Decoding GET and POST methods with Netty - java

I need to create a server application with Netty that will receive requests both like "GETs" or "POSTs". In case of GET requests, the parameters would come as query parameters.
I have been checking that HttpRequestDecoder would be suitable for the GET requests, and HttpPostRequestDecoder for the post. But how could I handle both at the same time?
Not very familiar with Netty, so I would appretiate a little bit of help :)

The netty provisions us to handle a request as a pipeline where you define the pipeline as a sequence of handlers.
One sequence could be like this:
p.addLast ("codec", new HttpServerCodec ());
p.addLast ("handler", new YourHandler());
where p is an instance of ChannelPipeline interface. You can define the YourHandler class as follows:
public class YourHandler extends ChannelInboundHandlerAdapter
{
#Override
public void channelRead (ChannelHandlerContext channelHandlerCtxt, Object msg)
throws Exception
{
// Handle requests as switch cases. GET, POST,...
// This post helps you to understanding switch case usage on strings:
// http://stackoverflow.com/questions/338206/switch-statement-with-strings-in-java
if (msg instanceof FullHttpRequest)
{
FullHttpRequest fullHttpRequest = (FullHttpRequest) msg;
switch (fullHttpRequest.getMethod ().toString ())
{
case "GET":
case "POST":
...
}
}
}
}

You want to first check the request type and switch on the value (GET/POST/PUT/DELETE etc...)
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/http/HttpMethod.html

Related

Get Request Body from a Java 11 HttpRequest [duplicate]

In a test, I'd like to look inside the body of a HttpRequest. I'd like to get the body as a string. It seems that the only way to do that, is to subscribe to the BodyPublisher but how does that work?
This is an interesting question. Where do you get your HttpRequest from? The easiest way would be to obtain the body directly from the code that creates the HttpRequest. If that's not possible then the next thing would be to clone that request and wraps its body publisher in your own implementation of BodyPublisher before sending the request through the HttpClient. It should be relatively easy (if tedious) to write a subclass of HttpRequest that wraps an other instance of HttpRequest and delegates every calls to the wrapped instance, but overrides HttpRequest::bodyPublisher to do something like:
return request.bodyPublisher().map(this::wrapBodyPublisher);
Otherwise, you might also try to subscribe to the request body publisher and obtain the body bytes from it - but be aware that not all implementations of BodyPublisher may support multiple subscribers (whether concurrent or sequential).
To illustrate my suggestion above: something like below may work, depending on the concrete implementation of the body publisher, and provided that you can guard against concurrent subscriptions to the body publisher. That is - in a controlled test environment where you know all the parties, then it might be workable. Don't use anything this in production:
public class HttpRequestBody {
// adapt Flow.Subscriber<List<ByteBuffer>> to Flow.Subscriber<ByteBuffer>
static final class StringSubscriber implements Flow.Subscriber<ByteBuffer> {
final BodySubscriber<String> wrapped;
StringSubscriber(BodySubscriber<String> wrapped) {
this.wrapped = wrapped;
}
#Override
public void onSubscribe(Flow.Subscription subscription) {
wrapped.onSubscribe(subscription);
}
#Override
public void onNext(ByteBuffer item) { wrapped.onNext(List.of(item)); }
#Override
public void onError(Throwable throwable) { wrapped.onError(throwable); }
#Override
public void onComplete() { wrapped.onComplete(); }
}
public static void main(String[] args) throws Exception {
var request = HttpRequest.newBuilder(new URI("http://example.com/blah"))
.POST(BodyPublishers.ofString("Lorem ipsum dolor sit amet"))
.build();
// you must be very sure that nobody else is concurrently
// subscribed to the body publisher when executing this code,
// otherwise one of the subscribers is likely to fail.
String reqbody = request.bodyPublisher().map(p -> {
var bodySubscriber = BodySubscribers.ofString(StandardCharsets.UTF_8);
var flowSubscriber = new StringSubscriber(bodySubscriber);
p.subscribe(flowSubscriber);
return bodySubscriber.getBody().toCompletableFuture().join();
}).get();
System.out.println(reqbody);
}
}

How to process Websocket messages from client in Java?

I am developing a client-server application in Java using Websocket. Currently, all the client messages are processed using switch-case as shown below.
#OnMessage
public String onMessage(String unscrambledWord, Session session) {
switch (unscrambledWord) {
case "start":
logger.info("Starting the game by sending first word");
String scrambledWord = WordRepository.getInstance().getRandomWord().getScrambledWord();
session.getUserProperties().put("scrambledWord", scrambledWord);
return scrambledWord;
case "quit":
logger.info("Quitting the game");
try {
session.close(new CloseReason(CloseCodes.NORMAL_CLOSURE, "Game finished"));
} catch (IOException e) {
throw new RuntimeException(e);
}
}
String scrambledWord = (String) session.getUserProperties().get("scrambledWord");
return checkLastWordAndSendANewWord(scrambledWord, unscrambledWord, session);
}
The server has to process more than 50 different requests from client and that results in more than 50 case statements. And in future, I expect it to grow. Is there any better way to process Websocket messages from client? Or, is this how it is usually done?
I read somewhere about the use of hashtable to avoid long switch-case scenario by mapping to function pointers. Is this possible in Java? Or, is there any better solutions?
Thanks.
After a bit of testing and study, I found two alternatives to avoid long switch case scenario.
Anonymous class method (Strategy pattern)
Reflection with Annotations
Using Anonymous Class
Anonymous class method is the norm and following code shows how to implement it. I used Runnable in this example. If more control is required, create a custom interface.
public class ClientMessageHandler {
private final HashMap<String, Runnable> taskList = new HashMap<>();
ClientMessageHandler() {
this.populateTaskList();
}
private void populateTaskList() {
// Populate the map with client request as key
// and the task performing objects as value
taskList.put("action1", new Runnable() {
#Override
public void run() {
// define the action to perform.
}
});
//Populate map with all the tasks
}
public void onMessageReceived(JSONObject clientRequest) throws JSONException {
Runnable taskToExecute = taskList.get(clientRequest.getString("task"));
if (taskToExecute == null)
return;
taskToExecute.run();
}
}
Major drawback of this method is object creation. Say, we have 100 different tasks to perform. This Anonymous class approach will result in creating 100 objects for a single client. Too much object creation is not affordable for my application, where there will be more than 5,000 active concurrent connections. Have a look at this article http://blogs.microsoft.co.il/gilf/2009/11/22/applying-strategy-pattern-instead-of-using-switch-statements/
Reflection with Annotation
I really like this approach. I created a custom annotation to represent the tasks performed by methods. There is no overhead of object creation, like in Strategy pattern method, as tasks are performed by a single class.
Annotation
#Retention(RetentionPolicy.RUNTIME)
#Target(ElementType.METHOD)
public #interface TaskAnnotation {
public String value();
}
The code given below maps the client request keys to the methods which process the task. Here, map is instantiated and populated only once.
public static final HashMap<String, Method> taskList = new HashMap<>();
public static void main(String[] args) throws Exception {
// Retrieves declared methods from ClientMessageHandler class
Method[] classMethods = ClientMessageHandler.class.getDeclaredMethods();
for (Method method : classMethods) {
// We will iterate through the declared methods and look for
// the methods annotated with our TaskAnnotation
TaskAnnotation annot = method.getAnnotation(TaskAnnotation.class);
if (annot != null) {
// if a method with TaskAnnotation is found, its annotation
// value is mapped to that method.
taskList.put(annot.value(), method);
}
}
// Start server
}
Now finally, our ClientMessageHandler class looks like the following
public class ClientMessageHandler {
public void onMessageReceived(JSONObject clientRequest) throws JSONException {
// Retrieve the Method corresponding to the task from map
Method method = taskList.get(clientRequest.getString("task"));
if (method == null)
return;
try {
// Invoke the Method for this object, if Method corresponding
// to client request is found
method.invoke(this);
} catch (IllegalAccessException | IllegalArgumentException
| InvocationTargetException e) {
logger.error(e);
}
}
#TaskAnnotation("task1")
public void processTaskOne() {
}
#TaskAnnotation("task2")
public void processTaskTwo() {
}
// Methods for different tasks, annotated with the corresponding
// clientRequest code
}
Major drawback of this approach is the performance hit. This approach is slow compared to Direct Method calling approach. Moreover, many articles are suggesting to stay away from Reflection, unless we are dealing with dynamic programming.
Read these answers to know more about reflection What is reflection and why is it useful?
Reflection performance related articles
Faster alternatives to Java's reflection
https://dzone.com/articles/the-performance-cost-of-reflection
FINAL RESULT
I continue to use switch statements in my application to avoid any performance hit.
As mentioned in the comments, one of websockets drawback is that you'll to specify the communication protocol yourself. AFAIK, the huge switch is the best option. To improve code readability and maintenance, I'll suggest to use encoders and decoders. Then, your problem becomes: how should I design my messages?
Your game looks like Scrabble. I don't know how to play Scrabble so let's take the example of card game with money. Let's assume you have three types of actions:
Global action (join table, leave table ...)
Money action (place bet, split bet, ...)
Card action (draw card, etc)
Then your messages can look like
public class AbstractAction{
// not relevant for global action but let's put that aside for the example
public abstract void endTurn();
}
public class GlobalAction{
// ...
}
public class MoneyAction{
enum Action{
PLACE_BET, PLACE_MAX_BET, SPLIT_BET, ...;
}
private MoneyAction.Action action;
// ...
}
public class CardAction{
// ...
}
Once your decoder and encoders are properly defined, your switch would be easier to read and easier to maintain. In my project, the code would look like this:
#ServerEndPoint(value = ..., encoders = {...}, decoders = {...})
public class ServerEndPoint{
#OnOpen
public void onOpen(Session session){
// ...
}
#OnClose
public void onClose(Session session){
// ...
}
#OnMessage
public void onMessage(Session session, AbstractAction action){
// I'm checking the class here but you
// can use different check such as a
// specific attribute
if(action instanceof GlobalAction){
// do some stuff
}
else if (action instanceof CardAction){
// do some stuff
}
else if (action instance of MoneyAction){
MoneyAction moneyAction = (MoneyAction) action;
switch(moneyAction.getAction()){
case PLACE_BET:
double betValue = moneyAction.getValue();
// do some stuff here
break;
case SPLIT_BET:
doSomeVeryComplexStuff(moneyAction);
break;
}
}
}
private void doSomeVeryComplexStuff(MoneyAction moneyAction){
// ... do something very complex ...
}
}
I prefer this approach because:
The messages design can leverage your entities design (if you are using JPA behind)
As messages are not plain text anymore but objects, enumerations can be used and enumerations are very powerful in this kind of switch-case situation. With the same logic but in a lesser extend, class abstraction can be useful as well
The ServerEndPoint class only handles communication. The business logic is handled out of this class, either directly in Messages classes or in some EJB. Because of this split, code maintenance is much easier
Bonus: #OnMessage method can be read as a summary of the protocol but details should not be displayed here. Each case must contain few lines only.
I prefer avoid using Reflection: it'll ruin your code readability, in the specific scenario of websocket
To go further beyond code readability, maintenance and efficiency, you can use a SessionHandler to intercept some CDI event if this can improve your code. I gave an example in this answer. If you need a more advanced example, Oracle provides a great tutorial about it. It might help you to improve your code.

Implementing Content-Based Router Pattern in Akka

I am trying to implement a content-based router in my Akka actor system and according to this document the ConsistentHashingRouter is the way to go. After reading through its official docs, I still find myself confused as to how to use this built-in hashing router. I think that’s because the router itself is hash/key-based, and the example the Akka doc author chose to use was a scenario involving key-value based caches…so I can’t tell which keys are used by the cache and which ones are used by the router!
Let’s take a simple example. Say we have the following messages:
interface Notification {
// Doesn’t matter what’s here.
}
// Will eventually be emailed to someone.
class EmailNotification implements Notification {
// Doesn’t matter what’s here.
}
// Will eventually be sent to some XMPP client and on to a chatroom somewhere.
class ChatOpsNotifications implements Notification {
// Doesn’t matter what’s here.
}
etc. In theory we might have 20 Notification impls. I’d like to be able to send a Notification to an actor/router at runtime and have that router route it to the correct NotificationPubisher:
interface NotificationPublisher<NOTIFICATION implements Notification> {
void send(NOTIFICATION notification)
}
class EmailNotificationPublisher extends UntypedActor implements NotificationPubisher<EmailNotification> {
#Override
void onReceive(Object message) {
if(message instanceof EmailNotification) {
send(message as EmailNotification)
}
}
#Override
void send(EmailNotification notification) {
// Use Java Mail, etc.
}
}
class ChatOpsNotificationPublisher extends UntypedActor implements NotificationPubisher<ChatOpsNotification> {
#Override
void onReceive(Object message) {
if(message instanceof ChatOpsNotification) {
send(message as ChatOpsNotification)
}
}
#Override
void send(ChatOpsNotification notification) {
// Use XMPP/Jabber client, etc.
}
}
Now I could do this routing myself, manually:
class ReinventingTheWheelRouter extends UntypedActor {
// Inject these via constructor
ActorRef emailNotificationPublisher
ActorRef chatOpsNotificationPublisher
// ...20 more publishers, etc.
#Override
void onReceive(Object message) {
ActorRef publisher
if(message instanceof EmailNotification) {
publisher = emailNotificationPublisher
} else if(message instanceof ChatOpsNotification) {
publisher = chatOpsNotificationPublisher
} else if(...) { ... } // 20 more publishers, etc.
publisher.tell(message, self)
}
}
Or I could use the Akka-Camel module to defined a Camel-based router and send Notifications off to the Camel router, but it seems that Akka aready has this built-in solution, so why not use it? I just cant figure out how to translate the Cache example from those Akka docs to my Notification example here. What’s the purpose of the “key” in the ConsistentHashingRouter? What would the code look like to make this work?
Of course I would appreciate any answer that helps me solve this, but would greatly prefer Java-based code snippets if at all possible. Scala looks like hieroglyphics to me.
I agree that a Custom Router is more appropriate than ConsistentHashingRouter. After reading the docs on custom routers, it seems I would:
Create a GroupBase impl and send messages to it directly (notificationGroup.tell(notification, self)); then
The GroupBase impl, say, NotificationGroup would provide a Router instance that was injected with my custom RoutingLogic impl
When NotificationGroup receives a message, it executes my custom RoutingLogic#select method which determines which Routee (I presume some kind of an actor?) to send the message to
If this is correct (and please correct me if I’m wrong), then the routing selection magic happens here:
class MessageBasedRoutingLogic implements RoutingLogic {
#Override
Routee select(Object message, IndexedSeq<Routee> candidates) {
// How can I query the Routee interface and deterine whether the message at-hand is in fact
// appropriate to be routed to the candidate?
//
// For instance I'd like to say "If message is an instance of
// an EmailNotification, send it to EmailNotificationPublisher."
//
// How do I do this here?!?
if(message instanceof EmailNotification) {
// Need to find the candidate/Routee that is
// the EmailNotificationPublisher, but how?!?
}
}
}
But as you can see I have a few mental implementation hurdles to cross. The Routee interface doesn’t really give me anything I can intelligently use to decide whether a particular Routee (candidate) is correct for the message at hand.
So I ask: (1) How can I map messages to Routees (effectively performing the route selection/logic)? (2) How do I add my publishers as routees in the first place? And (3) Do my NotificationPublisher impls still need to extend UntypedActor or should they now implement Routee?
Here is a simple little A/B router in Scala. I hope this helps even though you wanted a Java based answer. First the routing logic:
class ABRoutingLogic(a:ActorRef, b:ActorRef) extends RoutingLogic{
val aRoutee = ActorRefRoutee(a)
val bRoutee = ActorRefRoutee(b)
def select(msg:Any, routees:immutable.IndexedSeq[Routee]):Routee = {
msg match{
case "A" => aRoutee
case _ => bRoutee
}
}
}
The key here is that I am passing in my a and b actor refs in the constructor and then those are the ones I am routing to in the select method. Then, a Group for this logic:
case class ABRoutingGroup(a:ActorRef, b:ActorRef) extends Group {
val paths = List(a.path.toString, b.path.toString)
override def createRouter(system: ActorSystem): Router =
new Router(new ABRoutingLogic(a, b))
val routerDispatcher: String = Dispatchers.DefaultDispatcherId
}
Same thing here, I am making the actors I want to route to available via the constructor. Now a simple actor class to act as a and b:
class PrintingActor(letter:String) extends Actor{
def receive = {
case msg => println(s"I am $letter and I received letter $msg")
}
}
I will create two instances of this, each with a different letter assignment so we can verify that the right ones are getting the right messages per the routing logic. Lastly, some test code:
object RoutingTest extends App{
val system = ActorSystem()
val a = system.actorOf(Props(classOf[PrintingActor], "A"))
val b = system.actorOf(Props(classOf[PrintingActor], "B"))
val router = system.actorOf(Props.empty.withRouter(ABRoutingGroup(a,b)))
router ! "A"
router ! "B"
}
If you ran this, you would see:
I am A and I received letter A
I am B and I received letter B
It's a very simple example, but one that shows one way to do what you want to do. I hope you can bridge this code into Java and use it to solve your problem.

Best design pattern/approach for a long list of if/else/execute branches of code

I have a "legacy" code that I want to refactor.
The code basically does a remote call to a server and gets back a reply. Then according to the reply executes accordingly.
Example of skeleton of the code:
public Object processResponse(String responseType, Object response) {
if(responseType.equals(CLIENT_REGISTERED)) {
//code
//code ...
}
else if (responseType.equals(CLIENT_ABORTED)) {
//code
//code....
}
else if (responseType.equals(DATA_SPLIT)) {
//code
//code...
}
etc
The problem is that there are many-many if/else branches and the code inside each if is not trivial.
So it becomes hard to maintain.
I was wondering what is that best pattern for this?
One thought I had was to create a single object with method names the same as the responseType and then inside processResponse just using reflection call the method with the same name as the responseType.
This would clean up processResponse but it moves the code to a single object with many/many methods and I think reflection would cause performance issues.
Is there a nice design approach/pattern to clean this up?
Two approaches:
Strategy pattern http://www.dofactory.com/javascript/strategy-design-pattern
Create dictionary, where key is metadata (in your case metadata is responseType) and value is a function.
For example:
Put this in constructor
responses = new HashMap<string, SomeAbstraction>();
responses.Put(CLIENT_REGISTERED, new ImplementationForRegisteredClient());
responses.Put(CLIENT_ABORTED, new ImplementationForAbortedClient());
where ImplementationForRegisteredClient and ImplementationForAbortedClient implement SomeAbstraction
and call this dictionary via
responses.get(responseType).MethodOfYourAbstraction(SomeParams);
If you want to follow the principle of DI, you can inject this Dictionary in your client class.
My first cut would be to replace the if/else if structures with switch/case:
public Object processResponse(String responseType, Object response) {
switch(responseType) {
case CLIENT_REGISTERED: {
//code ...
}
case CLIENT_ABORTED: {
//code....
}
case DATA_SPLIT: {
//code...
}
From there I'd probably extract each block as a method, and from there apply the Strategy pattern. Stop at whatever point feels right.
The case you've describe seems to fit perfectly to the application of Strategy pattern. In particular, you've many variants of an algorithm, i.e. the code executed accordingly to the response of the remote server call.
Implementing the Stategy pattern means that you have to define a class hierachy, such the following:
public interface ResponseProcessor {
public void execute(Context ctx);
}
class ClientRegistered implements ResponseProcessor {
public void execute(Context ctx) {
// Actions corresponding to a client that is registered
// ...
}
}
class ClientAborted implements ResponseProcessor {
public void execute(Context ctx) {
// Actions corresponding to a client aborted
// ...
}
}
// and so on...
The Context type should contain all the information that are needed to execute each 'strategy'. Note that if different strategies share some algorithm pieces, you could also use Templeate Method pattern among them.
You need a factory to create a particular Strategy at runtime. The factory will build a strategy starting from the response received. A possibile implementation should be the one suggested by #Sattar Imamov. The factory will contain the if .. else code.
If strategy classes are not to heavy to build and they don't need any external information at build time, you can also map each strategy to an Enumeration's value.
public enum ResponseType {
CLIENT_REGISTERED(new ClientRegistered()),
CLIENT_ABORTED(new ClientAborted()),
DATA_SPLIT(new DataSplit());
// Processor associated to a response
private ResponseProcessor processor;
private ResponseType(ResponseProcessor processor) {
this.processor = processor;
}
public ResponseProcessor getProcessor() {
return this.processor;
}
}

Avoiding instanceof when checking a message type

I have the following situation where a client class executes different behavior based on the type of message it receives. I'm wondering if there is a better way of doing this since I don't like the instanceof and the if statements.
One thing I thought of doing was pulling the methods out of the client class and putting them into the messages. I would put a method like process() in the IMessage interface and then put the message specific behavior in each of the concrete message types. This would make the client simple because it would just call message.process() rather than checking types. However, the only problem with this is that the behavior contained in the conditionals has to do with operations on data contained within the Client class. Thus, if I did implement a process method in the concrete message classes I would have to pass it the client and I don't know if this really makes sense either.
public class Client {
messageReceived(IMessage message) {
if(message instanceof concreteMessageA) {
concreteMessageA msg = (concreteMessageA)message;
//do concreteMessageA operations
}
}
if (message instanceof concreteMessageB) {
concreteMessageb msg = (concreteMessageB)message;
//do concreteMessageB operations
}
}
The simple way to avoid instanceof testing is to dispatch polymorphicly; e.g.
public class Client {
void messageReceived(IMessage message) {
message.doOperations(this);
}
}
where each message class defines an appropriate doOperations(Client client) method.
EDIT: second solution which better matches the requirements.
An alternative that replaces a sequence of 'instanceof' tests with a switch statement is:
public class Client {
void messageReceived(IMessage message) {
switch (message.getMessageType()) {
case TYPE_A:
// process type A
break;
case TYPE_B:
...
}
}
}
Each IMessage class needs to define an int getMessageType() method to return the appropriate code. Enums work just as well ints, and are more more elegant, IMO.
One option here is a handler chain. You have a chain of handlers, each of which can handle a message (if applicable) and then consume it, meaning it won't be passed further down the chain. First you define the Handler interface:
public interface Handler {
void handle(IMessage msg);
}
And then the handler chain logic looks like:
List<Handler> handlers = //...
for (Handler h : handlers) {
if (!e.isConsumed()) h.handle(e);
}
Then each handler can decide to handle / consume an event:
public class MessageAHandler implements Handler {
public void handle(IMessage msg) {
if (msg instanceof MessageA) {
//process message
//consume event
msg.consume();
}
}
}
Of course, this doesn't get rid of the instanceofs - but it does mean you don't have a huge if-elseif-else-if-instanceof block, which can be unreadable
What type of message system are you using?
Many have options to add a filter to the handlers based on message header or content. If this is supported, you simply create a handler with a filter based on message type, then your code is nice and clean without the need for instanceof or checking type (since the messaging system already checked it for you).
I know you can do this in JMS or the OSGi event service.
Since you are using JMS, you can basically do the following to register your listeners. This will create a listener for each unique message type.
String filterMsg1 = "JMSType='messageType1'";
String filterMsg2 = "JMSType='messageType2'";
// Create a receiver using this filter
Receiver receiverType1 = session.createReceiver(queue, filterMsg1);
Receiver receiverType2 = session.createReceiver(queue, filterMsg2);
receiverType1.setMessageHandler(messageType1Handler);
receiverType2.setMessageHandler(messageType2Handler);
Now each handler will receive the specific message type only (no instanceof or if-then), assuming of course that the sender sets the type via calls to setJMSType() on the outgoing message.
This method is built into message, but you can of course create your own header property and filter on that instead as well.
//Message.java
abstract class Message{
public abstract void doOperations();
}
//MessageA.java
class MessageA extends Message{
public void doOperations(){
//do concreteMessageA operations ;
}
}
//MessageB.java
class MessageB extends Message {
public void doOperations(){
//do concreteMessageB operations
}
}
//MessageExample.java
class MessageExample{
public static void main(String[] args) {
doSmth(new MessageA());
}
public static void doSmth(Message message) {
message.doOperations() ;
}
}
A Java 8 solution that uses double dispatch. Doesn't get rid of instanceof completely but does only require one check per message instead of an if-elseif chain.
public interface Message extends Consumer<Consumer<Message>> {};
public interface MessageA extends Message {
#Override
default void accept(Consumer<Message> consumer) {
if(consumer instanceof MessageAReceiver){
((MessageAReceiver)consumer).accept(this);
} else {
Message.super.accept(this);
}
}
}
public interface MessageAReceiver extends Consumer<Message>{
void accept(MessageA message);
}
With JMS 2.0 you can use:
consumer.receiveBody(String.class)
For more information you can refer here:

Categories