Generating Random integers within a range to meet a percentile in java - java

I am trying to generate random integers within a range to sample a percentile of that range. For example: for range 1 to 100 I would like to select a random sample of 20%. This would result in 20 integers randomly selected for 100.
This is to solve an extremely complex issue and I will post solutions once I get this and a few bugs worked out. I have not used many math packages in java so I appreciate your assistance.
Thanks!

Put all numbers in a arraylist, then shuffle it. Take only the 20 first element of the arraylist:
ArrayList<Integer> randomNumbers = new ArrayList<Integer>();
for(int i = 0; i < 100; i++){
randomNumbers.add((int)(Math.random() * 100 + 1));
}
Collections.shuffle(randomNumbers);
//Then the first 20 elements are your sample

If you want 20 random integers between 1 and one hundred, use Math.random() to generate a value between 0 and 0.999... Then, manipulate this value to fit your range.
int[] random = new int[20];
for(int i =0; i< random.length;i++)
{
random[i] = (int)(Math.random()*100+1);
}
When you multiply Math.random() by 100, you get a value between 0 and 99.999... To this number you add 1, yielding a value between 1.0 and 100.0. Then, I typecasted the number to an integer by using the (int) typecast. This gives a number between 1 and 100 inclusive. Then, store the values into an array.

If you are willing to go with Java 8, you could use some features of lambdas. Presuming that you aren't keeping 20% of petabytes of data, you could do something like this (number is the number of integers in the range to get) it isn't efficient in the slightest, but it works, and is fun if you'd like to do some Java 8. But if this is performance critical, I wouldn't recommend it:
public ArrayList<Integer> sampler(int min, int max, int number){
Random random = new Random();
ArrayList<Integer> generated = new ArrayList<Integer>();
IntStream ints = random.ints(min,max);
Iterator<Integer> it = ints.iterator();
for(int i = 0; i < number; i++){
int k = it.next();
while(generated.contains(k)){
k = it.next();
}
generated.add(k);
}
ints.close();
return generated;
}

If you really need to scale to petabytes of data, you're going to need a solution that doesn't require keeping all your numbers in memory. Even a bit-set, which would compress your numbers to 1 byte per 8 integers, wouldn't fit in memory.
Since you didn't mention the numbers had to be shuffled (just random), you can start counting and randomly decide whether to keep each number or not. Then stream your result to a file or wherever you need it.
Start with this:
long range = 100;
float percentile = 0.20f;
Random rnd = new Random();
for (long i=1; i < range; i++) {
if (rnd.nextFloat() < percentile) {
System.out.println(i);
}
}
You will get about 20 percent of the numbers from 1 to 100, with no duplicates.
As the range goes up, the accuracy will too, so you really wouldn't need any special logic for large data sets.
If an exact number is needed, you would need special logic for smaller data sets, but that's pretty easy to solve using other methods posted here (although I'd still recommend a bit set).

Related

Array Duplicate Efficiency Riddle

Recently in AP Computer Science A, our class recently learned about arrays. Our teacher posed to us a riddle.
Say you have 20 numbers, 10 through 100 inclusive, right? (these numbers are gathered from another file using Scanners)
As each number is read, we must print the number if and only if it is not a duplicate of a number already read. Now, here's the catch. We must use the smallest array possible to solve the problem.
That's the real problem I'm having. All of my solutions require a pretty big array that has 20 slots in it.
I am required to use an array. What would be the smallest array that we could use to solve the problem efficiently?
If anyone could explain the method with pseudocode (or in words) that would be awesome.
In the worst case we have to use an array of length 19.
Why 19? Each unique number has to be remembered in order to sort out duplicates from the following numbers. Since you know that there are 20 numbers incoming, but not more, you don't have to store the last number. Either the 20th number already appeared (then don't do anything), or the 20th number is unique (then print it and exit – no need to save it).
By the way: I wouldn't call an array of length 20 big :)
If your numbers are integers: You have a range from 10 to 100. So you need 91 Bits to store which values have already been read. A Java Long has 64 Bits. So you will need an array of two Longs. Let every Bit (except for the superfluous ones) stand for a number from 10 to 100. Initialize both longs with 0. When a number is read, check if the corresponding bit mapped to the read value is set to 1. If yes, the read number is a duplicate, if no set the bit to 1.
This is the idea behind the BitSet class.
Agree with Socowi. If number of numbers is known and it is equal to N , it is always possible to use N-1 array to store duplicates. Once the last element from the input is received and it is already known that this is the last element, it is not really needed to store this last value in the duplicates array.
Another idea. If your numbers are small and really located in [10:100] diapason, you can use 1 Long number for storing at least 2 small Integers and extract them from Long number using binary AND to extract small integers values back. In this case it is possible to use N/2 array. But it will make searching in this array more complicated and does not save much memory, only number of items in the array will be decreased.
You technically don't need an array, since the input size is fixed, you can just declare 20 variables. But let's say it wasn't fixed.
As other answer says, worst case is indeed 19 slots in the array. But, assuming we are talking about integers here, there is a better case scenario where some numbers form a contiguous interval. In that case, you only have to remember the highest and lowest number, since anything in between is also a duplicate. You can use an array of intervals.
With the range of 10 to 100, the numbers can be spaced apart and you still need an array of 19 intervals, in the worst case. But let's say, that the best case occurs, and all numbers form a contiguous interval, then you only need 1 array slot.
The problem you'd still have to solve is to create an abstraction over an array, that expands itself by 1 when an element is added, so it will use the minimal size necessary. (Similar to ArrayList, but it doubles in size when capacity is reached).
Since an array cannot change size at run time You need a companion variable to count the numbers that are not duplicates and fill the array partially with only those numbers.
Here is a simple code that use companion variable currentsize and fill the array partially.
Alternative you can use arrayList which change size during run time
final int LENGTH = 20;
double[] numbers = new double[LENGTH];
int currentSize = 0;
Scanner in = new Scanner(System.in);
while (in.hasNextDouble()){
if (currentSize < numbers.length){
numbers[currentSize] = in.nextDouble();
currentSize++;
}
}
Edit
Now the currentSize contains those actual numbers that are not duplicates and you did not fill all 20 elements in case you had some duplicates. Of course you need some code to determine whither a numbers is duplicate or not.
My last answer misunderstood what you were needing, but I turned this thing up that does it an int array of 5 elements using bit shifting. Since we know the max number is 100 we can store (Quite messily) four numbers into each index.
Random rand = new Random();
int[] numbers = new int[5];
int curNum;
for (int i = 0; i < 20; i++) {
curNum = rand.nextInt(100);
System.out.println(curNum);
boolean print = true;
for (int x = 0; x < i; x++) {
byte numberToCheck = ((byte) (numbers[(x - (x % 4)) / 4] >>> ((x%4) * 8)));
if (numberToCheck == curNum) {
print = false;
}
}
if (print) {
System.out.println("No Match: " + curNum);
}
int index = ((i - (i % 4)) / 4);
numbers[index] = numbers[index] | (curNum << (((i % 4)) * 8));
}
I use rand to get my ints but you could easily change this to a scanner.

How can I sort an amount of randomly generated numbers defined by the user in Java?

Hey there Stack Overflow community, so I'm still new to Java but I am trying to learn how to sort. Right now my program creates n amount of random numbers from a range of 1 - 10. Although how I would go about putting these numbers into an array to be sorted, I'm not too sure on. Should i go about doing a bubble sort instead of Arrays.sort?
Here's my code
public static final void main(String aArgs){
//User inputs a number for the amount of random numbers to generate
String UserNumbers = JOptionPane.showInputDialog("How many numbers would you like to generate?");
//The unknown amount of numbers "n" is converted from the "UserNumbers" String to an int
int n = Integer.parseInt(UserNumbers);
//Random number generator generating the amount of numbers as defined by the user
Random randomGenerator = new Random();
for (int idx = 1; idx <= n; ++idx){
int randomInts = randomGenerator.nextInt(10);
//Now to create an array for the random numbers to be put into so they can be sorted
int ArrayToSort[] = new int[n];
ArrayToSort[0] = randomInts;
Arrays.sort(ArrayToSort);
System.out.println(ArrayToSort);
}
}
}
I suspect you are not asking whether to use bubble sort because it's faster/slower then Arrays.sort but instead as Arrays.sort doesn't work for you.
I think this is due to the fact your not putting the random numbers you generated into the array you sort
Instead, try this code:
public static final void main(String args){
//User inputs a number for the amount of random numbers to generate
String userNumbers = JOptionPane.showInputDialog("How many numbers would you like to generate?");
//The unknown amount of numbers "n" is converted from the "userNumbers" String to an int
int n = Integer.parseInt(userNumbers);
//Random number generator generating the amount of numbers as defined by the user
int arrayToSort[] = new int[n];
Random randomGenerator = new Random();
for (int idx = 0; idx < n; ++idx){
arrayToSort[idx] = randomGenerator.nextInt(10);
}
Arrays.sort(arrayToSort);
System.out.println(arrayToSort);
}
The problem with your code is that you are trying to populate an array of size n with random numbers, sort it and then print it, but your code generates in each iteration a random number, allocated an n sized array, put's the random number in slot 0 of the array and sort it, and print it (doint this n times) - which won't get the same effect ofcourse
BTW, Random.nextInt(10) return a random number between 0 and 9, not 1 and 10. to achieve what you want you will need to add 1 to that random value
Arrays.java 's sort method uses quicksort for arrays of primitives and merge sort for arrays of objects. I believe that most of time quicksort is faster than merge sort and costs less memory.
Source: Why does Java's Arrays.sort method use two different sorting algorithms for different types?

How can I fix the size of randomly 5 generated numbers?

I am randomly generating numbers using java.util.Random. But, I can not keep the length of the numbers fixed. Can you help me please?
To fix the length of a randomly generated number, generally you'll want to fix the random number generation to a range. For instance, if you'd like to generate a 6 digit long random number, you'll want numbers from 100,000 to 999,999. You can achieve this by using the following formula.
Random r = new Random();
int randomNum = r.nextInt((max - min) + 1) + min;
Where max is the maximum number, such as 999999, and min is your minimum number, such as 100000.
EDIT:
Based on your comment, I see that you're trying to generate a 15-digit number containing only 1-5 inclusive. Here is a simple way to do this:
import java.util.Random;
StringBuilder s = new StringBuilder();
Random r = new Random();
for (int i = 0; i < 15; i++) {
s.append(r.nextInt(5) + 1);
}
System.out.println("The random number is: " + s.toString());
As noted by #MichaelT, a 15 digit number will not fit in an integer. If you need to perform an operation on it, you should store it in a long.
long randomLong = Long.valueOf(s.toString()).longValue();
Rather than thinking of generating an integer, think in terms of generating a String of 15 digits, each in the required range.
You can use nextInt(int) to pick each digit.
The first thing to consider is that an int cannot hold 15 digits. It just can't. It can only go up to 232 -1, which is 9 digits long. A long can hold up to 19 digits - but if one wants to solve for the general case, it is necessary to use the BigInteger package instead.
Remember that BigInteger is an immutable object (like String) and thus you must assign the value back when looping.
package com.michaelt.so.random15;
import java.math.BigInteger;
import java.util.Random;
public class Main {
public static void main(String[] args) {
Random r = new Random();
BigInteger result = BigInteger.ZERO;
for(int i = 0; i < 15; i++) {
result = result.multiply(BigInteger.TEN)
.add(BigInteger.valueOf(r.nextInt(5)+1));
}
System.out.println(result.toString());
}
}
It starts out with the value ZERO, and loops through for 15 times, each time first multiplying the value by 10 (another BigInteger preallocated value) and then adds the new value into the 1's position. It does this 15 times.
When done, one can get its value as a string or long or other format - or continue to use it as a BigDecimal (necessary if you should ever decide you want a 20 digit long value).
Runs of the above code produce output such as:
313455131111333
245114532433152
531153533113523
If you're ok using libraries:
RandomStringUtils.random(15, "12345")
would give you Strings like: 124444211351355 of length 15
I just happened to write a post about that (shameless self-advertising link: http://united-coders.com/nico-heid/generating-random-numbers-strings-java/)

Random Number generation Query

I used the following code to generate the random numbers:
long randNo = Math.round(Math.random() * 10000);
I have some situations where i found duplicates. Is it possible that it will generate same numbers?
Yes, it's possible. If you need to generate 10000 distinct random numbers from 0 to 9999. You can generate list of 10000 consecutive numbers and then call Collections.shuffle on it.
With random numbers, all numbers in the range are equally likely. This means if you get a number, the next value is just as likely to appear as it did the first time.
BTW: using round is not a great idea in you example as the numbers 1 to 9999 are equally likely but the numbers 0 and 10000 are half as likely as they only occur on a half rounded down or half rounded up.
A more efficient pattern is to use
Random rand = new Random();
// as needed
int num = rand.nextInt(10000); // will be [0, 10000)
If you need to generate unique numbers you can use Collections.shuffle
List<Integer> nums = new ArrayList<Integer>();
for(int i = 0; i < 10000; i++) nums.add(i);
Collections.shuffle(nums);
This will give you up to 10000 unique numbers in a random order.

Random permutation of integers using a random number generator

This is my homework assignment:
Random r = new Random();
public int get100RandomNumber() {
return 1 + r.nextInt(100);
}
You are given a pre-defined function named getrand100() (above) which
returns an integer which is one random number from 1-100. You can call
this function as many times as you want but beware that this function
is quite resource intensive. You cannot use any other random
generator. You cannot change the definition of getrand100().
Output: Print numbers 1-20 in random order. (Not 20 random numbers)
What I have tried..
public class MyClass {
static Random r = new Random();
static HashSet<Integer>;
public static void main(String args[]) {
myMethod();
System.out.println(s);
}
public static void myMethod() {
boolean b = false;
s = new HashSet<Integer>();
int i = getRand100();
if (i >= 20)
i = i % 20;
int j = 0;
int k, l;
while (s.size() <= 20)
{
System.out.println("occurence no" + ++j);
System.out.println("occurence value" + i);
b = s.add(i);
while (!b) {
k = ++i;
if(k<=20)
b = s.add(k);
if(b==true)
break;
if (!b) {
l = --i;
if(i>=1&&i<=20)
b = s.add(l);
if(b==true)
break;
}
}
}
System.out.println(s);
}
public static int getRand100()
{
return r.nextInt(100) + 1;
}
}
Thanks for any help!
I believe you are asking how to use a random number generator to print out the numbers 1 to 20 in a random order. This is also known as a "random permutation". The Fischer-Yates shuffle is such an algorithm.
However, to implement the algorithm, you first of all need a random number generator that can pick one out of N items with equal probability where N ranges from 2 up to the size of the set to shuffle, while you only have one that can pick one out of 100 items with equal probability. That can easily be obtained by a combination of modulo arithmetic and "rerolling".
Assuming you are allowed to use the ArrayList class, I'd recommend filling a list with the numbers you want (1 to 20 in this case), then randomly pick numbers from the list and remove them. Using getRand100() % theList.size() should be sufficiently random for your cause and you only need to call it 19 times. When only one element is left, there's no need to "randomly" pick it from the list anymore. ;-)
I believe that I've come up with a way to convert any number between 1 and n! (assuming the number of items is known) to a unique permutation of n items.
In essence, this allows for an "immediate" randomization of an entire deck without having to use any shuffling algorithms. For now, it runs in O(n^2) and requires using BigInteger packages (ie. in Java or Javascript), but I'm looking for ways to optimize the runtime (although, honestly 2500 iterations is nothing these days anyway). Regardless, when given at least 226 bits of valid, random data, the function is able to generate a shuffled array of 52 integers in under 10 ms.
The method is similar to that used to convert a decimal number to binary (continually dividing by 2, etc). I'm happy to provide my code upon request; I find it interesting that I haven't come across it before.

Categories