inOrderIterator method cannot be applied to BinaryTreeNode<T> - java

Working on an InOrderIterator traversal method. I understand how to do this recursively but I keep getting this complier error.
inOrderIterator() in LinkedBinarySearchTree<T> cannot be applied to (BinaryTreeNode<T>)
Im not sure why I can't apply this method to that object. Any ideas?
Heres my method so far
public ArrayList<T> inOrderIterator()
{
ArrayList<T> myArr = new ArrayList<T>();
BinaryTreeNode<T> currentNode = this.root;
if(currentNode != null)
{
inOrderIterator(currentNode.getLeftChild());
myArr.add(currentNode.getElement());
inOrderIterator(currentNode.getRightChild());
}
return myArr;
}
LinkedBinarySearchTree.java
import jss2.exceptions.EmptyCollectionException;
import jss2.exceptions.ElementNotFoundException;
import java.util.ArrayList;
public class LinkedBinarySearchTree<T extends Comparable<T>>
{
private T elem;
BinaryTreeNode<T> root;
public LinkedBinarySearchTree (T element)
{
elem = element;
root = null;
}
public LinkedBinarySearchTree ()
{
root = null;
}
public void addToTree (T element)
{
//Check if root is null
if(root == null)
{
root.getElement().equals(element);
}
else
{
addToTreeHelper(root, element);
}
}
public void addToTreeHelper(BinaryTreeNode<T> node, T target)
{
BinaryTreeNode<T> child;
BinaryTreeNode<T> targetNode = new BinaryTreeNode<T>(target);
if(target.compareTo(node.getElement()) == -1)
{
child = node.getLeftChild();
if(child == null)
{
node.setLeftChild(targetNode);
}
else
{
addToTreeHelper(node.getLeftChild(), target);
}
}
else if(target.compareTo(node.getElement()) >= 0)
{
child = node.getRightChild();
if(child == null)
{
node.setRightChild(targetNode);
}
else
{
addToTreeHelper(node.getRightChild(), target);
}
}
}
//remove Element
public void removeElement(T target) throws Exception
{
BinaryTreeNode<T> node;
if(root.getElement() == null)
{
throw new EmptyCollectionException("tree is empty");
}
else if(target.compareTo(root.getElement()) == 0)
{
root = getReplacement(root);
}
else
{
node = removeElemHelper(root, target);
if(node == null)
{
throw new ElementNotFoundException ("not found "+target.toString());
}
}
}
//remove element helper
public BinaryTreeNode<T> removeElemHelper(BinaryTreeNode<T> node, T target)
{
BinaryTreeNode<T> result, child, replacement;
result = null;
if(node != null)
{
if(target.compareTo(node.getElement()) == -1)
{
child = node.getLeftChild();
if(child != null && target.compareTo(child.getElement()) == 0)
{
result = child;
replacement = getReplacement(child);
if(replacement == null)
{
node.setLeftChild(null);
}
else
{
node.setLeftChild(replacement);
}
}
else
{
result = removeElemHelper(child, target);
}
}
//
else if(target.compareTo(node.getElement()) == 1)
{
child = node.getRightChild();
if(child != null && target.compareTo(child.getElement()) == 0)
{
result = child;
replacement = getReplacement(child);
if(replacement == null)
{
node.setRightChild(null);
}
else
{
node.setRightChild(replacement);
}
}
else
{
result = removeElemHelper(child, target);
}
}
}
return result;
}
//replacement
public BinaryTreeNode<T> getReplacement(BinaryTreeNode<T> node)
{
BinaryTreeNode<T> result,leftChild, rightChild;
leftChild = node.getLeftChild();
rightChild = node.getRightChild();
if(node.getLeftChild() == null && node.getRightChild() == null)
{
result = null;
}
else if(node.getLeftChild() == null && node.getRightChild() != null)
{
result = node.getRightChild();
}
else if(node.getLeftChild() != null && node.getRightChild() == null)
{
result = node.getLeftChild();
}
else
{
result = findInorderSucessor(rightChild);
result.setLeftChild(leftChild);
result.setRightChild(rightChild);
}
return result;
}
//findInorderSucessor
private BinaryTreeNode<T> findInorderSucessor(BinaryTreeNode<T> node)
{
BinaryTreeNode<T> child = node.getLeftChild();
if(child == node)
{
return node;
}
else if(child.getLeftChild() == null)
{
child.setRightChild(node.getLeftChild());
}
return findInorderSucessor(child);
}
public ArrayList<T> inOrderIterator()
{
ArrayList<T> myArr = new ArrayList<T>();
BinaryTreeNode<T> currentNode = this.root;
if(currentNode != null)
{
inOrderIterator(currentNode.getLeftChild());
myArr.add(currentNode.getElement());
inOrderIterator(currentNode.getRightChild());
}
return myArr;
}
}

Look at your method declaration:
public ArrayList<T> inOrderIterator()
It doesn't have any parameters. But look how you're trying to invoke it:
inOrderIterator(currentNode.getRightChild());
... you're specifying an argument. There's no method which is applicable for that call.
I suspect you want to overload the method to have a private method accepting a node and a List<T> (the one you're building up), and then make your public method call that. For example:
public List<T> inOrderIterator() {
List<T> list = new ArrayList<T>();
inOrderIterator(list, this.root);
return list;
}
private void inOrderIterator(List<T> list, BinaryTreeNode<T> current) {
if (current == null) {
return;
}
inOrderIterator(current.getLeftChild());
list.add(current);
inOrderIterator(current.getRightChild());
}

Related

Binary trees to find a dance partner

I wrote the code, but the tests are falling. I can't find what I'm doing wrong.
For example:
FAILURE: testRunOutOfPartnersThenFindSomeMore
2 msecs, weight: 0 units
Description: This tests whether your tree can get empty and then filled again.
Exception type: class java.lang.NullPointerException
FAILURE: testFemaleTreeImplementation
5 msecs, weight: 0 units
Description: This tests, whether your tree works correctly.
Exception type: class java.lang.AssertionError
Detailed information: Your implementation found a pair when it should not have.
Dancer.java
public interface Dancer {
public enum Gender {
MALE, FEMALE
}
public int getID();
public Gender getGender();
public int getHeight();
}
Dancers.java
import java.util.AbstractMap.SimpleEntry;
import java.util.List;
public interface Dancers {
public SimpleEntry<Dancer, Dancer> findPartnerFor(Dancer d) throws IllegalArgumentException;
/*
* Returns waiting list as a list (both men and women)
* Ordered shortest --> longest
* If man and woman are having the same height,
* then ordering should be woman, man
*/
public List<Dancer> returnWaitingList();
}
HW01.java
import java.util.AbstractMap.SimpleEntry;
import java.util.ArrayList;
import java.util.List;
public class HW01 implements Dancers {
public SearchTree maleTree;
public SearchTree femaleTree;
public void createTree(SearchTreeNode n) {
if (n.getKey().getGender().equals(Dancer.Gender.MALE)) {
this.maleTree = new SearchTree(n);
} else {
this.femaleTree = new SearchTree(n);
}
}
#Override
public SimpleEntry<Dancer, Dancer> findPartnerFor(Dancer candidate) throws IllegalArgumentException {
if (candidate == null) throw new IllegalArgumentException();
if (candidate.getGender().equals(Dancer.Gender.MALE)) {
if (this.femaleTree != null) {
// If no match, add to opposite tree
SearchTreeNode match = this.femaleTree.match(candidate);
if (match != null) {
// Remove node from tree
this.femaleTree.delete(match);
return new SimpleEntry<>( candidate, match.getKey() );
} else {
if (this.maleTree != null) {
this.maleTree.getRoot().insert(new SearchTreeNode(candidate));
} else {
this.createTree(new SearchTreeNode(candidate));
}
}
} else {
if (this.maleTree != null) {
this.maleTree.getRoot().insert(new SearchTreeNode(candidate));
} else {
this.createTree(new SearchTreeNode(candidate));
}
}
} else {
if (this.maleTree != null) {
// If no match, add to opposite tree
SearchTreeNode match = this.maleTree.match(candidate);
if (match != null) {
this.maleTree.delete(match);
return new SimpleEntry<>( candidate, match.getKey() );
} else {
if (this.femaleTree != null) {
this.femaleTree.getRoot().insert(new SearchTreeNode(candidate));
} else {
this.createTree(new SearchTreeNode(candidate));
}
}
} else {
if (this.femaleTree != null) {
this.femaleTree.getRoot().insert(new SearchTreeNode(candidate));
} else {
this.createTree(new SearchTreeNode(candidate));
}
}
}
return null;
}
#Override
public List<Dancer> returnWaitingList() {
List<Dancer> resultList = new ArrayList<>();
if (femaleTree != null) resultList.addAll(femaleTree.getMembers());
if (maleTree != null) resultList.addAll(maleTree.getMembers());
return resultList;
}
SearchTree.java
import java.util.ArrayList;
import java.util.List;
class SearchTree {
private SearchTreeNode root;
private List<Dancer> members = new ArrayList<>();
SearchTree(SearchTreeNode node) {
this.root = node;
}
SearchTreeNode getRoot() {
return root;
}
SearchTreeNode match(Dancer d) {
return this.root.match(new SearchTreeNode(d));
}
void delete(SearchTreeNode tn) {
root = delete(root, tn);
}
private SearchTreeNode delete(SearchTreeNode n, SearchTreeNode tn) {
if (n == null) {
return null;
}
if (n == tn) {
// n is the node to be removed
if (n.getLeft() == null && n.getRight() == null) {
return null;
}
if (n.getLeft() == null) {
return n.getRight();
}
if (n.getRight() == null) {
return n.getLeft();
}
// if we get here, then n has 2 children
SearchTreeNode smallest = getLastOnTheLeft(n.getRight());
n.setKey(smallest.getKey());
n.setRight(delete(n.getRight(), smallest));
return n;
}
else if (tn.getKey().getHeight() < n.getKey().getHeight()) {
n.setLeft( delete(n.getLeft(), tn) );
return n;
}
else {
n.setRight( delete(n.getRight(), tn) );
return n;
}
}
private SearchTreeNode getLastOnTheLeft(SearchTreeNode start) {
SearchTreeNode candidate = null;
SearchTreeNode parent = null;
SearchTreeNode node = start;
while (node != null) {
if ( node.getLeft() != null ) {
parent = node;
candidate = node.getLeft();
}
node = node.getLeft();
}
if (parent != null) {
parent.setLeft(null);
}
return candidate;
}
List<Dancer> getMembers() {
members = new ArrayList<>();
preOrderTraversal(root);
return members;
}
private void preOrderTraversal(SearchTreeNode root){
if (root == null) {
return;
}
members.add(root.getKey());
preOrderTraversal(root.getLeft());
preOrderTraversal(root.getRight());
}
}
SearchTreeNode.java
public class SearchTreeNode {
private Dancer key;
private SearchTreeNode left;
private SearchTreeNode right;
SearchTreeNode(Dancer key) {
this.key = key;
this.left = null;
this.right = null;
}
void setKey(Dancer key) {
this.key = key;
}
Dancer getKey() {
return key;
}
void setLeft(SearchTreeNode left) {
this.left = left;
}
SearchTreeNode getLeft() {
return left;
}
void setRight(SearchTreeNode right) {
this.right = right;
}
SearchTreeNode getRight() {
return right;
}
void insert(SearchTreeNode node) {
if (node.key.getHeight() < this.key.getHeight()) {
if (left != null) {
left.insert(node);
} else {
this.setLeft(node);
}
} else {
if (right != null) {
this.getRight().insert(node);
} else {
this.setRight(node);
}
}
}
SearchTreeNode match(SearchTreeNode node) {
if (node.getKey().getGender().equals(Dancer.Gender.MALE)) {
if (key.getHeight() < node.getKey().getHeight()) {
if (right != null) {
return right.match(node);
} else {
return this;
}
} else {
if (left != null) {
return left.match(node);
} else {
return null;
}
}
} if (node.getKey().getGender().equals(Dancer.Gender.FEMALE)) {
if (key.getHeight() > node.getKey().getHeight()) {
if (left != null) {
return left.match(node);
} else {
return this;
}
} else {
if (right != null) {
return right.match(node);
} else {
return null;
}
}
}
return node;
}
#Override
public String toString() {
return "SearchTreeNode {" +
"key = " + key +
'}';
}
}

Java - JUnit testing for balanced BinarySearchTree

I've written a working Binary Search Tree and want to construct some JUnit tests to go along with it. I'm working on three: one to find the maximum value (InOrder traversal), one to remove this maximum value, and one to check if my Binary Tree is balanced. I've written the first two, but can't quite figure out how to nail the last test -- checking for balance. I'd appreciate some guidance, as I feel like I've overlooked something.
My test methods:
public class BSTreePreLabTest {
#Test
public void testFindMax() {
BSTree<Integer> tree = new BSTree<Integer>();
tree.addElement(15);
tree.addElement(16);
tree.addElement(17);
tree.addElement(18);
tree.addElement(19);
tree.addElement(20);
assertEquals("20", tree.findMax().toString());
}
#Test
public void testRemoveMax() {
BSTree<Integer> tree = new BSTree<Integer>();
tree.addElement(15);
tree.addElement(16);
tree.addElement(17);
tree.addElement(18);
tree.addElement(19);
tree.addElement(20);
tree.removeMax();
assertEquals("Inorder traversal: [15, 16, 17, 18, 19]", tree.toString());
}
And my main BinarySearchTree method, for reference, if needed:
public class BSTree<T> {
private BSTreeNode<T> root = null;
private int count;
public BSTree(T element) {
root = new BSTreeNode<T>(element);
count = 1;
}
public BSTree() {
root = null;
count = 0;
}
public void addElement(T element) {
if (isEmpty()) {
root = new BSTreeNode<T>(element);
}
else {
BSTreeNode<T> current = root;
BSTreeNode<T> previous = null;
Comparable<T> comparableElement = (Comparable<T>) element;
while (current != null) {
if (comparableElement.compareTo(current.getElement()) < 0) {
previous = current;
current = current.getLeft();
}
else {
previous = current;
current = current.getRight();
}
}
BSTreeNode<T> newNode = new BSTreeNode<T>(element);
if (comparableElement.compareTo(previous.getElement()) < 0)
previous.setLeft(newNode);
else
previous.setRight(newNode);
}
count++;
}
public boolean isEmpty() {
return root == null;
}
public int size() {
return count;
}
public T find(T targetElement) throws ElementNotFoundException {
BSTreeNode<T> current = findNode(targetElement, root);
if (current == null)
throw new ElementNotFoundException("BSTree");
return (current.getElement());
}
private BSTreeNode<T> findNode(T targetElement, BSTreeNode<T> next) {
if (next == null)
return null;
if (next.getElement().equals(targetElement))
return next;
BSTreeNode<T> temp = findNode(targetElement, next.getLeft());
if (temp == null)
temp = findNode(targetElement, next.getRight());
return temp;
}
public T removeElement(T targetElement) throws ElementNotFoundException {
T result = null;
if (isEmpty())
throw new ElementNotFoundException("BSTree");
else {
BSTreeNode<T> parent = null;
if (((Comparable<T>) targetElement).equals(root.getElement())) {
result = root.getElement();
BSTreeNode<T> temp = replacement(root);
if (temp == null)
root = null;
else {
root.setElement(temp.getElement());
root.setRight(temp.getRight());
root.setLeft(temp.getLeft());
}
} else {
parent = root;
if (((Comparable) targetElement).compareTo(root.getElement()) < 0)
result = removeElement(targetElement, root.getLeft(), parent);
else
result = removeElement(targetElement, root.getRight(), parent);
}
}
count--;
return result;
}
private T removeElement(T targetElement, BSTreeNode<T> node,
BSTreeNode<T> parent) throws ElementNotFoundException {
T result = null;
if (node == null)
throw new ElementNotFoundException("BSTree");
else {
if (((Comparable<T>) targetElement).equals(node.getElement())) {
result = node.getElement();
BSTreeNode<T> temp = replacement(node);
if (parent.getRight() == node)
parent.setRight(temp);
else
parent.setLeft(temp);
} else {
parent = node;
if (((Comparable) targetElement).compareTo(node.getElement()) < 0)
result = removeElement(targetElement, node.getLeft(),
parent);
else
result = removeElement(targetElement, node.getRight(),
parent);
}
}
return result;
}
private BSTreeNode<T> replacement(BSTreeNode<T> node) {
BSTreeNode<T> result = null;
if ((node.getLeft() == null) && (node.getRight() == null))
result = null;
else if ((node.getLeft() != null) && (node.getRight() == null))
result = node.getLeft();
else if ((node.getLeft() == null) && (node.getRight() != null))
result = node.getRight();
else {
BSTreeNode<T> current = node.getRight();
BSTreeNode<T> parent = node;
while (current.getLeft() != null) {
parent = current;
current = current.getLeft();
}
current.setLeft(node.getLeft());
if (node.getRight() != current) {
parent.setLeft(current.getRight());
current.setRight(node.getRight());
}
result = current;
}
return result;
}
public String toString()
{
ArrayList<T> temp = new ArrayList<T>();
inOrder(root, temp);
return "Inorder traversal: " + temp.toString();
}
public Iterator<T> iterator()
{
return iteratorInOrder();
}
public Iterator<T> iteratorInOrder()
{
ArrayList<T> tempList = new ArrayList<T>();
inOrder(root, tempList);
return tempList.iterator();
}
public T findMax(){
T result = null;
if (isEmpty())
throw new ElementNotFoundException ("binary tree");
else {
BSTreeNode<T> current = root;
while (current.getRight() != null)
current = current.getRight();
result = current.getElement();
}
return result;
}
public T removeMax(){
T result = null;
if (isEmpty())
throw new ElementNotFoundException("binary tree");
else
{
if (root.getRight() == null)
{
result = root.getElement();
root = root.getLeft();
}
else
{
BSTreeNode<T> parent = root;
BSTreeNode<T> current = root.getRight();
while (current.getRight() != null)
{
parent = current;
current = current.getRight();
}
result = current.getElement();
parent.setRight(current.getLeft());
}
count--;
}
return result;
}
protected void inOrder(BSTreeNode<T> node, ArrayList<T> tempList) {
if (node != null) {
inOrder(node.getLeft(), tempList);
tempList.add(node.getElement());
inOrder(node.getRight(), tempList);
}
}
}
You can write a function to find the height of left and right sub-tree
int height(Node node)
{
if (node == null)
return 0;
return 1 + Math.max(height(node.left), height(node.right));
}
then, you can write another method to check if the tree is balanced
boolean isBalanced(Node node)
{
int lh;
int rh;
if (node == null)
return true;
lh = height(node.left);
rh = height(node.right);
if (Math.abs(lh - rh) <= 1
&& isBalanced(node.left)
&& isBalanced(node.right)) {
return true;
}
return false;
}
and then, you can write a JUnit test case to test your isBalanced().
I hope this helps!

Couting leaves in a binary tree

I have been trying to figure out why my countingLeaves method cannot be found when I call it from my tester class.
My compiler gives me the error TreeTester.java:25: error: cannot find symbol
countLeaves();
^
symbol: method countLeaves()
location: class TreeTester
public class BinarySearchTree
{
private Node root;
public BinarySearchTree()
{
root = null;
}
public void add(Comparable obj)
{
Node newNode = new Node();
newNode.data = obj;
newNode.left = null;
newNode.right = null;
if (root == null) { root = newNode; }
else { root.addNode(newNode); }
}
public boolean find(Comparable obj)
{
Node current = root;
while (current != null)
{
int d = current.data.compareTo(obj);
if (d == 0) { return true; }
else if (d > 0) { current = current.left; }
else { current = current.right; }
}
return false;
}
public void remove(Comparable obj)
{
Node toBeRemoved = root;
Node parent = null;
boolean found = false;
while (!found && toBeRemoved != null)
{
int d = toBeRemoved.data.compareTo(obj);
if (d == 0) { found = true; }
else
{
parent = toBeRemoved;
if (d > 0) { toBeRemoved = toBeRemoved.left; }
else { toBeRemoved = toBeRemoved.right; }
}
}
if (!found) { return; }
if (toBeRemoved.left == null || toBeRemoved.right == null)
{
Node newChild;
if (toBeRemoved.left == null)
{
newChild = toBeRemoved.right;
}
else
{
newChild = toBeRemoved.left;
}
if (parent == null) // Found in root
{
root = newChild;
}
else if (parent.left == toBeRemoved)
{
parent.left = newChild;
}
else
{
parent.right = newChild;
}
return;
}
Node smallestParent = toBeRemoved;
Node smallest = toBeRemoved.right;
while (smallest.left != null)
{
smallestParent = smallest;
smallest = smallest.left;
}
toBeRemoved.data = smallest.data;
if (smallestParent == toBeRemoved)
{
smallestParent.right = smallest.right;
}
else
{
smallestParent.left = smallest.right;
}
}
public void print()
{
print(root);
System.out.println();
}
private static void print(Node parent)
{
if (parent == null) { return; }
print(parent.left);
System.out.print(parent.data + " ");
print(parent.right);
}
public int countLeaves(Node node)
{
if(node == null)
return 0;
else if(node.left == null && node.right == null)
{
return 1;
}
else
{
return countLeaves(node.left) + countLeaves(node.right);
}
}
class Node
{
public Comparable data;
public Node left;
public Node right;
public void addNode(Node newNode)
{
int comp = newNode.data.compareTo(data);
if (comp < 0)
{
if (left == null) { left = newNode; }
else { left.addNode(newNode); }
}
else if (comp > 0)
{
if (right == null) { right = newNode; }
else { right.addNode(newNode); }
}
}
}
}
The tester class used
public class TreeTester
{
public static void main(String[] args)
{
BinarySearchTree t = new BinarySearchTree();
t.add("D");
t.add("B");
t.add("A");
t.add("C");
t.add("F");
t.add("E");
t.add("I");
t.add("G");
t.add("H");
t.add("J");
t.remove("A"); // Removing leaf
t.remove("B"); // Removing element with one child
t.remove("F"); // Removing element with two children
t.remove("D"); // Removing root
t.print();
System.out.println("Expected: C E G H I J");
countLeaves(t);
}
}
The countLeaves needs a Node, not a BinarySearchTree.
You may add a method in BinarySearchTree as this:
Node getRoot(){return root;}
Amd use countLeaves(t.getRoot()).
The countLeaves needs a Node, not a BinarySearchTree.

java-recursive binary search tree

I've written a boolean insert method that inserts values into a binary search tree which inserts the value if the value is not already there and returns true if so, and returns false if the value is already there so inserts nothing. I am trying to convert this iterative method into all recursion with no loops at all but I am having trouble with figuring out how. Any help is appreciated!
public boolean insert(int value) {
Node travel= root, prev= null, newNode;
boolean result= true;
while (travel != null && travel.data != value) {
prev= travel;
if (value < travel.data)
travel= travel.left;
else travel= travel.right;
}
if (travel != null)
result= false;
else
if (root == null)
root= new Node(value);
else
if (value < prev.data)
prev.left= new Node(value);
else prev.right= new Node(value);
return result;
}
http://www.java2s.com/Code/Java/Collections-Data-Structure/BinaryTree.htm
public class BinarySearchTree {
private Node root;
public boolean insert(int value) {
if (root == null) {
root = new Node(value);
return true;
} else {
return insert(root, value);
}
}
private boolean insert(Node node, int value) {
if (value < node.value) {
if (node.left != null) {
return insert(node.left, value);
} else {
node.left = new Node(value);
return true;
}
} else if (value > node.value) {
if (node.right != null) {
return insert(node.right, value);
} else {
node.right = new Node(value);
return true;
}
} else {
return false;
}
}
public void printInOrder(Node node) {
if (node != null) {
printInOrder(node.left);
System.out.println("Traversed " + node.value);
printInOrder(node.right);
}
}
public static void main(String[] args) {
BinarySearchTree t = new BinarySearchTree();
System.out.println("insert 5: " + t.insert(5));
System.out.println("insert 4: " + t.insert(4));
System.out.println("insert 7: " + t.insert(7));
System.out.println("insert 4: " + t.insert(4));
t.printInOrder(t.root);
}
}
class Node {
Node left;
Node right;
int value;
public Node(int value) {
this.value = value;
}
}
You may try the following:
public boolean insert(int value) {
return insert(value, root);
}
public boolean insert(int value, Node explore) {
if (explore != null) {
if (value < explore.data) {
if (explore.left != null) {
return insert(value, explore.left);
} else {
explore.left = new Node(value);
return true;
}
} else if (value > explore.data) {
if (explore.right != null) {
return insert(value, explore.right);
} else {
explore.right = new Node(value);
return true;
}
} else {
// In this case the value already exists
return false;
}
} else {
explore = new Node(value);
}
return true;
}

Binary Search Tree - Java Implementation

I'm writing a program that utilizes a binary search tree to store data. In a previous program (unrelated), I was able to implement a linked list using an implementation provided with Java SE6. Is there something similar for a binary search tree, or will I need to "start from scratch"?
You can use a TreeMap data structure. TreeMap is implemented as a red black tree, which is a self-balancing binary search tree.
According to Collections Framework Overview you have two balanced tree implementations:
TreeSet
TreeMap
Here is my simple binary search tree implementation in Java SE 1.8:
public class BSTNode
{
int data;
BSTNode parent;
BSTNode left;
BSTNode right;
public BSTNode(int data)
{
this.data = data;
this.left = null;
this.right = null;
this.parent = null;
}
public BSTNode()
{
}
}
public class BSTFunctions
{
BSTNode ROOT;
public BSTFunctions()
{
this.ROOT = null;
}
void insertNode(BSTNode node, int data)
{
if (node == null)
{
node = new BSTNode(data);
ROOT = node;
}
else if (data < node.data && node.left == null)
{
node.left = new BSTNode(data);
node.left.parent = node;
}
else if (data >= node.data && node.right == null)
{
node.right = new BSTNode(data);
node.right.parent = node;
}
else
{
if (data < node.data)
{
insertNode(node.left, data);
}
else
{
insertNode(node.right, data);
}
}
}
public boolean search(BSTNode node, int data)
{
if (node == null)
{
return false;
}
else if (node.data == data)
{
return true;
}
else
{
if (data < node.data)
{
return search(node.left, data);
}
else
{
return search(node.right, data);
}
}
}
public void printInOrder(BSTNode node)
{
if (node != null)
{
printInOrder(node.left);
System.out.print(node.data + " - ");
printInOrder(node.right);
}
}
public void printPostOrder(BSTNode node)
{
if (node != null)
{
printPostOrder(node.left);
printPostOrder(node.right);
System.out.print(node.data + " - ");
}
}
public void printPreOrder(BSTNode node)
{
if (node != null)
{
System.out.print(node.data + " - ");
printPreOrder(node.left);
printPreOrder(node.right);
}
}
public static void main(String[] args)
{
BSTFunctions f = new BSTFunctions();
/**
* Insert
*/
f.insertNode(f.ROOT, 20);
f.insertNode(f.ROOT, 5);
f.insertNode(f.ROOT, 25);
f.insertNode(f.ROOT, 3);
f.insertNode(f.ROOT, 7);
f.insertNode(f.ROOT, 27);
f.insertNode(f.ROOT, 24);
/**
* Print
*/
f.printInOrder(f.ROOT);
System.out.println("");
f.printPostOrder(f.ROOT);
System.out.println("");
f.printPreOrder(f.ROOT);
System.out.println("");
/**
* Search
*/
System.out.println(f.search(f.ROOT, 27) ? "Found" : "Not Found");
System.out.println(f.search(f.ROOT, 10) ? "Found" : "Not Found");
}
}
And the output is:
3 - 5 - 7 - 20 - 24 - 25 - 27 -
3 - 7 - 5 - 24 - 27 - 25 - 20 -
20 - 5 - 3 - 7 - 25 - 24 - 27 -
Found
Not Found
Here is a sample implementation:
import java.util.*;
public class MyBSTree<K,V> implements MyTree<K,V>{
private BSTNode<K,V> _root;
private int _size;
private Comparator<K> _comparator;
private int mod = 0;
public MyBSTree(Comparator<K> comparator){
_comparator = comparator;
}
public Node<K,V> root(){
return _root;
}
public int size(){
return _size;
}
public boolean containsKey(K key){
if(_root == null){
return false;
}
BSTNode<K,V> node = _root;
while (node != null){
int comparison = compare(key, node.key());
if(comparison == 0){
return true;
}else if(comparison <= 0){
node = node._left;
}else {
node = node._right;
}
}
return false;
}
private int compare(K k1, K k2){
if(_comparator != null){
return _comparator.compare(k1,k2);
}
else {
Comparable<K> comparable = (Comparable<K>)k1;
return comparable.compareTo(k2);
}
}
public V get(K key){
Node<K,V> node = node(key);
return node != null ? node.value() : null;
}
private BSTNode<K,V> node(K key){
if(_root != null){
BSTNode<K,V> node = _root;
while (node != null){
int comparison = compare(key, node.key());
if(comparison == 0){
return node;
}else if(comparison <= 0){
node = node._left;
}else {
node = node._right;
}
}
}
return null;
}
public void add(K key, V value){
if(key == null){
throw new IllegalArgumentException("key");
}
if(_root == null){
_root = new BSTNode<K, V>(key, value);
}
BSTNode<K,V> prev = null, curr = _root;
boolean lastChildLeft = false;
while(curr != null){
int comparison = compare(key, curr.key());
prev = curr;
if(comparison == 0){
curr._value = value;
return;
}else if(comparison < 0){
curr = curr._left;
lastChildLeft = true;
}
else{
curr = curr._right;
lastChildLeft = false;
}
}
mod++;
if(lastChildLeft){
prev._left = new BSTNode<K, V>(key, value);
}else {
prev._right = new BSTNode<K, V>(key, value);
}
}
private void removeNode(BSTNode<K,V> curr){
if(curr.left() == null && curr.right() == null){
if(curr == _root){
_root = null;
}else{
if(curr.isLeft()) curr._parent._left = null;
else curr._parent._right = null;
}
}
else if(curr._left == null && curr._right != null){
curr._key = curr._right._key;
curr._value = curr._right._value;
curr._left = curr._right._left;
curr._right = curr._right._right;
}
else if(curr._left != null && curr._right == null){
curr._key = curr._left._key;
curr._value = curr._left._value;
curr._right = curr._left._right;
curr._left = curr._left._left;
}
else { // both left & right exist
BSTNode<K,V> x = curr._left;
// find right-most node of left sub-tree
while (x._right != null){
x = x._right;
}
// move that to current
curr._key = x._key;
curr._value = x._value;
// delete duplicate data
removeNode(x);
}
}
public V remove(K key){
BSTNode<K,V> curr = _root;
V val = null;
while(curr != null){
int comparison = compare(key, curr.key());
if(comparison == 0){
val = curr._value;
removeNode(curr);
mod++;
break;
}else if(comparison < 0){
curr = curr._left;
}
else{
curr = curr._right;
}
}
return val;
}
public Iterator<MyTree.Node<K,V>> iterator(){
return new MyIterator();
}
private class MyIterator implements Iterator<Node<K,V>>{
int _startMod;
Stack<BSTNode<K,V>> _stack;
public MyIterator(){
_startMod = MyBSTree.this.mod;
_stack = new Stack<BSTNode<K, V>>();
BSTNode<K,V> node = MyBSTree.this._root;
while (node != null){
_stack.push(node);
node = node._left;
}
}
public void remove(){
throw new UnsupportedOperationException();
}
public boolean hasNext(){
if(MyBSTree.this.mod != _startMod){
throw new ConcurrentModificationException();
}
return !_stack.empty();
}
public Node<K,V> next(){
if(MyBSTree.this.mod != _startMod){
throw new ConcurrentModificationException();
}
if(!hasNext()){
throw new NoSuchElementException();
}
BSTNode<K,V> node = _stack.pop();
BSTNode<K,V> x = node._right;
while (x != null){
_stack.push(x);
x = x._left;
}
return node;
}
}
#Override
public String toString(){
if(_root == null) return "[]";
return _root.toString();
}
private static class BSTNode<K,V> implements Node<K,V>{
K _key;
V _value;
BSTNode<K,V> _left, _right, _parent;
public BSTNode(K key, V value){
if(key == null){
throw new IllegalArgumentException("key");
}
_key = key;
_value = value;
}
public K key(){
return _key;
}
public V value(){
return _value;
}
public Node<K,V> left(){
return _left;
}
public Node<K,V> right(){
return _right;
}
public Node<K,V> parent(){
return _parent;
}
boolean isLeft(){
if(_parent == null) return false;
return _parent._left == this;
}
boolean isRight(){
if(_parent == null) return false;
return _parent._right == this;
}
#Override
public boolean equals(Object o){
if(o == null){
return false;
}
try{
BSTNode<K,V> node = (BSTNode<K,V>)o;
return node._key.equals(_key) && ((_value == null && node._value == null) || (_value != null && _value.equals(node._value)));
}catch (ClassCastException ex){
return false;
}
}
#Override
public int hashCode(){
int hashCode = _key.hashCode();
if(_value != null){
hashCode ^= _value.hashCode();
}
return hashCode;
}
#Override
public String toString(){
String leftStr = _left != null ? _left.toString() : "";
String rightStr = _right != null ? _right.toString() : "";
return "["+leftStr+" "+_key+" "+rightStr+"]";
}
}
}
This program has a functions for
Add Node
Display BST(Inorder)
Find Element
Find Successor
class BNode{
int data;
BNode left, right;
public BNode(int data){
this.data = data;
this.left = null;
this.right = null;
}
}
public class BST {
static BNode root;
public int add(int value){
BNode newNode, current;
newNode = new BNode(value);
if(root == null){
root = newNode;
current = root;
}
else{
current = root;
while(current.left != null || current.right != null){
if(newNode.data < current.data){
if(current.left != null)
current = current.left;
else
break;
}
else{
if(current.right != null)
current = current.right;
else
break;
}
}
if(newNode.data < current.data)
current.left = newNode;
else
current.right = newNode;
}
return value;
}
public void inorder(BNode root){
if (root != null) {
inorder(root.left);
System.out.println(root.data);
inorder(root.right);
}
}
public boolean find(int value){
boolean flag = false;
BNode current;
current = root;
while(current!= null){
if(current.data == value){
flag = true;
break;
}
else if(current.data > value)
current = current.left;
else
current = current.right;
}
System.out.println("Is "+value+" present in tree? : "+flag);
return flag;
}
public void successor(int value){
BNode current;
current = root;
if(find(value)){
while(current.data != value){
if(value < current.data && current.left != null){
System.out.println("Node is: "+current.data);
current = current.left;
}
else if(value > current.data && current.right != null){
System.out.println("Node is: "+current.data);
current = current.right;
}
}
}
else
System.out.println(value+" Element is not present in tree");
}
public static void main(String[] args) {
BST b = new BST();
b.add(50);
b.add(30);
b.add(20);
b.add(40);
b.add(70);
b.add(60);
b.add(80);
b.add(90);
b.inorder(root);
b.find(30);
b.find(90);
b.find(100);
b.find(50);
b.successor(90);
System.out.println();
b.successor(70);
}
}
Here is the complete Implementation of Binary Search Tree In Java insert,search,countNodes,traversal,delete,empty,maximum & minimum node,find parent node,print all leaf node, get level,get height, get depth,print left view, mirror view
import java.util.NoSuchElementException;
import java.util.Scanner;
import org.junit.experimental.max.MaxCore;
class BSTNode {
BSTNode left = null;
BSTNode rigth = null;
int data = 0;
public BSTNode() {
super();
}
public BSTNode(int data) {
this.left = null;
this.rigth = null;
this.data = data;
}
#Override
public String toString() {
return "BSTNode [left=" + left + ", rigth=" + rigth + ", data=" + data + "]";
}
}
class BinarySearchTree {
BSTNode root = null;
public BinarySearchTree() {
}
public void insert(int data) {
BSTNode node = new BSTNode(data);
if (root == null) {
root = node;
return;
}
BSTNode currentNode = root;
BSTNode parentNode = null;
while (true) {
parentNode = currentNode;
if (currentNode.data == data)
throw new IllegalArgumentException("Duplicates nodes note allowed in Binary Search Tree");
if (currentNode.data > data) {
currentNode = currentNode.left;
if (currentNode == null) {
parentNode.left = node;
return;
}
} else {
currentNode = currentNode.rigth;
if (currentNode == null) {
parentNode.rigth = node;
return;
}
}
}
}
public int countNodes() {
return countNodes(root);
}
private int countNodes(BSTNode node) {
if (node == null) {
return 0;
} else {
int count = 1;
count += countNodes(node.left);
count += countNodes(node.rigth);
return count;
}
}
public boolean searchNode(int data) {
if (empty())
return empty();
return searchNode(data, root);
}
public boolean searchNode(int data, BSTNode node) {
if (node != null) {
if (node.data == data)
return true;
else if (node.data > data)
return searchNode(data, node.left);
else if (node.data < data)
return searchNode(data, node.rigth);
}
return false;
}
public boolean delete(int data) {
if (empty())
throw new NoSuchElementException("Tree is Empty");
BSTNode currentNode = root;
BSTNode parentNode = root;
boolean isLeftChild = false;
while (currentNode.data != data) {
parentNode = currentNode;
if (currentNode.data > data) {
isLeftChild = true;
currentNode = currentNode.left;
} else if (currentNode.data < data) {
isLeftChild = false;
currentNode = currentNode.rigth;
}
if (currentNode == null)
return false;
}
// CASE 1: node with no child
if (currentNode.left == null && currentNode.rigth == null) {
if (currentNode == root)
root = null;
if (isLeftChild)
parentNode.left = null;
else
parentNode.rigth = null;
}
// CASE 2: if node with only one child
else if (currentNode.left != null && currentNode.rigth == null) {
if (root == currentNode) {
root = currentNode.left;
}
if (isLeftChild)
parentNode.left = currentNode.left;
else
parentNode.rigth = currentNode.left;
} else if (currentNode.rigth != null && currentNode.left == null) {
if (root == currentNode)
root = currentNode.rigth;
if (isLeftChild)
parentNode.left = currentNode.rigth;
else
parentNode.rigth = currentNode.rigth;
}
// CASE 3: node with two child
else if (currentNode.left != null && currentNode.rigth != null) {
// Now we have to find minimum element in rigth sub tree
// that is called successor
BSTNode successor = getSuccessor(currentNode);
if (currentNode == root)
root = successor;
if (isLeftChild)
parentNode.left = successor;
else
parentNode.rigth = successor;
successor.left = currentNode.left;
}
return true;
}
private BSTNode getSuccessor(BSTNode deleteNode) {
BSTNode successor = null;
BSTNode parentSuccessor = null;
BSTNode currentNode = deleteNode.left;
while (currentNode != null) {
parentSuccessor = successor;
successor = currentNode;
currentNode = currentNode.left;
}
if (successor != deleteNode.rigth) {
parentSuccessor.left = successor.left;
successor.rigth = deleteNode.rigth;
}
return successor;
}
public int nodeWithMinimumValue() {
return nodeWithMinimumValue(root);
}
private int nodeWithMinimumValue(BSTNode node) {
if (node.left != null)
return nodeWithMinimumValue(node.left);
return node.data;
}
public int nodewithMaximumValue() {
return nodewithMaximumValue(root);
}
private int nodewithMaximumValue(BSTNode node) {
if (node.rigth != null)
return nodewithMaximumValue(node.rigth);
return node.data;
}
public int parent(int data) {
return parent(root, data);
}
private int parent(BSTNode node, int data) {
if (empty())
throw new IllegalArgumentException("Empty");
if (root.data == data)
throw new IllegalArgumentException("No Parent node found");
BSTNode parent = null;
BSTNode current = node;
while (current.data != data) {
parent = current;
if (current.data > data)
current = current.left;
else
current = current.rigth;
if (current == null)
throw new IllegalArgumentException(data + " is not a node in tree");
}
return parent.data;
}
public int sibling(int data) {
return sibling(root, data);
}
private int sibling(BSTNode node, int data) {
if (empty())
throw new IllegalArgumentException("Empty");
if (root.data == data)
throw new IllegalArgumentException("No Parent node found");
BSTNode cureent = node;
BSTNode parent = null;
boolean isLeft = false;
while (cureent.data != data) {
parent = cureent;
if (cureent.data > data) {
cureent = cureent.left;
isLeft = true;
} else {
cureent = cureent.rigth;
isLeft = false;
}
if (cureent == null)
throw new IllegalArgumentException("No Parent node found");
}
if (isLeft) {
if (parent.rigth != null) {
return parent.rigth.data;
} else
throw new IllegalArgumentException("No Sibling is there");
} else {
if (parent.left != null)
return parent.left.data;
else
throw new IllegalArgumentException("No Sibling is there");
}
}
public void leafNodes() {
if (empty())
throw new IllegalArgumentException("Empty");
leafNode(root);
}
private void leafNode(BSTNode node) {
if (node == null)
return;
if (node.rigth == null && node.left == null)
System.out.print(node.data + " ");
leafNode(node.left);
leafNode(node.rigth);
}
public int level(int data) {
if (empty())
throw new IllegalArgumentException("Empty");
return level(root, data, 1);
}
private int level(BSTNode node, int data, int level) {
if (node == null)
return 0;
if (node.data == data)
return level;
int result = level(node.left, data, level + 1);
if (result != 0)
return result;
result = level(node.rigth, data, level + 1);
return result;
}
public int depth() {
return depth(root);
}
private int depth(BSTNode node) {
if (node == null)
return 0;
else
return 1 + Math.max(depth(node.left), depth(node.rigth));
}
public int height() {
return height(root);
}
private int height(BSTNode node) {
if (node == null)
return 0;
else
return 1 + Math.max(height(node.left), height(node.rigth));
}
public void leftView() {
leftView(root);
}
private void leftView(BSTNode node) {
if (node == null)
return;
int height = height(node);
for (int i = 1; i <= height; i++) {
printLeftView(node, i);
}
}
private boolean printLeftView(BSTNode node, int level) {
if (node == null)
return false;
if (level == 1) {
System.out.print(node.data + " ");
return true;
} else {
boolean left = printLeftView(node.left, level - 1);
if (left)
return true;
else
return printLeftView(node.rigth, level - 1);
}
}
public void mirroeView() {
BSTNode node = mirroeView(root);
preorder(node);
System.out.println();
inorder(node);
System.out.println();
postorder(node);
System.out.println();
}
private BSTNode mirroeView(BSTNode node) {
if (node == null || (node.left == null && node.rigth == null))
return node;
BSTNode temp = node.left;
node.left = node.rigth;
node.rigth = temp;
mirroeView(node.left);
mirroeView(node.rigth);
return node;
}
public void preorder() {
preorder(root);
}
private void preorder(BSTNode node) {
if (node != null) {
System.out.print(node.data + " ");
preorder(node.left);
preorder(node.rigth);
}
}
public void inorder() {
inorder(root);
}
private void inorder(BSTNode node) {
if (node != null) {
inorder(node.left);
System.out.print(node.data + " ");
inorder(node.rigth);
}
}
public void postorder() {
postorder(root);
}
private void postorder(BSTNode node) {
if (node != null) {
postorder(node.left);
postorder(node.rigth);
System.out.print(node.data + " ");
}
}
public boolean empty() {
return root == null;
}
}
public class BinarySearchTreeTest {
public static void main(String[] l) {
System.out.println("Weleome to Binary Search Tree");
Scanner scanner = new Scanner(System.in);
boolean yes = true;
BinarySearchTree tree = new BinarySearchTree();
do {
System.out.println("\n1. Insert");
System.out.println("2. Search Node");
System.out.println("3. Count Node");
System.out.println("4. Empty Status");
System.out.println("5. Delete Node");
System.out.println("6. Node with Minimum Value");
System.out.println("7. Node with Maximum Value");
System.out.println("8. Find Parent node");
System.out.println("9. Count no of links");
System.out.println("10. Get the sibling of any node");
System.out.println("11. Print all the leaf node");
System.out.println("12. Get the level of node");
System.out.println("13. Depth of the tree");
System.out.println("14. Height of Binary Tree");
System.out.println("15. Left View");
System.out.println("16. Mirror Image of Binary Tree");
System.out.println("Enter Your Choice :: ");
int choice = scanner.nextInt();
switch (choice) {
case 1:
try {
System.out.println("Enter Value");
tree.insert(scanner.nextInt());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 2:
System.out.println("Enter the node");
System.out.println(tree.searchNode(scanner.nextInt()));
break;
case 3:
System.out.println(tree.countNodes());
break;
case 4:
System.out.println(tree.empty());
break;
case 5:
try {
System.out.println("Enter the node");
System.out.println(tree.delete(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
case 6:
try {
System.out.println(tree.nodeWithMinimumValue());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 7:
try {
System.out.println(tree.nodewithMaximumValue());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 8:
try {
System.out.println("Enter the node");
System.out.println(tree.parent(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 9:
try {
System.out.println(tree.countNodes() - 1);
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 10:
try {
System.out.println("Enter the node");
System.out.println(tree.sibling(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 11:
try {
tree.leafNodes();
} catch (Exception e) {
System.out.println(e.getMessage());
}
case 12:
try {
System.out.println("Enter the node");
System.out.println("Level is : " + tree.level(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 13:
try {
System.out.println(tree.depth());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 14:
try {
System.out.println(tree.height());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 15:
try {
tree.leftView();
System.out.println();
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 16:
try {
tree.mirroeView();
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
default:
break;
}
tree.preorder();
System.out.println();
tree.inorder();
System.out.println();
tree.postorder();
} while (yes);
scanner.close();
}
}

Categories