I'm using an Apache's HttpRequestHandler to serve data to HTTP clients. I'm generating content (probably a costly process) for clients, on demand.
I want to take care of two cases:
normal consumption, it ends, I want to close resources
client closes connection prematurely, I don't want to keep processing things
I'm using an InputStream (and an InputStreamEntity) that does the process, but I'd like to know if the client closes the resource prematurely (or not) and take actions at the end in both cases.
I've realized that InputStreamEntity.writeTo (which is the method used to send the content to the client) doesn't close the input stream I've declared.
What am I missing?
I've solved this by subclassing InputStreamEntity and making writeTo call close after original behaviour:
public class ClosingInputStreamEntity extends InputStreamEntity {
#Override
public void writeTo(OutputStream os) {
try {
super.writeTo(OutputStream os);
} finally {
// close resources
}
}
}
Related
My program is fetching some images on a min.io server via their Java SDK.
The issue is that even after inputStream.close() the connections remain open from the java code. I can see it with lsof -p <PID>.
After a while, it disappears but sometimes it does not, I guess fast enough, and the java server throws some too many open files errors.
Is there like a garbage collector that removes the connections from the operating system?
How can I prevent these too many open files errors?
Just in case, here is the code:
public static byte[] getImageByImageBinaryId(String imagId) throws IOException {
InputStream object = null;
try {
object = getMinioClientClient().getObject(ServerProperties.MINIO_BUCKET_NAME, imagId);
return IOUtils.toByteArray(object);
} catch (Exception e) {
log.error(e);
} finally {
IOUtils.closeQuietly(object);
}
return null;
}
Internally minio-java uses OkHttp to make HTTP calls. OkHttp, like many Http clients, internally uses a connection pool to speed up repeated calls to the same location. If you need for connections to not persist you can pass in your own OkHttp client to one of the available constructors with your own pooling config but I do not recommend it.
Minio should probably expose a close method to clean up these resources but their expected use case probably involves clients living the whole life of your application.
My server uses a AsynchronousServerSocketChannel that listens for client connections using a CompletionHandler. When a client connection is accepted, the AsynchronousSocketChannel is read, again using a CompletionHandler to receive the data with no timeout.
So far so good, my client connects, writes data that is read by the server, which is able to respond sending data back to the client via the same socket.
When my client terminates, it calls AsynchronousSocketChannel.close(), to close the socket. When this call is made the server is waiting to read data from the socket.
I had expected the call to AsynchronousSocketChannel.close() on the client to translate into a callback to CompletionHandler.completed with a read length of -1 on the server, indicating the socket had been closed, however the callback is to CompletionHandler.failed with the following exception:
java.io.IOException: The specified network name is no longer available.
at sun.nio.ch.Iocp.translateErrorToIOException(Iocp.java:309)
at sun.nio.ch.Iocp.access$700(Iocp.java:46)
at sun.nio.ch.Iocp$EventHandlerTask.run(Iocp.java:399)
at sun.nio.ch.AsynchronousChannelGroupImpl$1.run(AsynchronousChannelGroupImpl.java:112)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:744)
How should a client close a socket, so that it is not seen as an error on the server?
The documentation on close says that it causes
AsynchronousCloseException or ClosedChannelException on the other side.
To cause completed(-1) the client should call shutdownInput.
However, I would treat AsynchronousCloseException and ClosedChannelException as normal shutdown, along with completed(-1).
Looking at stack traces and the implementation sources, you might notice that the exception is thrown by the internal sun.nio.ch.UnixAsynchronousSocketChannelImpl#finish() method which checks for pending read/write operations. So the only way to avoid this exception is to prevent new asynchronous read() and write() calls at some point, and that should be a part of the application's logic.
I've dealt with this exception quite a lot, and in most cases the root problem was in the completion handler's unconditional "continue listening" calls:
conn.read(src, attachment, new CompletionHandler<Integer, T>() {
#Override
public void completed(Integer result, T attachment) {
// Some business logic here
// Below is the problem - unconditional read() call
conn.read(src, attachment, this);
}
#Override
public void failed(Throwable t, T attachment) {
// Exception handling
}
});
To gracefully close the connection, there should be no unconditional async read/write calls. To achieve that, one might need to send an additional message which would mean that no new async data is expected and it's safe to close the connection. And the correct pseudo-code would look something like this:
conn.read(src, attachment, new CompletionHandler<Integer, T>() {
#Override
public void completed(Integer result, T attachment) {
// Some business logic here
if(continueListening()) {
conn.read(src, attachment, this);
}
}
// ...
});
I'm trying to write out to URLConnection#getOutputStream, however, no data is actually sent until I call URLConnection#getInputStream. Even if I set URLConnnection#doInput to false, it still will not send. Does anyone know why this is? There's nothing in the API documentation that describes this.
Java API Documentation on URLConnection: http://download.oracle.com/javase/6/docs/api/java/net/URLConnection.html
Java's Tutorial on Reading from and Writing to a URLConnection: http://download.oracle.com/javase/tutorial/networking/urls/readingWriting.html
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.net.URL;
import java.net.URLConnection;
public class UrlConnectionTest {
private static final String TEST_URL = "http://localhost:3000/test/hitme";
public static void main(String[] args) throws IOException {
URLConnection urlCon = null;
URL url = null;
OutputStreamWriter osw = null;
try {
url = new URL(TEST_URL);
urlCon = url.openConnection();
urlCon.setDoOutput(true);
urlCon.setRequestProperty("Content-Type", "text/plain");
////////////////////////////////////////
// SETTING THIS TO FALSE DOES NOTHING //
////////////////////////////////////////
// urlCon.setDoInput(false);
osw = new OutputStreamWriter(urlCon.getOutputStream());
osw.write("HELLO WORLD");
osw.flush();
/////////////////////////////////////////////////
// MUST CALL THIS OTHERWISE WILL NOT WRITE OUT //
/////////////////////////////////////////////////
urlCon.getInputStream();
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// If getInputStream is called while doInput=false, the following exception is thrown: //
// java.net.ProtocolException: Cannot read from URLConnection if doInput=false (call setDoInput(true)) //
/////////////////////////////////////////////////////////////////////////////////////////////////////////
} catch (Exception e) {
e.printStackTrace();
} finally {
if (osw != null) {
osw.close();
}
}
}
}
The API for URLConnection and HttpURLConnection are (for better or worse) designed for the user to follow a very specific sequence of events:
Set Request Properties
(Optional) getOutputStream(), write to the stream, close the stream
getInputStream(), read from the stream, close the stream
If your request is a POST or PUT, you need the optional step #2.
To the best of my knowledge, the OutputStream is not like a socket, it is not directly connected to an InputStream on the server. Instead, after you close or flush the stream, AND call getInputStream(), your output is built into a Request and sent. The semantics are based on the assumption that you will want to read the response. Every example that I've seen shows this order of events. I would certainly agree with you and others that this API is counterintuitive when compared to the normal stream I/O API.
The tutorial you link to states that "URLConnection is an HTTP-centric class". I interpret that to mean that the methods are designed around a Request-Response model, and make the assumption that is how they will be used.
For what it's worth, I found this bug report that explains the intended operation of the class better than the javadoc documentation. The evaluation of the report states "The only way to send out the request is by calling getInputStream."
Although the getInputStream() method can certainly cause a URLConnection object to initiate an HTTP request, it is not a requirement to do so.
Consider the actual workflow:
Build a request
Submit
Process the response
Step 1 includes the possibility of including data in the request, by way of an HTTP entity. It just so happens that the URLConnection class provides an OutputStream object as the mechanism for providing this data (and rightfully so for many reasons that aren't particularly relevant here). Suffice to say that the streaming nature of this mechanism provides the programmer an amount of flexibility when supplying the data, including the ability to close the output stream (and any input streams feeding it), before finishing the request.
In other words, step 1 allows for supplying a data entity for the request, then continuing to build it (such as by adding headers).
Step 2 is really a virtual step, and can be automated (like it is in the URLConnection class), since submitting a request is meaningless without a response (at least within the confines of the HTTP protocol).
Which brings us to Step 3. When processing an HTTP response, the response entity -- retrieved by calling getInputSteam() -- is just one of the things we might be interested in. A response consists of a status, headers, and optionally an entity. The first time any one of these is requested, the URLConnection will perform virtual step 2 and submit the request.
No matter if an entity is being sent via the connection's output stream or not, and no matter whether a response entity is expected back, a program will ALWAYS want to know the result (as provided by the HTTP status code). Calling getResponseCode() on the URLConnection provides this status, and switching on the result may end the HTTP conversation without ever calling getInputStream().
So, if data is being submitted, and a response entity is not expected, don't do this:
// request is now built, so...
InputStream ignored = urlConnection.getInputStream();
... do this:
// request is now built, so...
int result = urlConnection.getResponseCode();
// act based on this result
As my experiments have shown (java 1.7.0_01) the code:
osw = new OutputStreamWriter(urlCon.getOutputStream());
osw.write("HELLO WORLD");
osw.flush();
Doesn't send anything to the server. It just saves what's written there to the memory buffer. Thus in case you're going to upload a large file via POST - you need to be sure that you have enough memory. On desktop/server it may not be such a big problem, but on android that may result in out of memory error. Here's the example of how the stack trace looks when trying to write to output stream, and memory runs out.
Exception in thread "Thread-488" java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.util.Arrays.copyOf(Arrays.java:2271)
at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113)
at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140)
at sun.net.www.http.PosterOutputStream.write(PosterOutputStream.java:78)
at sun.nio.cs.StreamEncoder.writeBytes(StreamEncoder.java:221)
at sun.nio.cs.StreamEncoder.implWrite(StreamEncoder.java:282)
at sun.nio.cs.StreamEncoder.write(StreamEncoder.java:125)
at sun.nio.cs.StreamEncoder.write(StreamEncoder.java:135)
at java.io.OutputStreamWriter.write(OutputStreamWriter.java:220)
at java.io.Writer.write(Writer.java:157)
at maxela.tables.weboperations.POSTRequest.makePOST(POSTRequest.java:138)
On the bottom of the trace you can see the makePOST() method which does the following:
writer = new OutputStreamWriter(conn.getOutputStream());
for (int j = 0 ; j < 3000 * 100 ; j++)
{
writer.write("&var" + j + "=garbagegarbagegarbage_"+ j);
}
writer.flush();
And writer.write() throws the exception.
Also my experiments have shown that any exception related to the actual connection/IO with the server is thrown only after urlCon.getOutputStream() is called. Even urlCon.connect() seems to be "dummy" method which doesn't do any physical connection.
However if you call urlCon.getContentLengthLong() which returns Content-Length: header field from the server response-headers - then URLConnection.getOutputStream() will be called automatically and in case there's exception - it will be thrown.
The exceptions thrown by urlCon.getOutputStream() are all IOException, and I have met the follwing ones:
try
{
urlCon.getOutputStream();
}
catch (UnknownServiceException ex)
{
System.out.println("UnkownServiceException():" + ex.getMessage());
}
catch (ConnectException ex)
{
System.out.println("ConnectException()");
Logger.getLogger(POSTRequest.class.getName()).log(Level.SEVERE, null, ex);
}
catch (IOException ex) {
System.out.println("IOException():" + ex.getMessage());
Logger.getLogger(POSTRequest.class.getName()).log(Level.SEVERE, null, ex);
}
Hopefully my little research helps to people, as URLConnection class is a bit counter-intuitive in some cases thus, when implementing it - one needs to know what's it deals with.
Second reason is: when working with servers - the work with server may fail because of many reasons (connection, dns, firewall, httpresponses, server not being able to accept connection, server not being able to process request timely). Thus it is important to understand how exceptions raised can explain about what's actually happening with the connection.
Calling getInputStream() signals that the client is finished sending it's request, and is ready to receive the response (per HTTP spec). It seems that the URLConnection class has this notion built into it, and must be flush()ing the output stream when the input stream is asked for.
As the other responder noted, you should be able to call flush() yourself to trigger the write.
The fundamental reason is that it has to compute a Content-length header automatically (unless you are using chunked or streaming mode). It can't do that until it has seen all the output, and it has to send it before the output, so it has to buffer the output. And it needs a decisive event to know when the last output has actually been written. So it uses getInputStream() for that. At that time it writes the headers including the content-length, then the output, then it starts reading the input.
(Repost from your first question. Shameless self-plug)
Don't fiddle around with URLConnection yourself, let Resty handle it.
Here's the code you would need to write (I assume you are getting text back):
import static us.monoid.web.Resty.*;
import us.monoid.web.Resty;
...
new Resty().text(TEST_URL, content("HELLO WORLD")).toString();
How can I detect that the client side of a tomcat servlet request has disconnected? I've read that I should do a response.getOutputStream().print(), then a response.getOutputStream().flush() and catch an IOException, but is there a way I can detect this without writing any data?
EDIT:
The servlet sends out a data stream that doesn't necessarily end, but doesn't necessarily have any data flowing through it (it's a stream of real time events). I need to actually detect when the client disconnects because I have some cleanup I have to do at that point (resources to release, etcetera). If I have the HttpServletRequest available, will trying to read from that throw an IOException if the client disconnects?
is there a way I can detect this
without writing any data?
No because there isn't a way in TCP/IP to detect it without writing any data.
Don't worry about it. Just complete the request actions and write the response. If the client has disappeared, that will cause an IOException: connection reset, which will be thrown into the servlet container. Nothing you have to do about that.
I need to actually detect when the client disconnects because I have some cleanup I have to do at that point (resources to release, etcetera).
There the finally block is for. It will be executed regardless of the outcome. E.g.
OutputStream output = null;
try {
output = response.getOutputStream();
// ...
output.flush();
// ...
} finally {
// Do your cleanup here.
}
If I have the HttpServletRequest available, will trying to read from that throw an IOException if the client disconnects?
Depends on how you're reading from it and how much of request body is already in server memory. In case of normal form encoded requests, whenever you call getParameter() beforehand, it will usually be fully parsed and stored in server memory. Calling the getInputStream() won't be useful at all. Better do it on the response instead.
Have you tried to flush the buffer of the response:
response.flushBuffer();
Seems to throw an IOException when the client disconnected.
In Java, how would you set up a socket listener that listened to a socket for a series of bytes that represented a command and on recieving called a method which parsed the incoming data and invoked the appropriate command?
Clarification:
My issue is not with handling the commands (Which might also be error codes or responses to commands from the server) but with creating the socket and listening to it.
More Clarification:
What I want to do is mimic the following line of .Net (C#) code:
_stream.BeginRead(_data,0, _data.Length, new
AsyncCallback(this.StreamEventHandler), _stream);
Where:
_stream is a network stream created from a socket
_data is an array of Byte of length 9
this.StreamHandler is a delegate (function pointer) which get executed when data is read.
I am rewriting a library from C# into Java and the component I am currently writing passes commands to a server over TCPIP but also has to be able to bubble up events/responses to the layer above it.
In C# this seems to be trivial and it's looking less and less so in Java.
Starting from my other answer: The specific part you request is the one that goes into the section: "Magic goes here". It can be done in ohh so many ways, but one is:
final InputStream in = socket.getInputStream();
// This creates a new thread to service the request.
new Thread(new Runnable(){
public void run(){
byte[] retrievedData= new byte[ITEM_LENGTH];
in.read(retrievedData, 0, ITEM_LENGTH);
in.close();
// Here call your delegate or something to process the data
callSomethingWithTheData(retrievedData);
}
}).start();
Have a small main method which sets up the socket and listens for incoming connections. Pass each connection to a worker object (possibly in its own thread).
The worker object should have two APIs: The server and the client. The client API gets a connection and reads data from it, the server API takes a connection and writes data to it.
I like to keep these two in a single class because that makes it much more simple to keep the two in sync. Use a helper class to encode/decode the data for transmission, so you have single point to decide how to transmit integers, commands, options, etc.
If you want to go further, define a command class and write code to serialize that to a socket connection and read it from it. This way, you worker objects just need to declare which command class they handle and the server/client API gets even more simple (at the expense of the command class).
I would
put each command into a class of its own, where each class implements a specific interface (e.g. Command)
create a Map<String,Command> which contains a lookup table from each command string to an instance of the class that implements that command
This should help.
Lesson 1: Socket Communications
The TCP connection provides you with one InputStream and one OutputStream. You could just poll the InputStream continuously for the next command (and its inputs) on a dedicated thread. ByteBuffer.wrap(byte[] array) may be useful in interpreting the bytes as chars, ints, longs, etc. You could also pass objects around using serialization.
Any naive approach most likely will not scale well.
Consider using a REST-approach with a suitable small web-server. Jetty is usually a good choice.
To create an listen to a socket, in a very naive way:
mServerSocket = new ServerSocket(port);
listening = true;
while (listening) {
// This call blocks until a connection is made
Socket socket = serverSocket.accept();
OutputStream out = socket.getOutputStream();
InputStream in = socket.getInputStream();
// Here you do your magic, reading and writing what you need from the streams
// You would set listening to true if you have some command to close the server
// remotely
out.close();
in.close();
socket.close();
}
Normally it is a good idea to delegate the processing of the input stream to some other thread, so you can answer the next request. Otherwise, you will answer all requests serially.
You also need to define some kind of protocol of what bytes you expect on the input and output streams, but from your question it looks like you already have one.
You could create an enum with one member per command
interface Comamnd {
// whatever you expect all command to know to perform their function
void perform(Context context);
}
enum Commands implements Command{
ACTIONONE() {
void perform(Context context) {
System.out.println("Action One");
}
},
ACTIONTWO() {
void perform(Context context) {
System.out.println("Action Two");
}
}
}
// initialise
DataInputStream in = new DataInputStream(socket.getInputStream());
// in a loop
byte[] retrievedData= new byte[ITEM_LENGTH];
in.readFully(retrievedData);
String command = new String(retrievedData, 0);
Commands.valueOf(command).perform(context);