Factory pattern design - clarifications - java

I've read the following article about Factory pattern here
Please refer only to the short section Class Registration - avoiding reflection.
This version is implementing reduced coupling between factory and concrete products without reflection.
So, I've tried to implement this version myself without success.
The reason is that static initializers of concrete product classes weren't launched, therefore they didn't registered in the hashmap, so calling the ProductFactory instance with createProduct method didn't succeed.
When I initialized some concrete classes in the client outside of the factory this led the static initializer to launch and the concrete class registered well. After that I called ProductFactory.getInstance().createProduct(productID)
and concrete class was finally created.
So the questions are:
Do this site example missing something?
How are the static initializers triggered in the given example?
Code that relevant for this example is(from site):
abstract class Product
{
public abstract Product createProduct();
...
}
class OneProduct extends Product
{
...
static
{
ProductFactory.instance().registerProduct("ID1", new OneProduct());
}
public OneProduct createProduct()
{
return new OneProduct();
}
...
}
class ProductFactory
{
public void registerProduct(String productID, Product p) {
m_RegisteredProducts.put(productID, p);
}
public Product createProduct(String productID){
return ((Product)m_RegisteredProducts.get(productID)).createProduct();
}
}

Yes, they're missing something, just like in the reflection example the class must be loaded before by the client or it won't get registered in the factory, which i don't think is a very clean approach, since the factory clients will have to load the class before asking for it, making the productId pretty much useless and coupling the clients with the particular product implementation.
I like what they (unfairly) call the noob implementation i think it's the most widely used and for good reasons, it's simpler and with it you can actually encapsulate and centralize the creation of objects without the client knowing anything about it but the id of the particular product (no direct class loading), the other implementations are useful when you're planning to let the ProductFactory clients to register new product implementations without having to modify code in the factory itself, but in most cases you'll find that modifying the factory when a new implementation comes in is not such a big deal.
So, to summarize, the noob implementation is not noobie at all, it's just simpler and suited to certain use cases. And in general, in cases like this, i don't think there are better or worse or noobie implementations, there are just different needs and use cases.
hint: It's cleaner and safer to use an enum instead of strings for productId, that is, of course, if you can modify the enum every time a new product implementation comes in.

Related

Java - static method in an interface - What do I need to do?

The details:
I have been given a Java program in which I need to fill in some code. The main idea of the program is to get used to interfaces and static methods in them. For the past 6 hours I have been watching countless of videos regarding interfaces and static interfaces and I still feel somewhat clueless to what I am supposed to do.
public interface Util {
static Util create() {
//TODO: this line needs to be replaced with the constructor of a concrete implementation
throw new IllegalStateException("Not implemented yet!");
}
Instruction forSymbols(Symbol first, Symbol last);
Symbol forToken(String token);
Supplier<Integer> buildPipe(InputStream input);
Consumer<Integer> buildPipe(OutputStream output);
String getInstructionCode(Instruction instruction);
Optional<Instruction> getInstruction(String code);
}
This is a snippet of the util interface for a program that will be relevant for having a Ook! translator and is supposed to have a lot of useful tools for other classes.
Now, my goal is to understand what I am supposed to do.
What I tried:
Considering I don't know what I need to do, I don't know what I have to code. I understand that an interface is a sort of template for classes. A static method in an interface is the part that I don't understand yet: I have been told that a static method in an interface is something that doesn't have to be implemented in other classes. In my case, the static method create() is "supposed to be a concrete instance of the util object". So, if I get this right, due to it being static, there would be one shared instance of util.
Afterwards, if a class has the prompt "Instruction instruction = util.forSymbols(Symbol.Point, Symbol.Point);" after Util.create() has been used, I would have defined instruction using util's forSymbols method.
I do not know if I am good at conveying just what I need. I per sé understand what a constructor is, I understand what an interface is, I understand what static does, but I don't understand what I have to insert into the create() method. Heck, I don't even want a direct code solution to my problem, I just want to understand what I am supposed to code.
That being said, if anyone could give me an example of an interface working in a similar fashion as my code above that makes it clear just what exactly the static part in an interface does aswell as help me out with my describes issues, I would be tremendously thankful. Also, I hope that my issue description is alright.
That being said, thank you for trying to help me and thanks to all possible answers.
No, the interface can't keep state, so there isn't anywhere for the shared instance to hang out. This is not a way to implement a singleton. It must be a factory method. I think adding a method like this is confusing and probably a bad idea because it ties together the interface and the implementation in an inflexible way. you're expected to create something that implements Util, so there is going to be a constructor call for that class implementing Util. Otherwise it's not clear.
Another sign this is a bad idea is obviously Util doesn't have any instance methods so isn't usable as an object; either a) there is no state and creating an object is pointless or b) the object returned has to be cast to something else to be useful. Casts are bad, for the most part; they mean we're not benefiting from using the type system.
An interface is like a mask an object wears to keep users of it from seeing anything on it except what is on the interface. But allowing static methods is kind of a bolted-on feature that doesn't have much to do with interfaces (except that classes that implement the interface can call them without having to reference the interface).
Originally in Java you could put static methods only in classes, not in interfaces. There was an idea of a utility class, which was just a dumping ground for people to put static methods, and which didn't have any purpose as a class otherwise. Then there was a change to the language so you can put static methods on interfaces and not have to have a class involved. That's all putting static methods on an interface buys you, you can add only static methods because there is no mutable state allowed.
These methods outlined for you should all be things you can implement with only passed in arguments and local variables, without keeping any state outside of the scope of the method implementation.
I've tried to give you some idea of what is possible and what isn't, once that is clear you can ask your instructor some more focused questions about what you need to do.
I agree with Nathan Hughes. This an ill-conceived design, on the face of it.
But to cut to the chase, here is an example of you could complete that static method:
static Util create() {
return new OookUtil();
}
where
public class OookUtil implements Util {
public OookUtil() { ... }
// methods implementing the Util API for the Oook case.
}
Reviewing this we can immediately see one of the problems with the interface design. We have hard-wired a specific implementation class into the interface. That is most likely a bad idea.
Could we do any better? Well ... maybe ...
The Java SE class libraries have a concept of a Java Service Provider Interface or SPI. An SPI allows different providers to be selected depending on what is available at runtime, and so on. The idea is that SPI code does a runtime classpath search looking for all classes that implement the SPI (e.g. your Util). Then it selects the "best" according to (typically) runtime configurable criteria.
That logic would be implemented in your create method. The method would then instantiate the chosen class reflectively and return the instance. In its simplest form (ignoring the classpath search aspect) it might be something like this:
static Util create() {
String classname = System.getProperty("yourapp.utilclass");
Class<?> clazz Class.forName(className);
return (Util) clazz.newInstance();
}
In this illustration are getting a classname from the system properties. It could be set by running the application with a -D option; e.g. -Dyourapp.utilclass=yourapp.OookUtil.
The above code needs some exception handling ... which I will leave for you to figure out.
Maybe that is what your instructor is getting at. But if so, he or she should have explained more clearly what was expected.

Is this code implements 'Factory Pattern', factory methods, both or none?

Although this subject has been discussed many times, I still find myself get too confused with it.
I have this simple code sample:
public class FruitFactory {
public static Apple getApple() {
return new Apple();
}
public static Banana getBanana() {
return new Banana();
}
public static Orange getOrange() {
return new Orange();
}
}
Which Factory type this code is? and is it a proper writing of factory methods?
The factory pattern definition is: create an object without exposing the creation logic to the client
If I expose my client to some of the creation complexity like as the example below, is it a bad factory implementation?
public static Orange getOrange(String weight, String size,) {
return new Orange(weight, size);
}
The first code is a Factory pattern because you have just one class without subclassing, overriding, etc.
When you want to use a factory method than write (Banana inherits from Fruit):
public abstract FruitFactory {
public abstract Fruit createFruit();
}
public BananaFactory extends FruitFactory {
#Override
public Fruit createFruit() {
return new Banana();
}
}
The implementation:
public static Orange getOrange(String weight, String size) {
return new Orange(weight, size);
}
is also a correct implementation in my opinion because you encapsulate the creational logic like explained from #amn.
The good thing in using the static method is that you can make the constructor private so it is only possible to instantiate objects by using the method.
For better understanding see the following link: patterns
The factory pattern's purpose is to put an abstraction layer on top of object creation.
If the object has enough information to create itself without too many arguments or settings, then you don't need to use a factory pattern, as the object's constructor is a factory in itself.
This is the problem with your current code, it doesn't add a layer of abstraction to anything. You simply encapsulate the constructor.
The problem with the second code sample is the same, if it were a factory, then it would choose the weight or size of the fruits randomly or by an algorithm, like a real tree does.
Edit: The original Gang of four description is
"Define an interface for creating an object, but let subclasses decide which class to instantiate. The Factory method lets a class defer instantiation it uses to subclasses."
This means, that your code isn't a factory, because you need to define what you need.
As it is said, a factory is merely an abstraction where object creation implementation is intentionally encapsulated behind the factory's public interface. A factory does not have to be a class, it does not have to be a package -- different languages achieve encapsulation of state and behavioral details differently (consider closures, for instance).
A function in a language that allows "top-level" functions, can be a factory as well:
public Orange growNewOrange(String weight, String size) {
/// ...traditionally not callers concern.
}
If the factory hides creation code behind a way for you to use it without concerning yourself with said creation code for each created object, you already have a useful isolation (between getting new objects and that which manages them) that solves the problem the factory pattern was designed to solve.
There are factories that are designed to create and manage one kind of objects and then there are those that create and manage multiple kinds of objects. A fruit factory where you can specify the concrete class of fruit you want, still matches a valid factory pattern.
Categorizing factory implementations into "types" is done by various OOP authors, and may be useful for various good reasons, but this is not essential to be able to utilize the general idea to your advantage.
The immediately useful advice would be encapsulate creation code in a Java package or class, where specifying parameters of a created object is done on a per-object basis, while factory state controlling creation logic -- for instance size of reused object pool etc -- is set up during factory creation itself. Object pools are one of the examples of factory pattern at work.

How to implement a feature into two unrelated classes

I was assigned to a project, and it is my job to implement a feature to the already existing system. This functionality needs to be added to two seperate classes. Both of these classes extend the same super class, but it does not make sense to add the feature to this superclass. What is the best way I can implement the same functionality into these two seperate classes without too much code duplication. The simple way would be implementing this functionality into a static class and then using the static methods in the two classes that need this extra functionality, but that sort of seems like bad design.
Is there any sort of design I can use to implement something like this, or is me running into this problem just showing a larger issue in the hierarchy that should be fixed rather than try to work on top of it?
Java does not have stand-alone "static" classes, so that's a non-starter since it's not even possible. As for use of static methods, that's fine if you're talking about stateless utility methods.
Myself, I guess I'd solve this with composition and interfaces:
Create an interface for the functionality that I desire
Create concrete instance(s) of this interface
Give the two classes fields of the interface
Plus getter and setter methods for the interface.
If the classes had to have the new behaviors themselves, then have them implement the interface, and then have these classes obtain the behaviors by "indirection" by calling the methods of the contained object in the interface methods.
I'm sorry that this answer is somewhat vague and overly general. If you need more specific advice from me or from anyone else here, then consider telling us more of the specifics of your problem.
Determine what common features of these two classes the new functionality relies on. Then, extract those features to an interface, modify the two classes to implement that interface, and put the new functionality code in its own class (or possibly a static method somewhere, e.g. NewFeature.doTheThing(NewFeaturable toWhat)) and make it operate on those interfaces.
If the existing classes have to obtain information from / call methods related to the "new feature", then give them a NewFeature field that is an instance of the new feature class and have them interact with that object. Pseudo-ish code:
interface NewFeaturable {
int getRelevantInfo ();
}
class NewFeature {
final NewFeaturable object;
NewFeature (NewFeaturable object) { this.object = object; }
void doSomething () { int x = object.getRelevantInfo(); ... }
}
class ExistingClass extends Base implements NewFeaturable {
final NewFeature feature;
ExistingClass () { ...; feature = new NewFeature(this); }
#Override int getRelevantInfo () { ... }
void doSomethingNew () { feature.doSomething(); }
}
Be wary of new NewFeature(this) there, as subclasses of ExistingClass will not be fully constructed when it is called. If it's an issue, consider deferring initialization of feature until it is needed.
A lot of the specifics depend on your exact situation, but hopefully you get the general idea.

Any good examples of inheriting from a concrete class? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
Background:
As a Java programmer, I extensively inherit (rather: implement) from interfaces, and sometimes I design abstract base classes. However, I have never really felt the need to subclass a concrete (non-abstract) class (in the cases where I did it, it later turned out that another solution, such as delegation would have been better).
So now I'm beginning to feel that there is almost no situation where inheriting from a concrete class is appropriate. For one thing, the Liskov substitution principle (LSP) seems almost impossible to satisfy for non-trivial classes; also many other questions here seem to echo a similar opinion.
So my question:
In which situation (if any) does it actually make sense to inherit from a concrete class?
Can you give a concrete, real-world example of a class that inherits from another concrete class, where you feel this is the best design given the constraints? I'b be particularly interested in examples that satisfy the LSP (or examples where satisfying LSP seems unimportant).
I mainly have a Java background, but I'm interested in examples from any language.
You often have a skeletal implementations for an interface I. If you can offer extensibility without abstract methods (e.g. via hooks), it is preferable to have a non-abstract skeletal class because you can instantiate it.
An example would be a forwarding wrapper classes, to be able to forward to another object of a concrete class C implementing I, e.g. enabling decoration or simple code-reuse of C without having to inherit from C. You can find such an example in Effective Java item 16, favor composition over inheritance. (I do not want to post it here because of copyrights, but it is really simply forwarding all method calls of I to the wrapped implementation).
I think the following is a good example when it can be appropriate:
public class LinkedHashMap<K,V>
extends HashMap<K,V>
Another good example is inheritance of exceptions:
public class IllegalFormatPrecisionException extends IllegalFormatException
public class IllegalFormatException extends IllegalArgumentException
public class IllegalArgumentException extends RuntimeException
public class RuntimeException extends Exception
public class Exception extends Throwable
One very common case I can think of is to derive from basic UI controls, such as forms, textboxes, comboboxes, etc. They are complete, concrete, and well able to stand on their own; however, most of them are also very basic, and sometimes their default behavior isn't what you want. Virtually nobody, for instance, would use an instance of an unadulterated Form, unless possibly they were creating an entirely dynamic UI layer.
For example, in a piece of software I wrote that recently reached relative maturity (meaning I ran out of time to focus primarily on developing it :) ), I found I needed to add "lazy loading" capability to ComboBoxes, so it wouldn't take 50 years (in computer years) for the first window to load. I also needed the ability to automatically filter the available options in one ComboBox based on what was shown in another, and lastly I needed a way to "mirror" one ComboBox's value in another editable control, and make a change in one control happen to the other as well. So, I extended the basic ComboBox to give it these extra features, and created two new types: LazyComboBox, and then further, MirroringComboBox. Both are based on the totally serviceable, concrete ComboBox control, just overriding some behaviors and adding a couple others. They're not very loosely-coupled and therefore not too SOLID, but the added functionality is generic enough that if I had to, I could rewrite either of these classes from scratch to do the same job, possibly better.
Generally speaking, the only time I derive from concrete classes is when they're in the framework. Deriving from Applet or JApplet being the trivial example.
This is an example of a current implementation that I'm undertaking.
In OAuth 2 environment, since the documentation is still in draft stage, the specification keeps changing (as of time of writing, we're in version 21).
Thus, I had to extend my concrete AccessToken class to accommodate the different access tokens.
In earlier draft, there was no token_type field set, so the actual access token is as follows:
public class AccessToken extends OAuthToken {
/**
*
*/
private static final long serialVersionUID = -4419729971477912556L;
private String accessToken;
private String refreshToken;
private Map<String, String> additionalParameters;
//Getters and setters are here
}
Now, with Access tokens that returns token_type, I have
public class TokenTypedAccessToken extends AccessToken {
private String tokenType;
//Getter and setter are here...
}
So, I can return both and the end user is none the wiser. :-)
In Summary: If you want a customized class that has the same functionality of your concrete class without changing the structure of the concrete class, I suggest extending the concrete class.
I mainly have a Java background, but I'm interested in examples from any language.
Like many frameworks, ASP.NET makes heavy use of inheritance to share behaviour between classes. For example, HtmlInputPassword has this inheritance hierarchy:
System.Object
System.Web.UI.Control
System.Web.UI.HtmlControls.HtmlControl // abstract
System.Web.UI.HtmlControls.HtmlInputControl // abstract
System.Web.UI.HtmlControls.HtmlInputText
System.Web.UI.HtmlControls.HtmlInputPassword
in which can be seen examples of concrete classes being derived from.
If you're building a framework - and you're sure you want to do that - you may well finding yourself wanting a nice big inheritance hierarchy.
Other use case would be the to override the default behavior:
Lets say there is a class which uses standard Jaxb parser for parsing
public class Util{
public void mainOperaiton(){..}
protected MyDataStructure parse(){
//standard Jaxb code
}
}
Now say I want to use some different binding (Say XMLBean) for the parsing operation,
public class MyUtil extends Util{
protected MyDataStructure parse(){
//XmlBean code code
}
}
Now I can use the new binding with code reuse of super class.
The decorator pattern, a handy way of adding additional behaviour to a class without making it too general, makes heavy use of inheritance of concrete classes. It was mentioned here already, but under somewhat a scientific name of "forwarding wrapper class".
Lot of answers but I though I'd add my own $0.02.
I override concreate classes infrequently but under some specific circumstances. At least 1 has already been mentioned when framework classes are designed to be extended. 2 additional ones come to mind with some examples:
1) If I want to tweak the behavior of a concrete class. Sometimes I want to change how the concrete class works or I want to know when a certain method is called so I can trigger something. Often concrete classes will define a hook method whose sole usage is for subclasses to override the method.
Example: We overrode MBeanExporter because we need to be able to unregister a JMX bean:
public class MBeanRegistrationSupport {
// the concrete class has a hook defined
protected void onRegister(ObjectName objectName) {
}
Our class:
public class UnregisterableMBeanExporter extends MBeanExporter {
#Override
protected void onUnregister(ObjectName name) {
// always a good idea
super.onRegister(name);
objectMap.remove(name);
}
Here's another good example. LinkedHashMap is designed to have its removeEldestEntry method overridden.
private static class LimitedLinkedHashMap<K, V> extends LinkedHashMap<K, V> {
#Override
protected boolean removeEldestEntry(Entry<K, V> eldest) {
return size() > 1000;
}
2) If a class shares a significant amount of overlap with the concrete class except for some tweaks to functionality.
Example: My ORMLite project handles persisting Long object fields and long primitive fields. Both have almost the identical definition. LongObjectType provides all of the methods that describe how the database deals with long fields.
public class LongObjectType {
// a whole bunch of methods
while LongType overrides LongObjectType and only tweaks a single method to say that handles primitives.
public class LongType extends LongObjectType {
...
#Override
public boolean isPrimitive() {
return true;
}
}
Hope this helps.
Inheriting concrete class is only option if you want to extend side-library functionality.
For example of real life usage you can look at hierarchy of DataInputStream, that implements DataInput interface for FilterInputStream.
I'm beginning to feel that there is almost no situation where inheriting from a concrete class is appropriate.
This is one 'almost'. Try writing an applet without extending Applet or JApplet.
Here is an e.g. from the applet info. page.
/* <!-- Defines the applet element used by the appletviewer. -->
<applet code='HelloWorld' width='200' height='100'></applet> */
import javax.swing.*;
/** An 'Hello World' Swing based applet.
To compile and launch:
prompt> javac HelloWorld.java
prompt> appletviewer HelloWorld.java */
public class HelloWorld extends JApplet {
public void init() {
// Swing operations need to be performed on the EDT.
// The Runnable/invokeLater() ensures that happens.
Runnable r = new Runnable() {
public void run() {
// the crux of this simple applet
getContentPane().add( new JLabel("Hello World!") );
}
};
SwingUtilities.invokeLater(r);
}
}
Another good example would be data storage types. To give a precise example: a red-black tree is a more specific binary tree, but retrieving data and other information like size can be handled identical. Of course, a good library should have that already implemented but sometimes you have to add specific data types for your problem.
I am currently developing an application which calculates matrices for the users. The user can provide settings to influence the calculation. There are several types of matrices that can be calculated, but there is a clear similarity, especially in the configurability: matrix A can use all the settings of matrix B but has additional parameters which can be used. In that case, I inherited from the ConfigObjectB for my ConfigObjectA and it works pretty good.
In general, it is better to inherit from an abstract class than from a concrete class. A concrete class must provide a definition for its data representation, and some subclasses will need a different representation. Since an abstract class does not have to provide a data representation, future subclasses can use any representation without fear of conflicting with the one that they inherited.
Even i never found a situation where i felt concrete inheritence is neccessary. But there could be some situations for concrete inheritence specially when you are providing backward compatibility to your software. In that case u might have specialized a class A but you want it to be concrete as your older application might be using it.
Your concerns are also echoed in the classic principle "favor composition over inheritance", for the reasons you stated. I can't remember the last time I inherited from a concrete class. Any common code that needs to be reused by child classes almost always needs to declare abstract interfaces for those classes. In this order I try to prefer the following strategies:
Composition (no inheritance)
Interface
Abstract Class
Inheriting from a concrete class really isn't ever a good idea.
[EDIT] I'll qualify this statement by saying I don't see a good use case for it when you have control over the architecture. Of course when using an API that expects it, whaddaya gonna do? But I don't understand the design choices made by those APIs. The calling class should always be able to declare and use an abstraction according to the Dependency Inversion Principle. If a child class has additional interfaces to be consumed you'd either have to violate DIP or do some ugly casting to get at those interfaces.
from the gdata project:
com.google.gdata.client.Service is designed to act as a base class that can be customized for specific types of GData services.
Service javadoc:
The Service class represents a client connection to a GData service. It encapsulates all protocol-level interactions with the GData server and acts as a helper class for higher level entities (feeds, entries, etc) that invoke operations on the server and process their results.
This class provides the base level common functionality required to access any GData service. It is also designed to act as a base class that can be customized for specific types of GData services. Examples of supported customizations include:
Authentication - implementing a custom authentication mechanism for services that require authentication and use something other than HTTP basic or digest authentication.
Extensions - define expected extensions for feed, entry, and other types associated with a the service.
Formats - define additional custom resource representations that might be consumed or produced by the service and client side parsers and generators to handle them.
I find the java collection classes as a very good example.
So you have an AbstractCollection with childs like AbstractList, AbstractSet, AbstractQueue...
I think this hierarchy has been well designed.. and just to ensure there's no explosion there's the Collections class with all its inner static classes.
You do that for instance in GUI libraries. It makes not much sense to inherit from a mere Component and delegate to a Panel. It is likely much easyer to inherit from the Panel directly.
Just a general thought. Abstract classes are missing something. It makes sense if this, what is missing, is different in each derived class. But you may have a case where you don't want to modify a class but just want to add something. To avoid duplication of code you would inherit. And if you need both classes it would be inheritance from a concrete class.
So my answer would be: In all cases where you really only want to add something. Maybe this just doesn't happen very often.

When to use getInstanceOf instead of constructor

Back couple of months ago I attended a presentation hosted by two representative of an independent software development company. It was mainly about good software design and practices.
The two guys were talking mainly about Java and I remember them saying, that in some circumstances it is very good practice to use getInstanceOf() instead of the constructor. It had something to do with making always calling getInstanceOf() from different classes rather than constructor and how it was it is much better approach on larger scale projects.
As you can see I cannot remember much from it now :/ but I remember that the arguments that they used were really convincing. I wonder if any of you ever came across such a design and when, would you say, is it useful? Or do you think it isn't at all?
Consider static factory methods instead of constructors—Joshua Bloch
They were probably talking about the static factory method pattern (and not the reflection API method for dynamically creating objects).
There at several advantages of a method such as getInstanceOf() over a constructor and using new. The static factory method can...
Choose to create a different sub-class of the main class if that is desirable in certain cases (based on environmental conditions, such as properties and other objects/singletons, or method parameters).
Choose to return an existing object instead of creating one. For an example of this, see Boolean.valueOf(boolean) in the Java API.
Do the same thing as the constructor - just return a new instance of the class itself.
Provide many different kinds of ways to construct a new object and name those methods so they are less confusing (e.g. try this with constructors and you soon have many different overloads). Sometimes this is not even possible with constructors if you need to be able to create an instance two different ways but only need the same type of parameters. Example:
// This class will not compile!
public class MyClass {
public MyClass(String name, int max) {
//init here
}
public MyClass(String name, int age) {
// init here
}
}
// This class will compile.
public class MyClass2 {
private MyClass2() {
}
public static MyClass2 getInstanceOfMax(String name, int max) {
MyClass2 m2 = new MyClass2();
// init here
return m2;
}
public static MyClass2 getInstanceOfAge(String name, int age) {
MyClass2 m2 = new MyClass2();
// init here
return m2;
}
}
Do any combination of the above.
And, on top of all that it hides the detail of instantiating an instance from other classes and so can be varied in the future (construction encapsulation).
A constructor can only ever create a new instance of an object of the exact type requested. It cannot be varied later.
Some disadvantages of this pattern are:
The factory methods are static so cannot be inherited in sub-classes; a parent constructor is easily accessible to sub-classes.
The factory method names can vary widely and this could be confusing for some (new) developers.
You also asked for personal experience. Yes, I frequently use both patterns. For most classes constructor but when there are much more advanced needs then I use the static factory. I also work on projects in other languages (proprietary, but similar to Java) where this form of construction is mandated.
I suspect you mean the newInstance method on the Class class. You would invoke it like this: MyClass foo = MyClass.newInstance();
This form of object instantiation is popular in creational patterns; it's useful when you want to specify the concrete, runtime type of an object externally, such as in a properties or XML file.
If Drew is right, newInstance() is part of the Java Reflection API. So it is not as natural as using a constructor.
Why it would be recommended to use it on a large project may come with the fact that it leads to Java Bean programming style and clearly makes the creation of the object something particular. On large project, creating object shouldn't be a cross-cutting concern but rather a clearly identified responsibility, often from one source / factory. But IMHO, you get all of those advantages and many more with IoC pattern.

Categories