I'm implementing a list interface with links but since "ListADT" implements the Iterable interface. So, I have to have a method that produces an iterator which I'm not sure how to do. I tried using it as it is now and when I created an object for the linkedlist, and then call the iterator() method, I get an overflow. I know the method is supposed to produce an Iterator object but not sure how.
import java.util.Iterator;
public class LinkedList<T> implements ListADT<T>
{
protected int count;
protected LinearNode <T> head, tail;
private int modCount;
public LinkedList()
{
count =0;
head = tail= null;
}
public T removeFirst()
{
T result = head.getElement();
head = head.getNext();
count--;
return result;
}
public T removeLast()
{
// THROW EMPTY EXCEPTION
T result;
LinearNode <T> previous = null;
LinearNode <T> current = head;
while(!current.equals(tail))
{
previous = current;
current = current.getNext();
}
result = tail.getElement();
tail = previous;
tail.setNext(null);
count--;
return result;
}
public T remove(T element)
{
// throw exception
boolean found = false;
LinearNode <T> previous = null;
LinearNode <T> current = head;
while (current != null && !found)
{
if(element.equals(current.getElement()))
found = true;
else
{
previous = current;
current = current.getNext();
}
if (!found)
{
}
else if (current.equals(head))
{
head = current.getNext();
}
else if(current.equals(tail))
{
tail = previous;
tail.setNext(null);
}
else
previous.setNext(current.getNext());
}
count --;
return current.getElement();
}
public T first()
{
return head.getElement();
}
public T last()
{
return tail.getElement();
}
public boolean contains(T target)
{
boolean found = false;
LinearNode <T> previous = null;
LinearNode <T> current = head;
while (current != null && !found)
{
if(target.equals(current.getElement()))
found = true;
else
{
previous = current;
current = current.getNext();
}
}
return found;
}
public boolean isEmpty()
{
boolean result = false;
if( head == null && tail ==null)
{
result = true;
}
return result;
}
public int size()
{
return count;
}
public Iterator<T> iterator()
{
return this.iterator();
}
public String toString()
{
LinearNode <T> current = head;
String result ="";
String line = "";
int loopCount=0;
while(current != null)
{
loopCount++;
line = loopCount + "> " + (String) current.getElement() + "\n";
result = result + line;
current = current.getNext();
}
return result;
}
}
Your problem
You're getting an overflow because the line this.iterator() in your function public Iterator<T> iterator(), calls, you guessed it public Iterator<T> iterator().
Approach 1: The lazy way
If you don't plan on using the iterator for this class, (this looks like a programming assignment) you can always do the super super lazy.
public Iterator<T> iterator() {
throw new UnsupportedOperationException("Pffffft you don't need no iterator");
}
This approach is listed here just for completeness. Seeing as your linked list has no other way to access a random element in the middle without removing everything in front or behind it, I recommend you:
DO NOT DO THIS
Approach 2: The Correct Way
The thing about iterators is that they do a specific subset of what a list does, namely hasNext(), next(), and remove(). If you're unsure what those three methods do, I suggest you take a look at http://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html
You should create a public inner class.
public class LinkedList<T> implements ListADT<T> {
... stuff
private class MyIterator<T> implements Iterator<T> {
//It's best practice to explicitly store the head in the iterator
private LinearNode<T> head;
public MyIterator<T>(LinkedList<T>) {
...
}
#Override
public boolean hasNext() {
...
}
#Override
public T next() {
...
}
#Override
public void remove() {
...
}
}
public Iterator<T> iterator() {
return new MyIterator<T>(this);
}
}
Now if you're really clever, you can rewrite the rest of your code based on the iterator. Note:
DO THIS
Related
I'm trying to make a generic stack and queue class that uses the generic node class. It has empty(), pop(), peek(), push(), and a search() method. I know there is a built-in Stack class and stack search method but we have to make it by using the Node class.
I am unsure of how to make the search method. The search method is supposed to return the distance from the top of the stack of the occurrence that is nearest the top of the stack. The topmost item is considered to be at distance 1; the next item is at distance 2; etc.
My classes are below:
import java.io.*;
import java.util.*;
public class MyStack<E> implements StackInterface<E>
{
private Node<E> head;
private int nodeCount;
public static void main(String args[]) {
}
public E peek() {
return this.head.getData();
}
public E pop() {
E item;
item = head.getData();
head = head.getNext();
nodeCount--;
return item;
}
public boolean empty() {
if (head==null) {
return true;
} else {
return false;
}
}
public void push(E data) {
Node<E> head = new Node<E>(data);
nodeCount++;
}
public int search(Object o) {
// todo
}
}
public class Node<E>
{
E data;
Node<E> next;
// getters and setters
public Node(E data)
{
this.data = data;
this.next = null;
}
public E getData() {
return data;
}
public void setData(E data) {
this.data = data;
}
public Node<E> getNext() {
return next;
}
public void setNext(Node<E> next) {
this.next = next;
}
}
public class MyQueue<E> implements QueueInterface<E>
{
private Node<E> head;
private int nodeCount;
Node<E> rear;
public MyQueue()
{
this.head = this.rear = null;
}
public void add(E item){
Node<E> temp = new Node<E>(item);
if (this.rear == null) {
this.head = this.rear = temp;
return;
}
this.rear.next = temp;
this.rear = temp;
}
public E peek(){
return this.head.getData();
}
public E remove(){
E element = head.getData();
Node<E> temp = this.head;
this.head = this.head.getNext();
nodeCount--;
return element;
}
}
After working on it based off of the first comment I have this:
public int search(Object o){
int count=0;
Node<E> current = new Node<E> (head.getData());
while(current.getData() != o){
current.getNext();
count++;
}
return count;
}
It doesn't have any errors but I cannot tell if it is actually working correctly. Does this seem correct?
It needs the following improvements,
search method should have parameter of type 'E'. So, the signature should look like public int search(E element)
start the count with 1 instead of 0.As you have mentioned topmost item is considered to be at distance 1
initialize current with head, because creating a new node with data value of head(new node(head.getData())) will create an independent node with data same as head node; and the while will run only for the head node as current.getNext() will be null always. Node<E> current = head will create another reference variable pointing to the head.
Instead of != in condition, use if( !current.getData().equals(element.getData())) )
If using your own class as data type, don't forget to override equals method.
Change current.getNext(); to current = current.getNext();
You have problems with other method. Pay attention on top == null. To calculate search() all you need is just iterate over the elements and find position of required value:
public class MyStack<E> {
private Node<E> top;
private int size;
public void push(E val) {
Node<E> node = new Node<>(val);
node.next = top;
top = node;
size++;
}
public E element() {
return top == null ? null : top.val;
}
public E pop() {
if (top == null)
return null;
E val = top.val;
top = top.next;
size--;
return val;
}
public boolean empty() {
return size == 0;
}
public int search(E val) {
int res = 1;
Node<E> node = top;
while (node != null && node.val != val) {
node = node.next;
res++;
}
return node == null ? -1 : res;
}
private static final class Node<E> {
private final E val;
private Node<E> next;
public Node(E val) {
this.val = val;
}
}
}
I assume your MyStack class should be compatible with the Stack class provided by Java as you mention it in your question. This means that your signature public int search(Object o) matches the signature of java.util.Stack#search (apart from synchronised).
To implement the search method using your Node class, we need to traverse the stack and return the index of the first (uppermost) match. First, assign head to a local variable (current). Then you can create a loop where you current.getNext() at the end to get the next element. Stop if the next element is null as we have reached the end of the stack. In the loop, you either count up the index or return this index when the current element's data matches the argument o.
The evaluation needs to be able to deal with null values for your argument o. Therefore, you need to check for null first and adjust your logic accordingly. When o is null, do a null-check against current.getData(). If o is not null, check if current.getData() is equal to o with equals().
Here is a working example: (compatible with java.util.Stack#search)
public int search(Object o) {
int index = 1;
Node<E> current = head;
while (current != null) {
if (o == null) {
if (current.getData() == null) {
return index;
}
} else {
if (o.equals(current.getData())) {
return index;
}
}
current = current.getNext();
index++;
}
return -1; // nothing found
}
To test this, you can write a simple unit test with JUnit like this:
#Test
public void testMyStackSearch() {
// initialize
final MyStack<String> stack = new MyStack<>();
stack.push("e5");
stack.push("e4");
stack.push(null);
stack.push("e2");
stack.push("e1");
// test (explicitly creating a new String instance)
assertEquals(5, stack.search(new String("e5")));
assertEquals(3, stack.search(null));
assertEquals(2, stack.search(new String("e2")));
assertEquals(1, stack.search(new String("e1")));
assertEquals(-1, stack.search("X"));
}
Since you have already a reference implementation, you can replace MyStack with Stack (java.util.Stack) and see if your asserts are correct. If this runs successfully, change it back to MyStack and see if your implementation is correct.
Note: I do not recommend to actually use the Stack implementation in Java. Here, it just serves as a reference implementation for the java.util.Stack#search method. The Deque interface and its implementations offer a more complete and consistent set of LIFO stack operations, which should be used in preference to Stack.
I am trying to print the first and last elements in a deque using a toString method however I'm not entirely sure if I am overwriting the toString method correctly.
As far as I can tell, the methods all seem to behave correctly but I have no way of being able to tell as I am unable to see any readable output.
I am aware that there is already a deque interface, however this is part of an exercise in using generics in Java.
This piece of code should create a deque, be able to add values to the front of the deque, remove values from the front, add values to the rear and remove values from the rear.
Here's the class in question:
import java.util.Iterator;
import java.util.NoSuchElementException;
class Deque<T> implements Iterable<T> {
private class Node<T> {
public Node<T> left, right;
private final T item;
public Node(T item) {
if (item == null) {
throw new NullPointerException();
}
this.item = item;
}
public void connectRight(Node<T> other) {
this.right = other;
other.left = this;
}
}
private class DequeIterator implements Iterator<T> {
private Node<T> curr = head;
public boolean hasNext() {
return curr != null;
}
public void remove() {
throw new UnsupportedOperationException();
}
public T next() {
if (!hasNext()) {
throw new NoSuchElementException();
}
T item = curr.item;
curr = curr.right;
return item;
}
}
private Node<T> head, tail;
private int size;
public Iterator<T> iterator() {
return new DequeIterator();
}
public Deque() {
}
public int size() {
return size;
}
public boolean isEmpty() {
return size() == 0;
}
public void checkInvariants() {
assert size >= 0;
assert size > 0 || (head == null && tail == null);
assert (head == null && tail == null) || (head != null && tail != null);
}
public void addFirst(T item) {
Node<T> prevHead = head;
Node<T> newHead = new Node<T>(item);
if (prevHead != null) {
newHead.connectRight(prevHead);
} else {
tail = newHead;
}
head = newHead;
size++;
checkInvariants();
}
public void addLast(T item) {
Node<T> newTail = new Node<T>(item);
Node<T> prevTail = tail;
if (prevTail != null) {
prevTail.connectRight(newTail);
} else {
head = newTail;
}
tail = newTail;
size++;
checkInvariants();
}
public T removeFirst() {
if (isEmpty()) {
throw new java.util.NoSuchElementException();
}
size--;
Node<T> prevHead = head;
head = prevHead.right;
prevHead.right = null;
if (head != null) {
head.left = null;
}
checkInvariants();
return prevHead.item;
}
public T removeLast() {
if (isEmpty()) {
throw new java.util.NoSuchElementException();
}
size--;
Node<T> prevTail = tail;
tail = prevTail.left;
prevTail.left = null;
if (tail != null) tail.right = null;
checkInvariants();
return prevTail.item;
}
#Override
public String toString() {
Node<T> currTail = tail;
Node<T> currHead = head;
head = currHead.right;
tail = currTail.left;
StringBuilder builder = new StringBuilder();
while (currHead != null && currTail != null) {
builder.append(currHead.item + "\n");
}
return builder.toString();
}
public static void main(String[] args) {
Deque<Double> d = new Deque<Double>();
d.addFirst(1.0);
System.out.println(d);
d.addLast(1.0);
//d.removeFirst();
//d.removeLast();
System.out.println(d.toString());
}
}
First of all, you're setting the instance variables head and tail to their respective neighbours, which is definitely not what you're out to do. This leaves your queue in an inconsistent state, where the second element is the head, but it still has a left neighbour, the original head. Same thing for the tail. Generally the toString method shouldn't have side effects.
Neither currTail nor currHead ever change in your while-loop, so your condition currHead != null && currTail != null will always be true if the deque is non-empty. You'd have to set those variables in the loop, however, you don't need to iterate from both ends at once. Iterating from the start will be enough. And then, you can use a for loop, like this:
#Override
public String toString() {
final StringJoiner stringJoiner = new StringJoiner("\n");
for (Node<T> node = head; node != null; node = node.right) {
stringJoiner.add(node.item.toString());
}
return stringJoiner.toString();
}
This sets the variable node to it's right neighbour after every iteration, and if the deque is empty, node will be null from the get-go and the loop will not be entered as is expected.
This is just the more concise (In my opinion) version of this:
#Override
public String toString() {
final StringJoiner stringJoiner = new StringJoiner("\n");
Node<?> node = head;
while (node != null) {
stringJoiner.add(node.item.toString());
node = node.right;
}
return stringJoiner.toString();
}
which is basically your attempt, just fixed.
Not that I've used a StringJoiner instead of a StringBuilder, as it allows you to set a delimeter that is used between each String, which is exactly what you're doing.
I have made my own implementation of a generic Linked Queue for class, it is pretty much finished, here it is:
public class LinkedQueue<T> implements Queue<T> {
//Using head & tail approach.
private myNode<T> head;
private myNode<T> tail;
private int size;
public LinkedQueue(){
this.head = null;
this.tail = head;
this.size = 0;
}
public myNode<T> getterHead(){ //couldn't bring myself to write "get" instead of "getter"
return this.head;
}
#Override
public int size() {
return this.size; //returns number of nodes
}
#Override
public boolean isEmpty() {
return this.head==null;
}
#Override
public void enqueue(T element) {
if(isEmpty()){
this.head = new myNode<T>(element);
this.tail = head;
size++;
}
else{
this.tail.next = new myNode<T>(element);
this.tail = tail.next;
size++;
}
}
#Override
public T dequeue() {
if(isEmpty())throw new NoSuchElementException("This queue is empty");
T returnObj = this.head.data; //saving the data of the first element(head)
//If there are at least 2 nodes, else.
if(head != tail){
this.head = head.getNext();
size--;
}
else{
this.head = null;
this.tail = head;
this.size = 0;
}
return returnObj;
}
#Override
public T first() {
return this.head.data;
}
#Override
public T last() {
return this.tail.data;
}
/* I absolutely can not get past this NullPointerException that is given every time
* I try to use the iterator. It seems that current.next is always null(doesn't point to head properly?).
* HOWEVER, if you change "curr" for "head", it works. */
#Override
public Iterator<T> iterator() {
return new GenericIterator();
}
private class GenericIterator implements Iterator<T>{
public myNode<T> curr = head;
public boolean hasNext() {
return (head != null && head.next != null);
}
public T next() {
T tmp = head.data; //saving current in a temporary node because we are changing the value of current in the next line
if(hasNext()){
head = head.next;
}
return tmp;
}
}
private class myNode<T> { //parameter type T hiding type T
public T data; //The generic data the nodes contain
public myNode<T> next; //Next node
//Node constructor
public myNode(T nData) {
this.data = nData;
this.next = null;
}
public myNode<T> getNext(){
return this.next;
}
}
}
Here is the part that is giving me trouble:
/* I absolutely can not get past this NullPointerException that is given every time
* I try to use the iterator. It seems that current.next is always null(doesn't point to head properly?).
* HOWEVER, if you change "curr" for "head", it works. */
#Override
public Iterator<T> iterator() {
return new GenericIterator();
}
private class GenericIterator implements Iterator<T>{
public myNode<T> curr = head; //doesn't work with getter either.
//public myNode<T> curr = getterHead();
public boolean hasNext() {
return (curr != null && curr.next != null);
}
public T next() {
T tmp = curr.data; //NPE HERE!
if(hasNext()){
curr = curr.next;
}
return tmp;
}
}
What I have tried is getters/setters and triple-checking every other method(they work). What seems to be the problem is that when I assign curr = head, it seems that the properties from myNode do not come with.
While head.next works fine, curr.next == null, even curr.data == null while head.data works.
I've tried with public properties and printing LinkedQueue.head.next etc, it works fine.
Stacktrace:
Exception in thread "main" java.lang.NullPointerException
at dk222gw_lab4.Queue.LinkedQueue$GenericIterator.next(LinkedQueue.java:101)
at dk222gw_lab4.Queue.LinkedQueueMain.main(LinkedQueueMain.java:17)
Where line 101 & 17 are:
T tmp = curr.data; //node property .data & .next are null.
System.out.println(it.next()); //LinkedQueueMain.java(not included in post), both it.next() and it.hasNext() produce this NPE.
I am attempting to create a custom Iterator on a LinkedList class I have made. I have been asked to alter the add function so that it adds objects Term in order from smallest to largest. (Term is a simple class taking the form Term(int power))
I cannot figure out how to create a loop in addTerm() in order to keep searching the next element to see if it is larger than the current power in Term. Can anyone help?
import java.util.Iterator;
public class customImpl implements custom{
private static class Node {
Term data;
Node next;
}
private Node head;
private class TermIterator implements Iterator<Term> {
private Node current;
private TermIterator(Node start) {
current = start;
}
#Override
public boolean hasNext() {
return current != null;
}
#Override
public Term next() {
Term result = current.data;
current = current.next;
return result;
}
#Override
public void remove() {
throw new UnsupportedOperationException("Not supported");
}
}
/**
* Add a term to the expression
*
* #param term the term to be added.
*/
#Override
public void addTerm(Term term) {
TermIterator iterator = new TermIterator(head);
Node newNode = new Node();
while(iterator.hasNext()) {
if(term.getPower() > iterator.next().getPower()) {
newNode.next = head;
}
else newNode.data = term;
}
newNode.data = term;
newNode.next = head;
head = newNode;
}
/**
* Returns an iterator over elements of type {#code T}.
*
* #return an Iterator.
*/
#Override
public Iterator<Term> iterator() {
return new TermIterator(head);
}
}
You cannot easily use your iterator as it goes through values instead of nodes:
#Override
public void addTerm(Term term) {
Node newNode = new Node();
newNode.term = term;
Node smaller = null; //smaller holds last element smaller than new term
Node current = head;
while(current != null) {
if(term.getPower() > current.term.getPower()) {
smaller = current;
break;
}
current = current.next;
}
if (smaller == null) {
newNode.next = head;
head = newNode;
} else {
newNode.next = smaller.next;
smaller.next = newNode;
}
}
If you want to use iterator, than you should define the 'Node' iterator (and use it in your addTerm method), and re-use it to define the 'Term' iteraotr:
class NodeIterator implements Iterator<Node> {
Node next;
NodeIterator() {
next = head;
}
#Override
public boolean hasNext() {
return (next != null);
}
#Override
public Node next() {
if (next == null) throw new NoSuchElementException();
Node res = next;
next = next.next;
return res;
}
#Override
public void remove() {
throw new UnsupportedOperationException("Not supported yet.");
}
}
class TermIterator implements Iterator<Term> {
final NodeIterator iter = new NodeIterator();
#Override
public boolean hasNext() {
return iter.hasNext();
}
#Override
public Term next() {
return iter.next().term;
}
#Override
public void remove() {
throw new UnsupportedOperationException("Not supported yet."); //To change body of generated methods, choose Tools | Templates.
}
}
I am trying to implement the stack i.e., DSAStack.java using my linked list i.e., DSALinkedList.java
How do I do it? I think I am supposed to have push() perform an insertFirst() and pop() do a peekFirst() and removeFirst() to get the LIFO behaviour? and what about isEmpty()
and the other methods?
I am not sure, please help me out. A clear explanation with a code would be much appreciable. Thank you in advance!
Here is the DSAStack.java
public class DSAStack implements Iterable {
public static int DEFAULT_CAPACITY = 100;
private DSALinkedList list;
private int count;
private Object[] stack;
public DSAStack() {
count = 0;
stack = new Object[DEFAULT_CAPACITY];
}
public DSAStack(int maxCapacity) {
count = 0;
stack = new Object[maxCapacity];
}
public int getCount() {
return count;
}
public boolean isEmpty() {
boolean empty = (count == 0);
return empty;
}
public boolean isFull() {
boolean full = (count == stack.length);
return full;
}
public void push(Object value) {
if (isFull())
throw new IllegalArgumentException("Stack is full");
else
stack[count] = value;
count++;
}
public Object pop() {
Object topVal = top();
count--;
return topVal;
}
public Object top() {
Object topVal;
if (isEmpty())
throw new IllegalArgumentException("Stack is empty");
else
topVal = stack[count-1];
return topVal;
}
public Iterator iterator() {
return list.iterator();
}
}
AND here is the DSALinkedList.java
import java.util.*;
public class DSALinkedList {
public DSAListNode head;
public DSAListNode tail;
Object[] newValue;
public DSALinkedList() {
head = null;
tail = null;
}
public void insertFirst(Object newValue){
DSAListNode newNd;
newNd = new DSAListNode(newValue);
if (head == null) {
head = newNd;
tail = newNd;
} else {
newNd.setNext(head);
head = newNd;
}
}
public void insertLast(Object newValue){
DSAListNode newNd;
newNd = new DSAListNode(newValue);
if(head == null){
head = newNd;
} else {
tail.next = newNd;
tail = newNd;
}
}
public boolean isEmpty() {
return (head == null);
}
public Object peekFirst(){
Object nodeValue;
if (head == null)
throw new IllegalArgumentException("head is empty");
else
nodeValue = head.getValue();
return nodeValue;
}
public Object peekLast(){
Object nodeValue;
if (head == null)
throw new IllegalArgumentException("head is empty");
else
nodeValue = tail.getValue();
return nodeValue;
}
public Object removeFirst(){
Object nodeValue;
if (head == null){
throw new IllegalArgumentException("head is empty");
} else {
nodeValue = head.getValue();
head = head.getNext();
}
return nodeValue;
}
}
Your DSAStack class is meant to be the interface between the user and linkedlist. So therefore the class provides the LIFO interface and forces it on the user. From here, it should hide the implementation from the linkedlist so the user doesn't have to worry about insertingLast or insertingFirst, they just want to insert.
So to answer your question. The DSAStack needs to perform the following actions:
- size() -> returns int size
- push(Object e) -> returns bool (able to be inserted)
- pop() -> returns Object and removes it from linkedlist
- peek() -> returns Object
- isEmpty() -> returns bool if empty
Your DSAStack isn't meant to hold any data. So you don't need the count or stack variable. Instead, we need to store these inside the DSALinkedList class. DSAStack should therefore instantiate a DSALinkedList object, pass the maxCapacity, and initiate the object.
When the user says that they want to use pop() on DSAStack, the class then needs to tell DSALinkedList, hey! I want to pop one of your objects! Now DSALinkedList needs to implement the details here.
Rewriting your code would be like this:
public DSAStack(int maxCapacity) {
list = new DSALinkedList[maxCapacity];
}
public int getCount() {
return list.size();
}
public boolean isEmpty() {
return list.isEmpty();
}
public boolean isFull() {
return list.isFull();
}
public void push(Object value) {
list.insertLast(value);
}
public Object pop() {
return list.removeLast();
}
public Object top() {
return list.peekLast();
}
public Iterator iterator() {
return list.iterator();
}
}