The code is about finding the largest rectangle in an Android device's camera using OpenCV. The app always force close but I can't find the trouble.
The input of the method is a Mat obtained by CvCameraViewFrame.rgba().
private Mat findLargestRectangle(Mat original_image)
{
Mat imgSource = original_image;
// convert the image to black and white
Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BGR2GRAY);
// convert the image to black and white does (8 bit)
Imgproc.Canny(imgSource, imgSource, 50, 50);
// apply gaussian blur to smoothen lines of dots
Imgproc.GaussianBlur(imgSource, imgSource, new Size(5, 5), 5);
// find the contours
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Imgproc.findContours(imgSource, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
double maxArea = -1;
int maxAreaIdx = -1;
MatOfPoint temp_contour = contours.get(0); // the largest is at the
// index 0 for starting
// point
MatOfPoint2f approxCurve = new MatOfPoint2f();
Mat largest_contour = contours.get(0);
List<MatOfPoint> largest_contours = new ArrayList<MatOfPoint>();
for (int idx = 0; idx < contours.size(); idx++)
{
temp_contour = contours.get(idx);
double contourarea = Imgproc.contourArea(temp_contour);
// compare this contour to the previous largest contour found
if (contourarea > maxArea)
{
// check if this contour is a square
MatOfPoint2f new_mat = new MatOfPoint2f(temp_contour.toArray());
int contourSize = (int) temp_contour.total();
Imgproc.approxPolyDP(new_mat, approxCurve, contourSize * 0.05, true);
if (approxCurve.total() == 4)
{
maxArea = contourarea;
maxAreaIdx = idx;
largest_contours.add(temp_contour);
largest_contour = temp_contour;
}
}
}
MatOfPoint temp_largest = largest_contours.get(largest_contours.size() - 1);
largest_contours = new ArrayList<MatOfPoint>();
largest_contours.add(temp_largest);
Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BayerBG2RGB);
Imgproc.drawContours(imgSource, largest_contours, -1, new Scalar(0, 255, 0), 1);
// create the new image here using the largest detected square
Toast.makeText(getApplicationContext(), "Largest Contour: ", Toast.LENGTH_LONG).show();
return imgSource;
}
Here are the error information in LogCat:
error opening trace file: No such file or directory (2)
Tegra Version detected: 0
FATAL EXCEPTION: Thread-14346
java.lang.IndexOutOfBoundsException: Invalid index 0, size is 0
at java.util.ArrayList.throwIndexOutOfBoundsException(ArrayList.java:251)
at java.util.ArrayList.get(ArrayList.java:304)
at org.opencv.samples.tutorial2.Tutorial2Activity.findLargestRectangle(Tutorial2Activity.java:221)
at org.opencv.samples.tutorial2.Tutorial2Activity.onCameraFrame(Tutorial2Activity.java:169)
at org.opencv.android.CameraBridgeViewBase.deliverAndDrawFrame(CameraBridgeViewBase.java:387)
at org.opencv.android.JavaCameraView$CameraWorker.run(JavaCameraView.java:328)
at java.lang.Thread.run(Thread.java:856)
And the 221st line of the Tutorial2Avctivity is:
MatOfPoint temp_contour = contours.get(0);
Please tell me what the errors are. Thanks a lot!
This simply means that the size of the ArrayList of contours is empty.
I would suggest adding a conditional block to allow your application cope with the scenario that no contours could be found in the input image.
If you're consistently getting no contours, regardless of the input image, you may want to review the documentation (or Javadoc):
image – Source, an 8-bit single-channel image. Non-zero pixels are treated as 1’s. Zero pixels remain 0’s, so the image is treated as binary . You can use compare() , inRange() , threshold() , adaptiveThreshold() , Canny() , and others to create a binary image out of a grayscale or color one.
Perhaps the threshold values in your Canny() function is not yielding any edges.
If you're still having no luck, perhaps you could test with the input image and values from this blog post.
Try with this,
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Imgproc.findContours(imgSource, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
You have to add some value into counter before below line
MatOfPoint temp_contour = contours.get(0);
Related
I am trying to determine a way to change the pixel color of my masks from black to a different color. Unfortunately, I have not be able to determine a way to do this task. Essentially, what I am trying to do is take this image:
and convert the black portions to a color with values (255, 160, 130). I have tried several methods to try and achieve my goal. These include draw contours, setTo, and looping through the matrix. Unfortunately all of these attempts have failed. I have included the code and the resulting outcomes below.
Draw Contours method
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
Mat img = Imgcodecs.imread(
"C:\\Users\\Hassan\\Documents\\School\\Me\\COMP5900 Y\\Project\\Project\\src\\resources\\face.jpg");
Mat img_grey = new Mat();
Mat grad = new Mat(), grad_x = new Mat(), grad_y = new Mat();
Mat abs_grad_x = new Mat(), abs_grad_y = new Mat();
int ddepth = CvType.CV_32F;
int scale = 1;
int delta = 0;
Imgproc.GaussianBlur(img, img, new Size(3, 3), 0, 0, Core.BORDER_CONSTANT);
Imgproc.cvtColor(img, img_grey, Imgproc.COLOR_BGR2GRAY);
// Apply Sobel
Imgproc.Sobel(img_grey, grad_x, ddepth, 1, 0, 3, scale, delta, Core.BORDER_DEFAULT);
Imgproc.Sobel(img_grey, grad_y, ddepth, 0, 1, 3, scale, delta, Core.BORDER_DEFAULT);
// converting back to CV_8U
Core.convertScaleAbs(grad_x, abs_grad_x);
Core.convertScaleAbs(grad_y, abs_grad_y);
// Total Gradient (approximate)
Core.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
Photo.fastNlMeansDenoising(grad, grad);
Imgproc.GaussianBlur(grad, grad, new Size(3, 3), 0, 0, Core.BORDER_CONSTANT);
// isolate background
Mat background = new Mat();
Imgproc.threshold(grad, background, 2, 255, Imgproc.THRESH_BINARY);
// draw contours
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(background, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_NONE);
Mat drawing = Mat.zeros(background.size(), CvType.CV_8UC3);
List<MatOfPoint> hullList = new ArrayList<>();
for (MatOfPoint contour : contours) {
MatOfInt hull = new MatOfInt();
Imgproc.convexHull(contour, hull);
Point[] contourArray = contour.toArray();
Point[] hullPoints = new Point[hull.rows()];
List<Integer> hullContourIdxList = hull.toList();
for (int i = 0; i < hullContourIdxList.size(); i++) {
hullPoints[i] = contourArray[hullContourIdxList.get(i)];
}
hullList.add(new MatOfPoint(hullPoints));
}
for (int i = 0; i < contours.size(); i++) {
Scalar color = new Scalar(255, 160, 130);
Imgproc.drawContours(drawing, contours, i, color);
//Imgproc.drawContours(drawing, hullList, i, color );
}
Note here, that I also tried using Imgproc.RETR_EXTERNAL as well, but that produced a completely black image. Also the name of the HighGui window is called "flood fill", but I just forgot to update the name.
setTo
// replace find and draw contours portion of code above
Mat out = new Mat();
background.copyTo(out);
out.setTo(new Scalar(255, 160, 130), background);
Iterating through matrix
// replace draw contours portion of code above
for (a = 0; a < background.rows(); a++) {
for(b = 0; b < background.cols(); b++) {
if(background.get(a,b)[0] == 0) {
//background.put(a, b, CvType.CV_16F, new Scalar(255, 160, 130));
double[] data = {255, 160, 130};
background.put(a, b, data);
}
}
}
The loop is promising, but I know it will not be efficient as I have 2 other masks that I would like to update as well. Could you please suggest an efficient method, that allows me to set the value for all three channels?
Thanks
I am not sure why you are doing many operations on the image but to me it looks like applying the mask and replacing the color efficiently. So if there are other complexities than please let me know.
Below is the code I was looking for in Java.
public static void main(String s[]) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
Mat matr =Imgcodecs.imread("/home/shariq/Desktop/test.png");
Mat result = new Mat();
//create a mask based on range
Core.inRange(matr, new Scalar(0), new Scalar(50), result);
Imgcodecs.imwrite("/home/shariq/Desktop/test_in.png", result);
//apply the mask with color you are looking for, note here scalar is in hsv
matr.setTo(new Scalar(130,160,255),result);
Imgcodecs.imwrite("/home/shariq/Desktop/result.png", matr);
}
We are creating a mask for the pixel values between 0-50 for black color using inRange method.
Core.inRange(matr, new Scalar(0), new Scalar(50), result);
This mask in result variable is than applied to original matrix using setTo method. The replacement color value is provided in HSV format through Scalar object. new Scalar(a,b,c) in HSV can be understand in RGB like this Red = c, Green = b and Blue = a.
matr.setTo(new Scalar(130,160,255),result);
Its quite fast compared to iterating the pixels one by one.
I am making an Android application to detect multiple objects from an image, then process those objects and compare them with reference objects to detect anomalies. I tested different image edge detectors in python and Prewitt operator gave me the best result as shown below https://i.imgur.com/4iwOx9s.png For android, I used Canny edge detector, but the result is not as good as Prewitt as shown below https://i.imgur.com/Bax1Wxw.png
The purpose of applying Canny edge detector is the detect the largest contour first then extract this contour and detect every object found in this contour (which in my case 3 objects).
Here is the java code I tried
Bitmap bmp = BitmapFactory.decodeResource(getResources(), R.drawable.coffret);
//compress bitmap
bmp = getResizedBitmap(bmp, 500);
Mat rgbMat = new Mat();
Utils.bitmapToMat(bmp, rgbMat);
Mat grayMat = new Mat();
Mat bwMat = new Mat();
Imgproc.cvtColor(rgbMat, grayMat, Imgproc.COLOR_RGB2GRAY);
Imgproc.equalizeHist(grayMat, grayMat);
//Imgproc.adaptiveThreshold(grayMat, grayMat, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 15, 40);
Imgproc.Canny(grayMat, bwMat, 50, 200, 3, false);
//find largest contour
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Imgproc.findContours(bwMat, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_NONE);
double maxArea = -1;
int maxAreaIdx = -1;
if (contours.size() > 0) {
MatOfPoint temp_contour = contours.get(0); //the largest is at the index 0 for starting point
MatOfPoint2f approxCurve = new MatOfPoint2f();
Mat largest_contour = contours.get(0);
List<MatOfPoint> largest_contours = new ArrayList<MatOfPoint>();
for (int idx = 0; idx < contours.size(); idx++) {
temp_contour = contours.get(idx);
double contourarea = Imgproc.contourArea(temp_contour);
//compare this contour to the previous largest contour found
if (contourarea > maxArea) {
//check if this contour is a square
MatOfPoint2f new_mat = new MatOfPoint2f( temp_contour.toArray() );
int contourSize = (int)temp_contour.total();
Imgproc.approxPolyDP(new_mat, approxCurve, contourSize*0.05, true);
if (approxCurve.total() == 4) {
maxArea = contourarea;
maxAreaIdx = idx;
largest_contours.add(temp_contour);
largest_contour = temp_contour;
}
}
}
if (largest_contours.size() >= 1) {
MatOfPoint temp_largest = largest_contours.get(largest_contours.size()-1);
largest_contours = new ArrayList<MatOfPoint>();
largest_contours.add(temp_largest);
Imgproc.cvtColor(bwMat, bwMat, Imgproc.COLOR_BayerBG2RGB);
Imgproc.drawContours(bwMat, largest_contours, -1, new Scalar(0, 255, 0), 1);
}
}
Utils.matToBitmap(bwMat, bmp);
Matrix matrix = new Matrix();
matrix.postRotate(180);
bmp = Bitmap.createBitmap(bmp, 0, 0, bmp.getWidth(), bmp.getHeight(), matrix, true);
imgView.setImageBitmap(bmp);
As you can notice, using the Prewitt operator the text is clear and contours are more defined.
I think I am not applying Canny correctly that's why the largest contour is not detected. What am I doing wrong?
Edit:
Here is the original image
https://i.imgur.com/BtyZOvj.jpg
It seems that you are applying Canny edge detector correct. However, sometimes, it could be trick to define proper minimum and maximum values to threshold the edges.
Maybe the interval you are using (i.e., 50 to 200) is large for your purpose. You could try higher minimum and maximum values with tight intervals, for instance, 175 to 200.
As the image gets complex you need to take special care of these parameters. Sometimes, different sections of your image will require different minimum and maximum thresholds. Take a look at this reference, it contains a decent explanation about Improvement on Canny edge detection. At the end of this page, there is a explanation of how to determine the dual-threshold value.
I am working on a program where I am trying to extract the colored squares from a puzzle. I take a frame from a video capture then find the all contours. I then remove contours that aren't in the shape of a square (This works alright but looking for a better method). The main problem I am facing is that there are overlapping contours. I use RETR_TREE to get all contours but when using RETR_EXTERNAL The contours become harder to detect. Is there a way I can improve the detection of squares? Or a way that I can remove the overlapping contours in the image.
Here is an image of where there are overlapping contours:
There were 11 contours found in this image but I want only 9.(I draw the rects to see the overlapping a little easier)
. How can I remove the inner contours?
Here is my code:
public Mat captureFrame(Mat capturedFrame){
Mat newFrame = new Mat();
capturedFrame.copyTo(newFrame);
//Gray
Mat gray = new Mat();
Imgproc.cvtColor(capturedFrame, gray, Imgproc.COLOR_RGB2GRAY);
//Blur
Mat blur = new Mat();
Imgproc.blur(gray, blur, new Size(3,3));
//Canny image
Mat canny = new Mat();
Imgproc.Canny(blur, canny, 20, 40, 3, true);
//Dilate image to increase size of lines
Mat kernel = Imgproc.getStructuringElement(1, new Size(3,3));
Mat dilated = new Mat();
Imgproc.dilate(canny,dilated, kernel);
List<MatOfPoint> contours = new ArrayList<>();
List<MatOfPoint> squareContours = new ArrayList<>();
//find contours
Imgproc.findContours(dilated, contours, new Mat(), Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_NONE);
//Remove contours that aren't close to a square shape.
//Wondering if there is a way I can improve this?
for(int i = 0; i < contours.size(); i++){
double area = Imgproc.contourArea( contours.get(i));
MatOfPoint2f contour2f = new MatOfPoint2f(contours.get(i).toArray());
double perimeter = Imgproc.arcLength(contour2f, true);
//Found squareness equation on wiki...
//https://en.wikipedia.org/wiki/Shape_factor_(image_analysis_and_microscopy)
double squareness = 4 * Math.PI * area / Math.pow(perimeter, 2);
//add contour to new List if it has a square shape.
if(squareness >= 0.7 && squareness <= 0.9 && area >= 3000){
squareContours.add(contours.get(i));
}
}
MatOfPoint2f approxCurve = new MatOfPoint2f();
for(int n = 0; n < squareContours.size(); n++){
//Convert contours(n) from MatOfPoint to MatOfPoint2f
MatOfPoint2f contour2f = new MatOfPoint2f( squareContours.get(n).toArray());
//Processing on mMOP2f1 which is in type MatOfPoint2f
double approxDistance = Imgproc.arcLength(contour2f, true)*0.02;
Imgproc.approxPolyDP(contour2f, approxCurve, approxDistance, true);
//Convert back to MatOfPoint
MatOfPoint points = new MatOfPoint( approxCurve.toArray());
// Get bounding rect of contour
Rect rect = Imgproc.boundingRect(points);
//length and width should be about the same
if(rect.height - rect.width < Math.abs(10)){
System.out.printf("%s , %s \n", rect.height, rect.width);
}
// draw enclosing rectangle (all same color, but you could use variable i to make them unique)
Imgproc.rectangle(newFrame, new Point(rect.x,rect.y), new Point(rect.x+rect.width,rect.y+rect.height),new Scalar (255, 0, 0, 255), 3);
}
return newFrame;
}
Fortunately, cv::findContours also provides us with hierarchy matrix, which you have ignored in your snippet, the hierarchy is very useful for all modes other than RETR_EXTERNAL, You may find the detailed doc of hierarchy matrix here.
Hierarchy matrix contains the data in the format [Next, Previous, First_Child, Parent] for each contour. Now you may filter contours, which a logic such as select only those contours where parent == -1, this will eliminate the sub contours inside the parent contour.
To make use of the hierarchy matrix you need to call cv::findContours as:
cv::Mat hierarchy;
Imgproc.findContours(dilated, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_NONE);
I know this is duplicated post but still get stuck on implementation.
I following some guide on the internet in how to detect document in an image in OpenCV and Java.
The first approarch i came up with is that use the findContours after pre-process some image processing like blur, edge detection, after get all the contours i can found the largest contour and assume that is a rectangle i'm looking for but it fail in some case, e.g the document is not fully taken like missing one corner.
After trying several time and some new processing but does not work at all, i found that the HoughLine transform take it easier. From now i have all the line inside an image but still do not what to do next to defined the interest rectangle that i want.
Here is the implementation code i have so far:
Approach 1: Using findContours
Mat grayImage = new Mat();
Mat detectedEdges = new Mat();
// convert to grayscale
Imgproc.cvtColor(frame, grayImage, Imgproc.COLOR_BGR2GRAY);
// reduce noise with a 3x3 kernel
// Imgproc.blur(grayImage, detectedEdges, new Size(3, 3));
Imgproc.medianBlur(grayImage, detectedEdges, 9);
// Imgproc.equalizeHist(detectedEdges, detectedEdges);
// Imgproc.GaussianBlur(detectedEdges, detectedEdges, new Size(5, 5), 0, 0, Core.BORDER_DEFAULT);
Mat edges = new Mat();
// canny detector, with ratio of lower:upper threshold of 3:1
Imgproc.Canny(detectedEdges, edges, this.threshold.getValue(), this.threshold.getValue() * 3, 3, true);
// makes the object in white bigger
Imgproc.dilate(edges, edges, new Mat(), new Point(-1, -1), 1); // 1
Image imageToShow = Utils.mat2Image(edges);
updateImageView(cannyFrame, imageToShow);
/// Find contours
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Imgproc.findContours(edges, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
// loop over the contours
MatOfPoint2f approxCurve;
double maxArea = 0;
int maxId = -1;
for (MatOfPoint contour : contours) {
MatOfPoint2f temp = new MatOfPoint2f(contour.toArray());
double area = Imgproc.contourArea(contour);
approxCurve = new MatOfPoint2f();
Imgproc.approxPolyDP(temp, approxCurve, Imgproc.arcLength(temp, true) * 0.02, true);
if (approxCurve.total() == 4 && area >= maxArea) {
double maxCosine = 0;
List<Point> curves = approxCurve.toList();
for (int j = 2; j < 5; j++) {
double cosine = Math.abs(angle(curves.get(j % 4), curves.get(j - 2), curves.get(j - 1)));
maxCosine = Math.max(maxCosine, cosine);
}
if (maxCosine < 0.3) {
maxArea = area;
maxId = contours.indexOf(contour);
}
}
}
MatOfPoint maxMatOfPoint = contours.get(maxId);
MatOfPoint2f maxMatOfPoint2f = new MatOfPoint2f(maxMatOfPoint.toArray());
RotatedRect rect = Imgproc.minAreaRect(maxMatOfPoint2f);
System.out.println("Rect angle: " + rect.angle);
Point points[] = new Point[4];
rect.points(points);
for (int i = 0; i < 4; ++i) {
Imgproc.line(frame, points[i], points[(i + 1) % 4], new Scalar(255, 255, 25), 3);
}
Mat dest = new Mat();
frame.copyTo(dest, frame);
return dest;
Apparch 2: Using HoughLine transform
// STEP 1: Edge detection
Mat grayImage = new Mat();
Mat detectedEdges = new Mat();
Vector<Point> start = new Vector<Point>();
Vector<Point> end = new Vector<Point>();
// convert to grayscale
Imgproc.cvtColor(frame, grayImage, Imgproc.COLOR_BGR2GRAY);
// reduce noise with a 3x3 kernel
// Imgproc.blur(grayImage, detectedEdges, new Size(3, 3));
Imgproc.medianBlur(grayImage, detectedEdges, 9);
// Imgproc.equalizeHist(detectedEdges, detectedEdges);
// Imgproc.GaussianBlur(detectedEdges, detectedEdges, new Size(5, 5), 0, 0, Core.BORDER_DEFAULT);
// AdaptiveThreshold -> classify as either black or white
// Imgproc.adaptiveThreshold(detectedEdges, detectedEdges, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 5, 2);
// Imgproc.Sobel(detectedEdges, detectedEdges, -1, 1, 0);
Mat edges = new Mat();
// canny detector, with ratio of lower:upper threshold of 3:1
Imgproc.Canny(detectedEdges, edges, this.threshold.getValue(), this.threshold.getValue() * 3, 3, true);
// apply gaussian blur to smoothen lines of dots
Imgproc.GaussianBlur(edges, edges, new org.opencv.core.Size(5, 5), 5);
// makes the object in white bigger
Imgproc.dilate(edges, edges, new Mat(), new Point(-1, -1), 1); // 1
Image imageToShow = Utils.mat2Image(edges);
updateImageView(cannyFrame, imageToShow);
// STEP 2: Line detection
// Do Hough line
Mat lines = new Mat();
int minLineSize = 50;
int lineGap = 10;
Imgproc.HoughLinesP(edges, lines, 1, Math.PI / 720, (int) this.threshold.getValue(), this.minLineSize.getValue(), lineGap);
System.out.println("MinLineSize: " + this.minLineSize.getValue());
System.out.println(lines.rows());
for (int i = 0; i < lines.rows(); i++) {
double[] val = lines.get(i, 0);
Point tmpStartP = new Point(val[0], val[1]);
Point tmpEndP = new Point(val[2], val[3]);
start.add(tmpStartP);
end.add(tmpEndP);
Imgproc.line(frame, tmpStartP, tmpEndP, new Scalar(255, 255, 0), 2);
}
Mat dest = new Mat();
frame.copyTo(dest, frame);
return dest;
HoughLine result 1
HoughLine result 2
How to detect needed rectangle from HoughLine result?
Can someone give me the next step to complete the HoughLine transform approach.
Any help is appriciated. i'm stuck with this for a while.
Thanks you for reading this.
This answer is pretty much a mix of two other answers (here and here) I posted. But the pipeline I used for the other answers can be a little bit improved for your case. So I think it's worth posting a new answer.
There are many ways to achieve what you want. However, I don't think that line detection with HoughLinesP is needed here. So here is the pipeline I used on your samples:
Step 1: Detect egdes
Resize the input image if it's too large (I noticed that this pipeline works better on down scaled version of a given input image)
Blur grayscale input and detect edges with Canny filter
Step 2: Find the card's corners
Compute the contours
Sort the contours by length and only keep the largest one
Generate the convex hull of this contour
Use approxPolyDP to simplify the convex hull (this should give a quadrilateral)
Create a mask out of the approximate polygon
return the 4 points of the quadrilateral
Step 3: Homography
Use findHomography to find the affine transformation of your paper sheet (with the 4 corner points found at Step 2)
Warp the input image using the computed homography matrix
NOTE: Of course, once you have found the corners of the paper sheet on the down scaled version of the input image, you can easily compute the position of the corners on the full sized input image. This, in order to have the best resolution for the warped paper sheet.
And here is the result:
vector<Point> getQuadrilateral(Mat & grayscale, Mat& output)
{
Mat approxPoly_mask(grayscale.rows, grayscale.cols, CV_8UC1);
approxPoly_mask = Scalar(0);
vector<vector<Point>> contours;
findContours(grayscale, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);
vector<int> indices(contours.size());
iota(indices.begin(), indices.end(), 0);
sort(indices.begin(), indices.end(), [&contours](int lhs, int rhs) {
return contours[lhs].size() > contours[rhs].size();
});
/// Find the convex hull object for each contour
vector<vector<Point> >hull(1);
convexHull(Mat(contours[indices[0]]), hull[0], false);
vector<vector<Point>> polygon(1);
approxPolyDP(hull[0], polygon[0], 20, true);
drawContours(approxPoly_mask, polygon, 0, Scalar(255));
imshow("approxPoly_mask", approxPoly_mask);
if (polygon[0].size() >= 4) // we found the 4 corners
{
return(polygon[0]);
}
return(vector<Point>());
}
int main(int argc, char** argv)
{
Mat input = imread("papersheet1.JPG");
resize(input, input, Size(), 0.1, 0.1);
Mat input_grey;
cvtColor(input, input_grey, CV_BGR2GRAY);
Mat threshold1;
Mat edges;
blur(input_grey, input_grey, Size(3, 3));
Canny(input_grey, edges, 30, 100);
vector<Point> card_corners = getQuadrilateral(edges, input);
Mat warpedCard(400, 300, CV_8UC3);
if (card_corners.size() == 4)
{
Mat homography = findHomography(card_corners, vector<Point>{Point(warpedCard.cols, warpedCard.rows), Point(0, warpedCard.rows), Point(0, 0), Point(warpedCard.cols, 0)});
warpPerspective(input, warpedCard, homography, Size(warpedCard.cols, warpedCard.rows));
}
imshow("warped card", warpedCard);
imshow("edges", edges);
imshow("input", input);
waitKey(0);
return 0;
}
This is C++ code, but it shouldn't be to hard to translate into Java.
I need to extract the largest contour of an image.
This is the code i'm currently using. gathered of a few snippets online
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Imgproc.findContours(outerBox, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
double maxArea = -1;
int maxAreaIdx = -1;
for (int idx = 0; idx < contours.size(); idx++) {
Mat contour = contours.get(idx);
double contourarea = Imgproc.contourArea(contour);
if (contourarea > maxArea) {
maxArea = contourarea;
maxAreaIdx = idx;
}
}
and it seems to work. however, I'm not quite sure how to go about from here.
I tried using Imgproc.floodFill, but I'm not quite sure how.
this function requires a mast Mat of the same size as the original Mat +2 horizontal and +2 vertical.
When I ran this on the contour contours.get(maxAreaIdx), it gave me an error.
The code:
Mat mask = Mat.zeros(contour.rows() + 2, contour.cols() + 2, CvType.CV_8UC1);
int area = Imgproc.floodFill(contour, mask, new Point(0,0), new Scalar(255, 255, 255));
The error:
11-18 19:07:49.406: E/cv::error()(3117): OpenCV Error: Unsupported format or combination of formats () in void cvFloodFill(CvArr*, CvPoint, CvScalar, CvScalar, CvScalar, CvConnectedComp*, int, CvArr*), file /home/oleg/sources/opencv/modules/imgproc/src/floodfill.cpp, line 621
So basically my question is, how can I, after finding the contour with the largest area, to "highlight" it? I want everything else to be black, and the contour to be white
Thanks!
You can use the DrawContours function in OpenCV : http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=drawcontours#drawcontours
Or you can use this implementation in C++ (you can find the equivalent in Java in the OpenCV doc, just type OpenCV + the name of the function on google)
Mat src = imread("your image"); int row = src.rows; int col = src.cols;
//Create contour
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
Mat src_copy = src.clone();
findContours( src_copy, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);
// Create Mask
Mat_<uchar> mask(row,col);
for (int j=0; j<row; j++)
for (int i=0; i<col; i++)
{
if ( pointPolygonTest( contours[0], Point2f(i,j),false) =0)
{mask(j,i)=255;}
else
{mask(j,i)=0;}
};
try contours[1], contours[2]... to find the biggest one
This is for displaying your contour:
namedWindow("Contour",CV_WINDOW_AUTOSIZE);
imshow("Contour", mask);