDIT: By predictable I mean that, when knowing a single byte (or a hundred) you should not be able to predict the next, but when you know the seed, you should be able to predict the first (and all others). Maybe another word is reproducible.
If anyone knows of a more intuitive way, please tell me!
I ended up isolating the Sha1Prng from the sun sources which guarantees reproducibility on all versions of Java and android. I needed to drop some important methods to ensure compatibility with android, as android does not have access to nio classes...
I recommend using UUID.randomUUID(), then splitting it into longs using getLeastSignificantBits() and getMostSignificantBits()
If you want predictable, they aren't random. That breaks your "Target" requirement of being "safe" and devolves into a simple shared secret between two servers.
You can get something that looks sort of random but is predicatable by using the characteristics of prime integers where you build a set of integers by starting with I (some specific integer) and add the first prime number and then modulo by the 2nd prime number. (In truth the first and second numbers only have to be relatively prime--meaning they have no common prime factors--not counting 1, in case you call that a factor.
If you repeat the process of adding and doing the modulo, you will get a set of numbers that you can repeatably reproduce and they are ordered in the sense that taking any member of the set, adding the first prime and doing the modulo by the 2nd prime, you will always get the same result.
Finally, if the 1st prime number is large relative to the second one, the sequence is not easily predictable by humans and seems sort of random.
For example, 1st prime = 7, 2nd prime = 5 (Note that this shows how it works but is not useful in real life)
Start with 2. Add 7 to get 9. Modulo 5 to get 4.
4 plus 7 = 11. Modulo 5 = 1.
Sequence is 2, 4, 1, 3, 0 and then it repeats.
Now for real life generation of numbers that seem random. The relatively prime numbers are 91193 and 65536. (I chose the 2nd one because it is a power of 2 so all modulo-ed values can fit in 16 bits.)
int first = 91193;
int modByLogicalAnd = 0xFFFF;
int nonRandomNumber = 2345; // Use something else
for (int i = 0; i < 1000 ; ++i) {
nonRandomNumber += first;
nonRandomNumber &= modByLogicalAnd;
// print it here
}
Each iteration generates 2 bytes of sort of random numbers. You can pack several of them into a buffer if you need larger random "strings".
And they are repeatable. Your user can pick the starting point and you can use any prime you want (or, in fact, any number without 2 as a factor).
BTW - Using a power of 2 as the 2nd number makes it more predictable.
Ignoring RNGs that use some physical input (random clock bits, electrical noise, etc) all software RNGs are predicable, given the same starting conditions. They are, after all, (hopefully) deterministic computer programs.
There are some algorithms that intentionally include the physical input (by, eg, sampling the computer clock occasionally) in attempt to prevent predictability, but those are (to my knowledge) the exception.
So any "conventional" RNG, given the same seed and implemented to the same specification, should produce the same sequence of "random" numbers. (This is why a computer RNG is more properly called a "pseudo-random number generator".)
The fact that an RNG can be seeded with a previously-used seed and reproduce a "known" sequence of numbers does not make the RNG any less secure than one where your are somehow prevented from seeding it (though it may be less secure than the fancy algorithms that reseed themselves at intervals). And the ability to do this -- to reproduce the same sequence again and again is not only extraordinarily useful in testing, it has some "real life" applications in encryption and other security applications. (In fact, an encryption algorithm is, in essence, simply a reproducible random number generator.)

Why are initial random numbers similar when using similar seeds?

I discovered something strange with the generation of random numbers using Java's Random class.
Basically, if you create multiple Random objects using close seeds (for example between 1 and 1000) the first value generated by each generator will be almost the same, but the next values looks fine (i didn't search further).
Here are the two first generated doubles with seeds from 0 to 9 :
0 0.730967787376657 0.24053641567148587
1 0.7308781907032909 0.41008081149220166
2 0.7311469360199058 0.9014476240300544
3 0.731057369148862 0.07099203475193139
4 0.7306094602878371 0.9187140138555101
5 0.730519863614471 0.08825840967622589
6 0.7307886238322471 0.5796252073129174
7 0.7306990420600421 0.7491696031336331
8 0.7302511331990172 0.5968915822372118
9 0.7301615514268123 0.7664359929590888
And from 991 to 1000 :
991 0.7142160704801332 0.9453385235522973
992 0.7109015598097105 0.21848118381994108
993 0.7108119780375055 0.38802559454181795
994 0.7110807233541204 0.8793923921785096
995 0.7109911564830766 0.048936787999225295
996 0.7105432327208906 0.896658767102804
997 0.7104536509486856 0.0662031629235198
998 0.7107223962653005 0.5575699754613725
999 0.7106328293942568 0.7271143712820883
1000 0.7101849056320707 0.574836350385667
And here is a figure showing the first value generated with seeds from 0 to 100,000.
First random double generated based on the seed :
I searched for information about this, but I didn't see anything referring to this precise problem. I know that there is many issues with LCGs algorithms, but I didn't know about this one, and I was wondering if this was a known issue.
And also, do you know if this problem only for the first value (or first few values), or if it is more general and using close seeds should be avoided?
Thanks.
You'd be best served by downloading and reading the Random source, as well as some papers on pseudo-random generators, but here are some of the relevant parts of the source. To begin with, there are three constant parameters that control the algorithm:
private final static long multiplier = 0x5DEECE66DL;
private final static long addend = 0xBL;
private final static long mask = (1L << 48) - 1;
The multiplier works out to approximately 2^34 and change, the mask 2^48 - 1, and the addend is pretty close to 0 for this analysis.
When you create a Random with a seed, the constructor calls setSeed:
synchronized public void setSeed(long seed) {
seed = (seed ^ multiplier) & mask;
this.seed.set(seed);
haveNextNextGaussian = false;
}
You're providing a seed pretty close to zero, so initial seed value that gets set is dominated by multiplier when the two are OR'ed together. In all your test cases with seeds close to zero, the seed that is used internally is roughly 2^34; but it's easy to see that even if you provided very large seed numbers, similar user-provided seeds will yield similar internal seeds.
The final piece is the next(int) method, which actually generates a random integer of the requested length based on the current seed, and then updates the seed:
protected int next(int bits) {
long oldseed, nextseed;
AtomicLong seed = this.seed;
do {
oldseed = seed.get();
nextseed = (oldseed * multiplier + addend) & mask;
} while (!seed.compareAndSet(oldseed, nextseed));
return (int)(nextseed >>> (48 - bits));
}
This is called a 'linear congruential' pseudo-random generator, meaning that it generates each successive seed by multiplying the current seed by a constant multiplier and then adding a constant addend (and then masking to take the lower 48 bits, in this case). The quality of the generator is determined by the choice of multiplier and addend, but the ouput from all such generators can be easily predicted based on the current input and has a set period before it repeats itself (hence the recommendation not to use them in sensitive applications).
The reason you're seeing similar initial output from nextDouble given similar seeds is that, because the computation of the next integer only involves a multiplication and addition, the magnitude of the next integer is not much affected by differences in the lower bits. Calculation of the next double involves computing a large integer based on the seed and dividing it by another (constant) large integer, and the magnitude of the result is mostly affected by the magnitude of the integer.
Repeated calculations of the next seed will magnify the differences in the lower bits of the seed because of the repeated multiplication by the constant multiplier, and because the 48-bit mask throws out the highest bits each time, until eventually you see what looks like an even spread.
I wouldn't have called this an "issue".
And also, do you know if this problem only for the first value (or first few values), or if it is more general and using close seeds should be avoided?
Correlation patterns between successive numbers is a common problem with non-crypto PRNGs, and this is just one manifestation. The correlation (strictly auto-correlation) is inherent in the mathematics underlying the algorithm(s). If you want to understand that, you should probably start by reading the relevant part of Knuth's Art of Computer Programming Chapter 3.
If you need non-predictability you should use a (true) random seed for Random ... or let the system pick a "pretty random" one for you; e.g. using the no-args constructor. Or better still, use a real random number source or a crypto-quality PRNG instead of Random.
For the record:
The javadoc (Java 7) does not specify how Random() seeds itself.
The implementation of Random() on Java 7 for Linux, is seeded from the nanosecond clock, XORed with a 'uniquifier' sequence. The 'uniquifier' sequence is LCG which uses different multiplier, and whose state is static. This is intended to avoid auto-correlation of the seeds ...
This is a fairly typical behaviour for pseudo-random seeds - they aren't required to provide completely different random sequences, they only provide a guarantee that you can get the same sequence again if you use the same seed.
The behaviour happens because of the mathematical form of the PRNG - the Java one uses a linear congruential generator, so you are just seeing the results running the seed through one round of the linear congruential generator. This isn't enough to completely mix up all the bit patterns, hence you see similar results for similar seeds.
Your best strategy is probably just to use very different seeds - one option would be to obtain these by hashing the seed values that you are currently using.
By making random seeds (for instance, using some mathematical functions on System.currentTimeMillis() or System.nanoTime() for seed generation) you can get better random result. Also can look at here for more information

Categories