How to Traverse A Square from Greatest Distance (Java) - java

I'm working on a program where I need to traverse a square from greatest distance to shortest distance, when starting from the center and given a maximum range that the object can travel.
The traversal would look something like this, each step is labeled starting from 0 to 35 (sorry for crappy diagram). Max distance would be 3 from center:
I was thinking it could work in two for loops, but I don't think that will work anymore without a ton of if statements. I want it to be semi-efficient if possible.
I don't need any code, just some ideas on how to get it to work (although feel free to post whatever).
Thanks for your help guys.

The simplest approach I can think of would involve 5 loops - one for each direction (all separate loops), and then one for the distance from the outside (which would be the outer-most loop).
The outer-most loop's value would allow us to determine where each loop should start and end.
As a rough draft, I imagine it would look something like this:
for i = 0 to n
for x = i to (n-i-1)
// process matrix[x][i]
for y = i to (n-i-1)
// process matrix[n-i][y]
for x = (n-i) downto i
// process matrix[x][n-i]
for y = (n-i) downto i
// process matrix[i][y]
I'll leave it to you to write the actual code.

Related

Displaying Numbers in Certain Shapes

I just thought of this problem 15 minutes ago and even though it appears insanely easy I'm having a serious problem coming up with an answer.
Basically what I would like to do is based on a number (n) given by the user, I would like to draw a square shape.
Example: let's say the user gives the number 2, the result should be:
12
43
Now, suppose the user gives the number 3, the result should be:
123
894
765
etc..
Please don't give me the solution to this problem, I just want a clue or two to get me going.
I thought about doing it with a simple java class but I'm still struggling to get past the first condition:
public class DrawSquareWithNumbers {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("Enter your number: ");
int number = scanner.nextInt();
for (int i = 0; i <= number; i++) {
if (i<number)
System.out.print(i);
if (i>=number) {
System.out.println("\n"+i);
}
}
}
}
Any tip? Thanks in advance.
So I think I just put way too much time in this but it's a fun challenge so I thought let's give it a go.
I implented a code version for this solution and it works quite well although it's probably not the cleanest as I approached the whole problem backwards.
Here is my solution to try out online (note it's severely unoptimized and by no ways good Java code. It's a quick and dirty implementation to be honest):
https://ideone.com/97JB7Y
So the idea is quite simple: We first calculate the correct value for each position in a matrix and then we print that matrix out.
Let's go over it in a bit more detail:
We start of by creating the Matrix for our values to print:
With a given size n this is
int[][] values = new int[n][n];
Now we want to calculate the correct value at each point. I chose to tackle it the "wrong way" around by not starting at the first point but at the center of the spiral.
Basically imagine this matrix with n = 3:
[1][2][3]
[8][9][4]
[7][6][5]
Instead of at 1 I just start at 9. Reasoning for this is that it's actually easier to calculate the position spiraling out from a point over spiraling in to a point.
So starting at this center point we spiral out from there in a circular fashion. For the matrix
[1][2]
[4][3]
this means we visit 4 -> 3 -> 2 -> 1. And then just save the correct value in the matrix.
Only problem with my approach is that for a matrix with uneven size (3, 5, 7, etc.) I still visit the points in spiraling order, for 3x3 the order of visiting is e.g. 9 -> 4 -> 3 -> 2 -> 1 -> 8 -> 7 -> 6 -> 5, as visualized in this perfect picture I totally drew in Paint:
This leads to the result matrix being inversed as such:
[5][6][7]
[4][9][8]
[3][2][1]
This small problem is easily fixed though by simply printing the matrix out inversed once more should n%2 != 0.
Hope I could help with maybe a different approach to the problem.
I think you want to make nxn matrix with user entered number. So you can check the input and then you can use loop as for(i=1; i<=n; i++) for rows and similarly for column(for j=0;j<=n;j++) and then you can print your desired shape. Since you have asked to give you idea only so I am not posting any code here. If in case you get stuck somewhere you can refer : https://www.google.com/amp/s/www.geeksforgeeks.org/print-a-given-matrix-in-spiral-form/amp/
Ok, let's give this a try. First let's assume you'll have to store the matrix before printing it and that there's no magic formula that allows you to print what you need in a single iteration.
Now, you've the NxN matrix, for example for 3 it'd be 3x3, 9 positions. Instead of solving it with a series of ifs in an ugly way, you could use direction vectors for a cleaner solution. Also assume for now that you've another NxN matrix filled with booleans, all set to false, that will represent the already printed positions in the NxN matrix that you will print in the end. When you write a number in the final NxN matrix, you put the same position's boolean to true in the boolean matrix.
So for example, you want to print the positions of the first row, 1 2 3. You are displacing to the right to print. This'd be the direction (1,0), aka the starting direction vector. You advance through the NxN matrix using this coordinates. When you go outside the matrix (in the example, your x position is 3) you decrease your x position by one and you "spin" your direction vector (this should be done in a separate function). (1,0) would spin to (0,-1). You keep using this vector to iterate your matrix, spinning as necesary. After the first whole circle, you will get to an already printed position before going outside the matrix. So after every print you've to check not only if you go outside the matrix, but also if that position has already a number on it. For this, you use the boolean matrix.
This is how I'd solve it, there are probably many other ways (and better ones). For starters you could use null, or a mark, in the final matrix and save yourself the booleans one.
Create the result matrix beforehand, and declare a variable for the current number, starting value = 1, the current co-ordinates, starting with (0,0), the stepping direction starting with "to the right"
Start loop
Calculate the co-ordinates of next step, and check it
If it is off the matrix, then change direction, and re calculate, re-check
If free, then put the number in the matrix, increment it, and loop
If it is not free, then end loop, print out result matrix

How to try all possible way of traversing Array of integer

I'm new in programming and I'd like some help for an assignment, I only need a little clue to help me getting started (no answer, I only want to get a direction of how to do it then work my way).
The rules of the game : on the initial square is a marker that can move to other squares along the row. At each step in the game, you may move the marker the number of squares indicated by the integer in the square it currently occupies. The marker may move either left or right along the row but may not move past either end.
The goal of the game is to move the marker to the cave, the “0” at the far end of the row. In this configuration, you can solve the game by making the following set of moves:
eg: 2 3 1 2 4 0
first: move of 2 (to the right since it's impossible to go to the left) then: either move 1 to the right or 1 to the left then: if we moved left before: move 3 to the right (cannot go 3 to the left) if we moved right before then it's either 2 to the left or 2 to the right. 2 to the right is the right answer since then the next value is 0.
I must write the program that will try all the possibilities (so using a loop or a recursive I guess?) and return TRUE if there's a solution or FALSE if there are no solution. I had to choose the data structure from a few given by the prof for this assignment and decided to use an Array Based List since the get() is O(1) and it's mainly the only method used once the arraylist is created.
My program is only missing the (static?) method that will evaluate if it's possible or not, I dont need help for the rest of the assignment.
Assume that the ArrayBasedList is already given.
Thanks for your help!
I think your idea about using a recursive method makes a lot of sense. I appreciate you don't want the full answer, so this should just give you an idea:
Make a method (that passes in an integer x of the current position and your list) that returns a boolean.
In the method, check the value of list.get(x).
If it's 0, return true.
If it's -1, return false (more on that later).
Otherwise, store the value in a variable n, replace it with a -1, and return method(x+n) || method(x-n).
What the -1 does is it eventually fills everything in the array with a value that will terminate the program. Otherwise, you could end up with an infinite loop (like if you passed in [1, 2, 4, 2, 3]) with the value going back and forth.
A couple of things to keep in mind:
You'd need to make a new copy of the array every time, so you don't keep overwriting the original array.
You'd need to incorporate a try-catch (or equivalent logic) to make sure you are not trying to measure out of bounds.
If you have any further questions, feel free to ask!

Behind the scenes of recursion? [duplicate]

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
One of the topics that seems to come up regularly on mailing lists and online discussions is the merits (or lack thereof) of doing a Computer Science Degree. An argument that seems to come up time and again for the negative party is that they have been coding for some number of years and they have never used recursion.
So the question is:
What is recursion?
When would I use recursion?
Why don't people use recursion?
There are a number of good explanations of recursion in this thread, this answer is about why you shouldn't use it in most languages.* In the majority of major imperative language implementations (i.e. every major implementation of C, C++, Basic, Python, Ruby,Java, and C#) iteration is vastly preferable to recursion.
To see why, walk through the steps that the above languages use to call a function:
space is carved out on the stack for the function's arguments and local variables
the function's arguments are copied into this new space
control jumps to the function
the function's code runs
the function's result is copied into a return value
the stack is rewound to its previous position
control jumps back to where the function was called
Doing all of these steps takes time, usually a little bit more than it takes to iterate through a loop. However, the real problem is in step #1. When many programs start, they allocate a single chunk of memory for their stack, and when they run out of that memory (often, but not always due to recursion), the program crashes due to a stack overflow.
So in these languages recursion is slower and it makes you vulnerable to crashing. There are still some arguments for using it though. In general, code written recursively is shorter and a bit more elegant, once you know how to read it.
There is a technique that language implementers can use called tail call optimization which can eliminate some classes of stack overflow. Put succinctly: if a function's return expression is simply the result of a function call, then you don't need to add a new level onto the stack, you can reuse the current one for the function being called. Regrettably, few imperative language-implementations have tail-call optimization built in.
* I love recursion. My favorite static language doesn't use loops at all, recursion is the only way to do something repeatedly. I just don't think that recursion is generally a good idea in languages that aren't tuned for it.
** By the way Mario, the typical name for your ArrangeString function is "join", and I'd be surprised if your language of choice doesn't already have an implementation of it.
Simple english example of recursion.
A child couldn't sleep, so her mother told her a story about a little frog,
who couldn't sleep, so the frog's mother told her a story about a little bear,
who couldn't sleep, so the bear's mother told her a story about a little weasel...
who fell asleep.
...and the little bear fell asleep;
...and the little frog fell asleep;
...and the child fell asleep.
In the most basic computer science sense, recursion is a function that calls itself. Say you have a linked list structure:
struct Node {
Node* next;
};
And you want to find out how long a linked list is you can do this with recursion:
int length(const Node* list) {
if (!list->next) {
return 1;
} else {
return 1 + length(list->next);
}
}
(This could of course be done with a for loop as well, but is useful as an illustration of the concept)
Whenever a function calls itself, creating a loop, then that's recursion. As with anything there are good uses and bad uses for recursion.
The most simple example is tail recursion where the very last line of the function is a call to itself:
int FloorByTen(int num)
{
if (num % 10 == 0)
return num;
else
return FloorByTen(num-1);
}
However, this is a lame, almost pointless example because it can easily be replaced by more efficient iteration. After all, recursion suffers from function call overhead, which in the example above could be substantial compared to the operation inside the function itself.
So the whole reason to do recursion rather than iteration should be to take advantage of the call stack to do some clever stuff. For example, if you call a function multiple times with different parameters inside the same loop then that's a way to accomplish branching. A classic example is the Sierpinski triangle.
You can draw one of those very simply with recursion, where the call stack branches in 3 directions:
private void BuildVertices(double x, double y, double len)
{
if (len > 0.002)
{
mesh.Positions.Add(new Point3D(x, y + len, -len));
mesh.Positions.Add(new Point3D(x - len, y - len, -len));
mesh.Positions.Add(new Point3D(x + len, y - len, -len));
len *= 0.5;
BuildVertices(x, y + len, len);
BuildVertices(x - len, y - len, len);
BuildVertices(x + len, y - len, len);
}
}
If you attempt to do the same thing with iteration I think you'll find it takes a lot more code to accomplish.
Other common use cases might include traversing hierarchies, e.g. website crawlers, directory comparisons, etc.
Conclusion
In practical terms, recursion makes the most sense whenever you need iterative branching.
Recursion is a method of solving problems based on the divide and conquer mentality.
The basic idea is that you take the original problem and divide it into smaller (more easily solved) instances of itself, solve those smaller instances (usually by using the same algorithm again) and then reassemble them into the final solution.
The canonical example is a routine to generate the Factorial of n. The Factorial of n is calculated by multiplying all of the numbers between 1 and n. An iterative solution in C# looks like this:
public int Fact(int n)
{
int fact = 1;
for( int i = 2; i <= n; i++)
{
fact = fact * i;
}
return fact;
}
There's nothing surprising about the iterative solution and it should make sense to anyone familiar with C#.
The recursive solution is found by recognising that the nth Factorial is n * Fact(n-1). Or to put it another way, if you know what a particular Factorial number is you can calculate the next one. Here is the recursive solution in C#:
public int FactRec(int n)
{
if( n < 2 )
{
return 1;
}
return n * FactRec( n - 1 );
}
The first part of this function is known as a Base Case (or sometimes Guard Clause) and is what prevents the algorithm from running forever. It just returns the value 1 whenever the function is called with a value of 1 or less. The second part is more interesting and is known as the Recursive Step. Here we call the same method with a slightly modified parameter (we decrement it by 1) and then multiply the result with our copy of n.
When first encountered this can be kind of confusing so it's instructive to examine how it works when run. Imagine that we call FactRec(5). We enter the routine, are not picked up by the base case and so we end up like this:
// In FactRec(5)
return 5 * FactRec( 5 - 1 );
// which is
return 5 * FactRec(4);
If we re-enter the method with the parameter 4 we are again not stopped by the guard clause and so we end up at:
// In FactRec(4)
return 4 * FactRec(3);
If we substitute this return value into the return value above we get
// In FactRec(5)
return 5 * (4 * FactRec(3));
This should give you a clue as to how the final solution is arrived at so we'll fast track and show each step on the way down:
return 5 * (4 * FactRec(3));
return 5 * (4 * (3 * FactRec(2)));
return 5 * (4 * (3 * (2 * FactRec(1))));
return 5 * (4 * (3 * (2 * (1))));
That final substitution happens when the base case is triggered. At this point we have a simple algrebraic formula to solve which equates directly to the definition of Factorials in the first place.
It's instructive to note that every call into the method results in either a base case being triggered or a call to the same method where the parameters are closer to a base case (often called a recursive call). If this is not the case then the method will run forever.
Recursion is solving a problem with a function that calls itself. A good example of this is a factorial function. Factorial is a math problem where factorial of 5, for example, is 5 * 4 * 3 * 2 * 1. This function solves this in C# for positive integers (not tested - there may be a bug).
public int Factorial(int n)
{
if (n <= 1)
return 1;
return n * Factorial(n - 1);
}
Recursion refers to a method which solves a problem by solving a smaller version of the problem and then using that result plus some other computation to formulate the answer to the original problem. Often times, in the process of solving the smaller version, the method will solve a yet smaller version of the problem, and so on, until it reaches a "base case" which is trivial to solve.
For instance, to calculate a factorial for the number X, one can represent it as X times the factorial of X-1. Thus, the method "recurses" to find the factorial of X-1, and then multiplies whatever it got by X to give a final answer. Of course, to find the factorial of X-1, it'll first calculate the factorial of X-2, and so on. The base case would be when X is 0 or 1, in which case it knows to return 1 since 0! = 1! = 1.
Consider an old, well known problem:
In mathematics, the greatest common divisor (gcd) … of two or more non-zero integers, is the largest positive integer that divides the numbers without a remainder.
The definition of gcd is surprisingly simple:
where mod is the modulo operator (that is, the remainder after integer division).
In English, this definition says the greatest common divisor of any number and zero is that number, and the greatest common divisor of two numbers m and n is the greatest common divisor of n and the remainder after dividing m by n.
If you'd like to know why this works, see the Wikipedia article on the Euclidean algorithm.
Let's compute gcd(10, 8) as an example. Each step is equal to the one just before it:
gcd(10, 8)
gcd(10, 10 mod 8)
gcd(8, 2)
gcd(8, 8 mod 2)
gcd(2, 0)
2
In the first step, 8 does not equal zero, so the second part of the definition applies. 10 mod 8 = 2 because 8 goes into 10 once with a remainder of 2. At step 3, the second part applies again, but this time 8 mod 2 = 0 because 2 divides 8 with no remainder. At step 5, the second argument is 0, so the answer is 2.
Did you notice that gcd appears on both the left and right sides of the equals sign? A mathematician would say this definition is recursive because the expression you're defining recurs inside its definition.
Recursive definitions tend to be elegant. For example, a recursive definition for the sum of a list is
sum l =
if empty(l)
return 0
else
return head(l) + sum(tail(l))
where head is the first element in a list and tail is the rest of the list. Note that sum recurs inside its definition at the end.
Maybe you'd prefer the maximum value in a list instead:
max l =
if empty(l)
error
elsif length(l) = 1
return head(l)
else
tailmax = max(tail(l))
if head(l) > tailmax
return head(l)
else
return tailmax
You might define multiplication of non-negative integers recursively to turn it into a series of additions:
a * b =
if b = 0
return 0
else
return a + (a * (b - 1))
If that bit about transforming multiplication into a series of additions doesn't make sense, try expanding a few simple examples to see how it works.
Merge sort has a lovely recursive definition:
sort(l) =
if empty(l) or length(l) = 1
return l
else
(left,right) = split l
return merge(sort(left), sort(right))
Recursive definitions are all around if you know what to look for. Notice how all of these definitions have very simple base cases, e.g., gcd(m, 0) = m. The recursive cases whittle away at the problem to get down to the easy answers.
With this understanding, you can now appreciate the other algorithms in Wikipedia's article on recursion!
A function that calls itself
When a function can be (easily) decomposed into a simple operation plus the same function on some smaller portion of the problem. I should say, rather, that this makes it a good candidate for recursion.
They do!
The canonical example is the factorial which looks like:
int fact(int a)
{
if(a==1)
return 1;
return a*fact(a-1);
}
In general, recursion isn't necessarily fast (function call overhead tends to be high because recursive functions tend to be small, see above) and can suffer from some problems (stack overflow anyone?). Some say they tend to be hard to get 'right' in non-trivial cases but I don't really buy into that. In some situations, recursion makes the most sense and is the most elegant and clear way to write a particular function. It should be noted that some languages favor recursive solutions and optimize them much more (LISP comes to mind).
A recursive function is one which calls itself. The most common reason I've found to use it is traversing a tree structure. For example, if I have a TreeView with checkboxes (think installation of a new program, "choose features to install" page), I might want a "check all" button which would be something like this (pseudocode):
function cmdCheckAllClick {
checkRecursively(TreeView1.RootNode);
}
function checkRecursively(Node n) {
n.Checked = True;
foreach ( n.Children as child ) {
checkRecursively(child);
}
}
So you can see that the checkRecursively first checks the node which it is passed, then calls itself for each of that node's children.
You do need to be a bit careful with recursion. If you get into an infinite recursive loop, you will get a Stack Overflow exception :)
I can't think of a reason why people shouldn't use it, when appropriate. It is useful in some circumstances, and not in others.
I think that because it's an interesting technique, some coders perhaps end up using it more often than they should, without real justification. This has given recursion a bad name in some circles.
Recursion is an expression directly or indirectly referencing itself.
Consider recursive acronyms as a simple example:
GNU stands for GNU's Not Unix
PHP stands for PHP: Hypertext Preprocessor
YAML stands for YAML Ain't Markup Language
WINE stands for Wine Is Not an Emulator
VISA stands for Visa International Service Association
More examples on Wikipedia
Recursion works best with what I like to call "fractal problems", where you're dealing with a big thing that's made of smaller versions of that big thing, each of which is an even smaller version of the big thing, and so on. If you ever have to traverse or search through something like a tree or nested identical structures, you've got a problem that might be a good candidate for recursion.
People avoid recursion for a number of reasons:
Most people (myself included) cut their programming teeth on procedural or object-oriented programming as opposed to functional programming. To such people, the iterative approach (typically using loops) feels more natural.
Those of us who cut our programming teeth on procedural or object-oriented programming have often been told to avoid recursion because it's error prone.
We're often told that recursion is slow. Calling and returning from a routine repeatedly involves a lot of stack pushing and popping, which is slower than looping. I think some languages handle this better than others, and those languages are most likely not those where the dominant paradigm is procedural or object-oriented.
For at least a couple of programming languages I've used, I remember hearing recommendations not to use recursion if it gets beyond a certain depth because its stack isn't that deep.
A recursive statement is one in which you define the process of what to do next as a combination of the inputs and what you have already done.
For example, take factorial:
factorial(6) = 6*5*4*3*2*1
But it's easy to see factorial(6) also is:
6 * factorial(5) = 6*(5*4*3*2*1).
So generally:
factorial(n) = n*factorial(n-1)
Of course, the tricky thing about recursion is that if you want to define things in terms of what you have already done, there needs to be some place to start.
In this example, we just make a special case by defining factorial(1) = 1.
Now we see it from the bottom up:
factorial(6) = 6*factorial(5)
= 6*5*factorial(4)
= 6*5*4*factorial(3) = 6*5*4*3*factorial(2) = 6*5*4*3*2*factorial(1) = 6*5*4*3*2*1
Since we defined factorial(1) = 1, we reach the "bottom".
Generally speaking, recursive procedures have two parts:
1) The recursive part, which defines some procedure in terms of new inputs combined with what you've "already done" via the same procedure. (i.e. factorial(n) = n*factorial(n-1))
2) A base part, which makes sure that the process doesn't repeat forever by giving it some place to start (i.e. factorial(1) = 1)
It can be a bit confusing to get your head around at first, but just look at a bunch of examples and it should all come together. If you want a much deeper understanding of the concept, study mathematical induction. Also, be aware that some languages optimize for recursive calls while others do not. It's pretty easy to make insanely slow recursive functions if you're not careful, but there are also techniques to make them performant in most cases.
Hope this helps...
I like this definition:
In recursion, a routine solves a small part of a problem itself, divides the problem into smaller pieces, and then calls itself to solve each of the smaller pieces.
I also like Steve McConnells discussion of recursion in Code Complete where he criticises the examples used in Computer Science books on Recursion.
Don't use recursion for factorials or Fibonacci numbers
One problem with
computer-science textbooks is that
they present silly examples of
recursion. The typical examples are
computing a factorial or computing a
Fibonacci sequence. Recursion is a
powerful tool, and it's really dumb to
use it in either of those cases. If a
programmer who worked for me used
recursion to compute a factorial, I'd
hire someone else.
I thought this was a very interesting point to raise and may be a reason why recursion is often misunderstood.
EDIT:
This was not a dig at Dav's answer - I had not seen that reply when I posted this
1.)
A method is recursive if it can call itself; either directly:
void f() {
... f() ...
}
or indirectly:
void f() {
... g() ...
}
void g() {
... f() ...
}
2.) When to use recursion
Q: Does using recursion usually make your code faster?
A: No.
Q: Does using recursion usually use less memory?
A: No.
Q: Then why use recursion?
A: It sometimes makes your code much simpler!
3.) People use recursion only when it is very complex to write iterative code. For example, tree traversal techniques like preorder, postorder can be made both iterative and recursive. But usually we use recursive because of its simplicity.
Here's a simple example: how many elements in a set. (there are better ways to count things, but this is a nice simple recursive example.)
First, we need two rules:
if the set is empty, the count of items in the set is zero (duh!).
if the set is not empty, the count is one plus the number of items in the set after one item is removed.
Suppose you have a set like this: [x x x]. let's count how many items there are.
the set is [x x x] which is not empty, so we apply rule 2. the number of items is one plus the number of items in [x x] (i.e. we removed an item).
the set is [x x], so we apply rule 2 again: one + number of items in [x].
the set is [x], which still matches rule 2: one + number of items in [].
Now the set is [], which matches rule 1: the count is zero!
Now that we know the answer in step 4 (0), we can solve step 3 (1 + 0)
Likewise, now that we know the answer in step 3 (1), we can solve step 2 (1 + 1)
And finally now that we know the answer in step 2 (2), we can solve step 1 (1 + 2) and get the count of items in [x x x], which is 3. Hooray!
We can represent this as:
count of [x x x] = 1 + count of [x x]
= 1 + (1 + count of [x])
= 1 + (1 + (1 + count of []))
= 1 + (1 + (1 + 0)))
= 1 + (1 + (1))
= 1 + (2)
= 3
When applying a recursive solution, you usually have at least 2 rules:
the basis, the simple case which states what happens when you have "used up" all of your data. This is usually some variation of "if you are out of data to process, your answer is X"
the recursive rule, which states what happens if you still have data. This is usually some kind of rule that says "do something to make your data set smaller, and reapply your rules to the smaller data set."
If we translate the above to pseudocode, we get:
numberOfItems(set)
if set is empty
return 0
else
remove 1 item from set
return 1 + numberOfItems(set)
There's a lot more useful examples (traversing a tree, for example) which I'm sure other people will cover.
Well, that's a pretty decent definition you have. And wikipedia has a good definition too. So I'll add another (probably worse) definition for you.
When people refer to "recursion", they're usually talking about a function they've written which calls itself repeatedly until it is done with its work. Recursion can be helpful when traversing hierarchies in data structures.
An example: A recursive definition of a staircase is:
A staircase consists of:
- a single step and a staircase (recursion)
- or only a single step (termination)
To recurse on a solved problem: do nothing, you're done.
To recurse on an open problem: do the next step, then recurse on the rest.
In plain English:
Assume you can do 3 things:
Take one apple
Write down tally marks
Count tally marks
You have a lot of apples in front of you on a table and you want to know how many apples there are.
start
Is the table empty?
yes: Count the tally marks and cheer like it's your birthday!
no: Take 1 apple and put it aside
Write down a tally mark
goto start
The process of repeating the same thing till you are done is called recursion.
I hope this is the "plain english" answer you are looking for!
A recursive function is a function that contains a call to itself. A recursive struct is a struct that contains an instance of itself. You can combine the two as a recursive class. The key part of a recursive item is that it contains an instance/call of itself.
Consider two mirrors facing each other. We've seen the neat infinity effect they make. Each reflection is an instance of a mirror, which is contained within another instance of a mirror, etc. The mirror containing a reflection of itself is recursion.
A binary search tree is a good programming example of recursion. The structure is recursive with each Node containing 2 instances of a Node. Functions to work on a binary search tree are also recursive.
This is an old question, but I want to add an answer from logistical point of view (i.e not from algorithm correctness point of view or performance point of view).
I use Java for work, and Java doesn't support nested function. As such, if I want to do recursion, I might have to define an external function (which exists only because my code bumps against Java's bureaucratic rule), or I might have to refactor the code altogether (which I really hate to do).
Thus, I often avoid recursion, and use stack operation instead, because recursion itself is essentially a stack operation.
You want to use it anytime you have a tree structure. It is very useful in reading XML.
Recursion as it applies to programming is basically calling a function from inside its own definition (inside itself), with different parameters so as to accomplish a task.
"If I have a hammer, make everything look like a nail."
Recursion is a problem-solving strategy for huge problems, where at every step just, "turn 2 small things into one bigger thing," each time with the same hammer.
Example
Suppose your desk is covered with a disorganized mess of 1024 papers. How do you make one neat, clean stack of papers from the mess, using recursion?
Divide: Spread all the sheets out, so you have just one sheet in each "stack".
Conquer:
Go around, putting each sheet on top of one other sheet. You now have stacks of 2.
Go around, putting each 2-stack on top of another 2-stack. You now have stacks of 4.
Go around, putting each 4-stack on top of another 4-stack. You now have stacks of 8.
... on and on ...
You now have one huge stack of 1024 sheets!
Notice that this is pretty intuitive, aside from counting everything (which isn't strictly necessary). You might not go all the way down to 1-sheet stacks, in reality, but you could and it would still work. The important part is the hammer: With your arms, you can always put one stack on top of the other to make a bigger stack, and it doesn't matter (within reason) how big either stack is.
Recursion is the process where a method call iself to be able to perform a certain task. It reduces redundency of code. Most recurssive functions or methods must have a condifiton to break the recussive call i.e. stop it from calling itself if a condition is met - this prevents the creating of an infinite loop. Not all functions are suited to be used recursively.
hey, sorry if my opinion agrees with someone, I'm just trying to explain recursion in plain english.
suppose you have three managers - Jack, John and Morgan.
Jack manages 2 programmers, John - 3, and Morgan - 5.
you are going to give every manager 300$ and want to know what would it cost.
The answer is obvious - but what if 2 of Morgan-s employees are also managers?
HERE comes the recursion.
you start from the top of the hierarchy. the summery cost is 0$.
you start with Jack,
Then check if he has any managers as employees. if you find any of them are, check if they have any managers as employees and so on. Add 300$ to the summery cost every time you find a manager.
when you are finished with Jack, go to John, his employees and then to Morgan.
You'll never know, how much cycles will you go before getting an answer, though you know how many managers you have and how many Budget can you spend.
Recursion is a tree, with branches and leaves, called parents and children respectively.
When you use a recursion algorithm, you more or less consciously are building a tree from the data.
In plain English, recursion means to repeat someting again and again.
In programming one example is of calling the function within itself .
Look on the following example of calculating factorial of a number:
public int fact(int n)
{
if (n==0) return 1;
else return n*fact(n-1)
}
Any algorithm exhibits structural recursion on a datatype if basically consists of a switch-statement with a case for each case of the datatype.
for example, when you are working on a type
tree = null
| leaf(value:integer)
| node(left: tree, right:tree)
a structural recursive algorithm would have the form
function computeSomething(x : tree) =
if x is null: base case
if x is leaf: do something with x.value
if x is node: do something with x.left,
do something with x.right,
combine the results
this is really the most obvious way to write any algorith that works on a data structure.
now, when you look at the integers (well, the natural numbers) as defined using the Peano axioms
integer = 0 | succ(integer)
you see that a structural recursive algorithm on integers looks like this
function computeSomething(x : integer) =
if x is 0 : base case
if x is succ(prev) : do something with prev
the too-well-known factorial function is about the most trivial example of
this form.
function call itself or use its own definition.

Fix collision detection penetration

I am implementing collision detection in my game, and am having a bit of trouble understanding how to calculate the vector to fix my shape overlap upon collision.
Say for example, I have two squares. squareA and squareB. For both of them, I know their xCo, yCo, width and height. squareA is moving however, so he has a velocity magnitude, and a velocity angle. Let's pretend I update the game once a second. I have illustrated the situation below.
Now, I need a formula to get the vector to fix the overlap. If I apply this vector onto the red square (squareA), they should not be overlapping anymore. This is what I am looking to achieve.
Can anyone help me figure out the formula to calculate the vector?
Bonus points if constructed in Java.
Bonus bonus points if you type out the answer instead of linking to a collision detection tutorial.
Thanks guys!
Also, how do I calculate the new velocity magnitude and angle? I would like sqaureA to continue moving along the x axis (sliding along the top of the blue square)
I had an function that looked something like this:
Position calculateValidPosition(Position start, Position end)
Position middlePoint = (start + end) /2
if (middlePoint == start || middlePoint == end)
return start
if( isColliding(middlePont) )
return calculateValidPosition(start, middlePoint)
else
return calculate(middlePoint, end)
I just made this code on the fly, so there would be a lot of room for improvements... starting by not making it recursive.
This function would be called when a collision is detected, passing as a parameter the last valid position of the object, and the current invalid position.
On each iteration, the first parameter is always valid (no collition), and the second one is invalid (there is collition).
But I think this can give you an idea of a possible solution, so you can adapt it to your needs.
Your question as stated requires an answer that is your entire application. But a simple answer is easy enough to provide.
You need to partition your space with quad-trees
You seem to indicate that only one object will be displaced when a collision is detected. (For the case of multiple interpenetrating objects, simply correct each pair of objects in the set until none are overlapping.)
Neither an elastic nor an inelastic collision is the desired behavior. You want a simple projection of the horizontal velocity (of square A), so Vx(t-1) = Vx(t+1), Vy(t-1) is irrelevant and Vy(t+1)=0. Here t is the time of collision.
The repositioning of Square A is simple.
Define Cn as the vector from the centroid of A to the vertex n (where the labeling of the vertices is arbitrary).
Define A(t-1) as the former direction of A.
Define Dn as the dot product of A(t-1) and the vector Cn
Define Rn as the width of A measured along Cn (and extending past the centroid in the opposite direction).
Define Sn as the dilation of B by a radius of Rn.
Let j be the vertex of B with highest y-value.
Let k be the vertex that is most nearly the front corner of A [in the intuitive sense, where the value of Dn indicates that Ck is most nearly parallel to A(t-1)].
Let K be the antipodal edge or vertex of A, relative to k.
Finally, translate A so that k and j are coincident and K is coincident with Sk.

Implementing Egyptian Algorithm in java

I want to find a multiplication of two numbers in Java recursively with using only Addition, Subtraction and Comparison. So, I googled and I found Egyptian Algorithm that meets the question requirement.
However, I'm not sure how to find the multiplication result after we reach the base case.
Example:
13 x 30
1 -- 30
2 -- 60
4 -- 120
8 -- 240 //we stop here because the double of 8 is larger than 13
To find the result we add the numbers from the left column that equals 13 which they are 1+4+8 and on the other hand we add its opposite numbers from the right column which they are 30+120+240 = 390 which is the result.
But now how to do last part programatically ? how to check which numbers to add? I hope you guys get my point. Hints only needed.
Here's pseudocode to solve the problem:
function egyptian(left, right)
prod := 0
while (left > 0)
if (left is odd)
prod := prod + right
left := halve(left)
right := double(right)
return prod
Basically, instead of waiting until the end, it is easier to check each row of the template as it is created and sum if it belongs in the output. I discuss this algorithm at my blog.
Do a loop through the created results in reverse order
Each time, if your multiplicant remainder (which starts equal to your multiplicant) is larger than the number in the left column, subtract the left column from your multiplicant and add the right column to your result (which starts at zero).
You might have found this Wikipedia article.
Have a look at the last part of the section called "decomposition". You'll find the sub-algorithm you have to implement.
Okay, I did it using Brute Force Algorithm. It's a BigO-(n) though. I'm sure there is more efficient way to implement it. For now. I'm settling with this.
Thanks guys!

Categories