When i looked up the implementation of CharMatcher and notice a field WHITESPACE_MULTIPLIER=1682554634 , then i set this value to 1582554634 , running the testcase CharMatcherTest#testWhitespaceBreakingWhitespaceSubset, of course it failed.
After that I changed testWhitespaceBreakingWhitespaceSubset to only invoke WHITESPACE.apply((char)c) without assert, print the index in the method of WHITESPACE.matches
int index=(WHITESPACE_MULTIPLIER * c) >>> WHITESPACE_SHIFT)
finally found that index collided after changed the WHITESPACE_MULTIPLIER from 1682554634 to 1582554634
No doubt, 1682554634 is well designed , my question is how can I infer this "magic number"?`
Upon Martin Grajcar's proposal, I try to write the "magic number generator" as follows and worked :
char[] charsReq = WHITESPACE_TABLE.toCharArray();
Arrays.sort(charsReq);
OUTER:
for (int WHITESPACE_MULTIPLIER_WANTTED = 1682553701; WHITESPACE_MULTIPLIER_WANTTED <= 1682554834; WHITESPACE_MULTIPLIER_WANTTED++) {
int matchCnt = 0;
for (int c = 0; c <= Character.MAX_VALUE; c++) {
int position = Arrays.binarySearch(charsReq, (char) c);
char index = WHITESPACE_TABLE.charAt((WHITESPACE_MULTIPLIER_WANTTED * c) >>> WHITESPACE_SHIFT);
if (position >= 0 && index == c) {
matchCnt++;
} else if (position < 0 && index != c) {
matchCnt++;
} else {
continue OUTER;
}
}
// all valid
if ((matchCnt - 1) == (int) (Character.MAX_VALUE)) {
System.out.println(WHITESPACE_MULTIPLIER_WANTTED);
}
}
if changed the sequence of characters(swap \u2001 \u2002 position) in WHITESPACE_TABLE the algorithms has no solution (changed the loop end condition to Integer.MAX_VALUE).
as the IntMath.gcd implementation is refer to http://en.wikipedia.org/wiki/Binary_GCD_algorithm
my question is : where can i find the material of CharMatcher.WHITESPACE.match implementation?
I'm not sure if the generator still exists somewhere, but it can be recreated easily. The class Result contains the data used in the implementation of CharMatcher.WHITESPACE:
static class Result {
private int shift;
private int multiplier;
private String table;
}
// No duplicates allowed.
private final String allMatchingString = "\u2002\r\u0085\u200A\u2005\u2000"
+ "\u2029\u000B\u2008\u2003\u205F\u1680"
+ "\u0009\u0020\u2006\u2001\u202F\u00A0\u000C\u2009"
+ "\u2004\u2028\n\u2007\u3000";
public Result generate(String allMatchingString) {
final char[] allMatching = allMatchingString.toCharArray();
final char filler = allMatching[allMatching.length - 1];
final int shift = Integer.numberOfLeadingZeros(allMatching.length);
final char[] table = new char[1 << (32 - shift)];
OUTER: for (int i=0; i>=0; ++i) {
final int multiplier = 123456789 * i; // Jumping a bit makes the search faster.
Arrays.fill(table, filler);
for (final char c : allMatching) {
final int index = (multiplier * c) >>> shift;
if (table[index] != filler) continue OUTER; // Conflict found.
table[index] = c;
}
return new Result(shift, multiplier, new String(table));
}
return null; // No solution exists.
}
It generates a different multiplier, but this doesn't matter.
In case no solution for a given allMatchingString exists, you can decrement shift and try again.
Related
Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 2 years ago.
Improve this question
I need help with solving the second level of Google's Foobar challenge.
Commander Lambda uses an automated algorithm to assign minions randomly to tasks, in order to keep her minions on their toes. But you've noticed a flaw in the algorithm - it eventually loops back on itself, so that instead of assigning new minions as it iterates, it gets stuck in a cycle of values so that the same minions end up doing the same tasks over and over again. You think proving this to Commander Lambda will help you make a case for your next promotion.
You have worked out that the algorithm has the following process:
1) Start with a random minion ID n, which is a nonnegative integer of length k in base b
2) Define x and y as integers of length k. x has the digits of n in descending order, and y has the digits of n in ascending order
3) Define z = x - y. Add leading zeros to z to maintain length k if necessary
4) Assign n = z to get the next minion ID, and go back to step 2
For example, given minion ID n = 1211, k = 4, b = 10, then x = 2111, y = 1112 and z = 2111 - 1112 = 0999. Then the next minion ID will be n = 0999 and the algorithm iterates again: x = 9990, y = 0999 and z = 9990 - 0999 = 8991, and so on.
Depending on the values of n, k (derived from n), and b, at some point the algorithm reaches a cycle, such as by reaching a constant value. For example, starting with n = 210022, k = 6, b = 3, the algorithm will reach the cycle of values [210111, 122221, 102212] and it will stay in this cycle no matter how many times it continues iterating. Starting with n = 1211, the routine will reach the integer 6174, and since 7641 - 1467 is 6174, it will stay as that value no matter how many times it iterates.
Given a minion ID as a string n representing a nonnegative integer of length k in base b, where 2 <= k <= 9 and 2 <= b <= 10, write a function solution(n, b) which returns the length of the ending cycle of the algorithm above starting with n. For instance, in the example above, solution(210022, 3) would return 3, since iterating on 102212 would return to 210111 when done in base 3. If the algorithm reaches a constant, such as 0, then the length is 1.
Test Cases: Solution.solution("1211", 10) returns 1
Solution.solution("210022", 3) returns 3
Here is my code:
import java.util.ArrayList;
import java.util.Arrays;
public class Solution {
public static int solution(String n, int b) {
int k = n.length();
String m = n;
ArrayList<String> minionID = new ArrayList<>();
while (!minionID.contains(m)) {
minionID.add(m);
char[] s = m.toCharArray();
Arrays.sort(s);
int y = Integer.parseInt(toString(s));
int x = Integer.parseInt(reverseString(s));
if (b == 10) {
int intM = x - y;
m = Integer.toString(intM);
} else {
int intM10 = ((int) Integer.parseInt(toBase10(x,b))) - ((int) Integer.parseInt(toBase10(y, b)));
m = toBaseN(intM10, b);
}
m = addLeadingZeros(k, m);
}
System.out.println(minionID);
return minionID.size() - minionID.indexOf(m);
}
private static String toBaseN (int intBase10, int b) {
int residual = intBase10;
ArrayList<String> digitsBaseN = new ArrayList<>();
while (residual >= b) {
int r = residual % b;
digitsBaseN.add(Integer.toString(residual));
residual = (residual - r) / b;
}
digitsBaseN.add(Integer.toString(residual));
StringBuilder reverseDigits = new StringBuilder();
for (int i = digitsBaseN.size() -1; i >= 0; i--) {
reverseDigits.append(digitsBaseN.get(i));
}
return reverseDigits.toString();
}
private static String toBase10 (int intBaseN, int b) {
int[] xArr = new int[Integer.toString(intBaseN).length()];
int count = 0;
for (int i = xArr.length - 1; i >= 0; i--) {
xArr[count] = Integer.toString(intBaseN).charAt(i) - '0';
count++;
}
int yBase10 = 0;
for(int i = 0; i < xArr.length; i++) {
yBase10 += xArr[i] * (Math.pow(b, i));
}
return Integer.toString(yBase10);
}
public static String toString(char[] arr) {
StringBuilder newString = new StringBuilder();
for (char c : arr) {
newString.append(c);
}
if (newString.toString().contains("-")) {
newString.deleteCharAt(0);
}
return newString.toString();
}
public static String reverseString(char[] arr) {
StringBuilder newString = new StringBuilder();
for (int i = arr.length - 1; i >= 0; i--) {
newString.append(arr[i]);
}
if (newString.toString().contains("-")) {
newString.deleteCharAt(newString.length()-1);
}
return newString.toString();
}
public static String addLeadingZeros(int k, String z) {
if (k > z.length()) {
String zeros = "";
for (int i = 0; i < (k - z.length()); i++) {
zeros += "0";
}
zeros += z;
return zeros;
}
return z;
}
It only works for three out of the ten test cases
def answer(n, b):
k = len(n)
m = n
mini_id = []
while m not in mini_id:
mini_id.append(m)
s = sorted(m)
x_descend = ''.join(s[::-1])
y_ascend = ''.join(s)
if b == 10:
int_m = int(x_descend) - int(y_ascend)
m = str(int_m)
else:
int_m_10 = int(to_base_10(x_descend, b)) - int(to_base_10(y_ascend, b))
m = to_base_n(str(int_m_10), b)
m = (k - len(m)) * '0' + m
return len(mini_id) - mini_id.index(m)
i get this error after waiting long time for my code to execute and its pointing me to this method
public Iterable<Board> neighbors() {
Queue<Board> q = new LinkedList<>();
int n = dimension();
int x = 0, y = 0;
outer:
// do some stuff to get the x and y
if (y+1 < n) {
the line where i get the error -> int [][]arr = new int[n][n];
for (int i = 0; i < tiles.length; i++) {
arr[i] = Arrays.copyOf(tiles[i], n);
}
// do some stuff
Board br = new Board(arr);
if(!this.equals(br)) {
q.add(new Board(arr));
}
}
if (y-1 >= 0) {
int [][]arr = new int[n][n];
for (int i = 0; i < tiles.length; i++) {
arr[i] = Arrays.copyOf(tiles[i], n);
}
// do some stuff
Board br = new Board(arr);
if(!this.equals(br)) {
q.add(new Board(arr));
}
}
if (x-1 >= 0) {
int [][]arr = new int[n][n];
for (int i = 0; i < tiles.length; i++) {
arr[i] = Arrays.copyOf(tiles[i], n);
}
// do some stuff
Board br = new Board(arr);
if(!this.equals(br)) {
q.add(new Board(arr));
}
}
if (x+1 < n) {
int [][]arr = new int[n][n];
for (int i = 0; i < tiles.length; i++) {
arr[i] = Arrays.copyOf(tiles[i], n);
}
// do some stuff
Board br = new Board(arr);
if(!this.equals(br)) {
q.add(new Board(arr));
}
}
return q;
}
i basically need to copy tiles array and make changes to the copy "arr" but keep the tiles array without changing to use it later..i really don't like the way i'm doing it copying and pasting code i think its inefficient but no other way comes to my mind so i would like to know why i get this error "i know its because GC taking more time and not doing alot" but i want to know why its happening in this case also if there is better way to copy the array.
also i increased the heap memory to -Xmx1600m
Thanks for your time.
The Problem
It is likely that the problem arises from creating a lot of objects in a short period of time. See this answer for more information.
At the moment, one Board consist of at least four objects:
The Board itself
The array arr inside the board
The three arrays inside arr
Creating Less Objects
Our goal is to create fewer objects (arrays). Since you want to deal with small boards only, we could use one long to store the complete 3×3 board. A long has 64 bit. We use 64 / 9 = 7 bits per field to store the value on that field:
state = ... 0000100 0000011 0000010 0000001 0000000
4th field ↑ 2nd field ↑ 0th field
3rd field 1st field
The following class handles the bit operations.
class Board {
private final static int SIDE_LENGTH = 3;
private final static int FIELDS = SIDE_LENGTH * SIDE_LENGTH;
private final static int BITS_PER_FIELD = 64 / FIELDS;
private final static long FIELD_MASK = (1 << BITS_PER_FIELD) - 1;
private long state;
public Board() {
for (int field = 0; field < FIELDS; ++field) {
set(field, field);
}
}
/** Copy constructor. */
public Board(Board other) {
this.state = other.state;
}
public int get(int x, int y) {
return get(coordinatesToField(x, y));
}
public void set(int x, int y, int value) {
set(coordinatesToField(x, y), value);
}
private int coordinatesToField(int x, int y) {
return SIDE_LENGTH * y + x;
}
private int get(int field) {
return (int) ((state >>> (field * BITS_PER_FIELD)) & FIELD_MASK);
}
private void set(int field, int value) {
int shift = field * BITS_PER_FIELD;
state &= ~(FIELD_MASK << shift);
state |= (long) value << shift;
}
public String toString() {
StringBuilder sb = new StringBuilder();
for (int field = 0; field < FIELDS; ++field) {
sb.append(get(field));
sb.append((field + 1) % SIDE_LENGTH == 0 ? "\n" : "\t");
}
return sb.toString();
}
// TODO implement equals and hashCode
}
When using this class, you don't have to deal with arrays anymore, which saves not only a lot of objects, but also the copy code in your prorgram.
The class also works for 1×1, 2×2, and 4×4 boards, but not for larger ones due to the 64 bit limit.
Usage Examples
public static void main(String[] args) {
// Create and print the initial board
// 0 1 2
// 3 4 5
// 6 7 8
Board b = new Board();
System.out.println(b);
// Copy an existing board
Bord copy = new Board(b);
// Set the upper right field to value 8
copy.set(2, 0, 8);
// Print the center field
// 4
Syste.out.println(copy.get(1, 1));
}
Additional Ideas
You even could avoid creating Board objects at all, and just store the long values. But that doesn't help when you are using generics (such as LinkedList) because of Java's auto boxing.
Also note that LinkedList wraps each entry in an additional node object. Maybe you can use a more efficient DataStructure like a circular buffer.
Depending on what you are doing, you might as well have a look at the Flyweight design pattern.
Hi I have the following method. What it does is it finds all the possible paths from the top left to bottom right of a N x M matrix. I was wondering what is the best way to optimize it for speed as it is a little slow right now. The resulted paths are then stored in a set.
EDIT I forgot to clarify you can only move down or right to an adjacent spot, no diagonals from your current position
For example
ABC
DEF
GHI
A path from the top left to bottom right would be ADEFI
static public void printPaths (String tempString, int i, int j, int m, int n, char [][] arr, HashSet<String> palindrome) {
String newString = tempString + arr[i][j];
if (i == m -1 && j == n-1) {
palindrome.add(newString);
return;
}
//right
if (j+1 < n) {
printPaths (newString, i, j+1, m, n, arr, palindrome);
}
//down
if (i+1 < m) {
printPaths (newString, i+1, j, m, n, arr, palindrome);
}
}
EDIT Here is the entirety of the code
public class palpath {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new FileReader("palpath.in"));
PrintWriter pw = new PrintWriter(new BufferedWriter(new FileWriter("palpath.out")));
StringTokenizer st = new StringTokenizer(br.readLine());
int d = Integer.parseInt(st.nextToken());
char[][] grid = new char [d][d];
String index = null;
for(int i = 0; i < d; i++)
{
String temp = br.readLine();
index = index + temp;
for(int j = 0; j < d; j++)
{
grid[i][j] = temp.charAt(j);
}
}
br.close();
int counter = 0;
HashSet<String> set = new HashSet<String>();
printPaths ("", 0, 0, grid.length, grid[0].length, grid, set);
Iterator<String> it = set.iterator();
while(it.hasNext()){
String temp = it.next();
StringBuilder sb = new StringBuilder(temp).reverse();
if(temp.equals(sb.toString())) {
counter++;
}
}
pw.println(counter);
pw.close();
}
static public void printPaths (String tempString, int i, int j, int m, int n, char [][] arr, HashSet<String> palindrome) {
String newString = tempString + arr[i][j];
if (i == m -1 && j == n-1) {
palindrome.add(newString);
return;
}
//right
if (j+1 < n) {
printPaths (newString, i, j+1, m, n, arr, palindrome);
}
//down
if (i+1 < m) {
printPaths (newString, i+1, j, m, n, arr, palindrome);
}
}
Given a graph of length M x N, all paths from (0,0) to (M-1, N-1) that only involve rightward and downward moves are guaranteed to contain exactly M-1 moves rightward and N-1 moves downward.
This presents us with an interesting property: we can represent a path from (0,0) to (M-1, N-1) as a binary string (0 indicating a rightward move and 1 indicating a downward move).
So, the question becomes: how fast can we print out a list of permutations of that bit string?
Pretty fast.
public static void printPaths(char[][] arr) {
/* Get Smallest Bitstring (e.g. 0000...111) */
long current = 0;
for (int i = 0; i < arr.length - 1; i++) {
current <<= 1;
current |= 1;
}
/* Get Largest Bitstring (e.g. 111...0000) */
long last = current;
for (int i = 0; i < arr[0].length - 1; i++) {
last <<= 1;
}
while (current <= last) {
/* Print Path */
int x = 0, y = 0;
long tmp = current;
StringBuilder sb = new StringBuilder(arr.length + arr[0].length);
while (x < arr.length && y < arr[0].length) {
sb.append(arr[x][y]);
if ((tmp & 1) == 1) {
x++;
} else {
y++;
}
tmp >>= 1;
}
System.out.println(sb.toString());
/* Get Next Permutation */
tmp = (current | (current - 1)) + 1;
current = tmp | ((((tmp & -tmp) / (current & -current)) >> 1) - 1);
}
}
You spend a lot of time on string memory management.
Are strings in Java mutable? If you can change chars inside string, then set length of string as n+m, and use this the only string, setting (i+j)th char at every iteration. If they are not mutable, use array of char or something similar, and transform it to string at the end
For a given size N×M of the array all your paths have N+M+1 items (N+M steps), so the first step of optimization is getting rid of recursion, allocating an array and running the recursion with while on explicit stack.
Each partial path can be extended with one or two steps: right or down. So you can easily make an explicit stack with positions visited and a step taken on each position. Put the position (0,0) to the stack with phase (step taken) 'none', then:
while stack not empty {
if stack is full /* reached lower-right corner, path complete */ {
print the path;
pop;
}
else if stack.top.phase == none {
stack.top.phase = right;
try push right-neighbor with phase none;
}
else if stack.top.phase == right {
stack.top.phase = down;
try push down-neighbor with phase none;
}
else /* stack.top.phase == down */ {
pop;
}
}
If you make a few observations about your requirements you can optimise this drastically.
There will be exactly (r-1)+(c-1) steps (where r = rows and c = columns).
There will be exactly (c-1) steps to the right and (r-1) steps down.
You therefore can use numbers where a zero bit could (arbitrarily) indicate a down step while a 1 bit steps across. We can then merely iterate over all numbers of (r-1)+(c-1) bits containing just (c-1) bits set. There's a good algorithm for that at the Stanford BitTwiddling site Compute the lexicographically next bit permutation.
First a BitPatternIterator I have used before. You could pull out the code in hasNext if you wish.
/**
* Iterates all bit patterns containing the specified number of bits.
*
* See "Compute the lexicographically next bit permutation" http://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation
*
* #author OldCurmudgeon
*/
public static class BitPattern implements Iterable<BigInteger> {
// Useful stuff.
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = ONE.add(ONE);
// How many bits to work with.
private final int bits;
// Value to stop at. 2^max_bits.
private final BigInteger stop;
// All patterns of that many bits up to the specified number of bits.
public BitPattern(int bits, int max) {
this.bits = bits;
this.stop = TWO.pow(max);
}
#Override
public Iterator<BigInteger> iterator() {
return new BitPatternIterator();
}
/*
* From the link:
*
* Suppose we have a pattern of N bits set to 1 in an integer and
* we want the next permutation of N 1 bits in a lexicographical sense.
*
* For example, if N is 3 and the bit pattern is 00010011, the next patterns would be
* 00010101, 00010110, 00011001,
* 00011010, 00011100, 00100011,
* and so forth.
*
* The following is a fast way to compute the next permutation.
*/
private class BitPatternIterator implements Iterator<BigInteger> {
// Next to deliver - initially 2^n - 1 - i.e. first n bits set to 1.
BigInteger next = TWO.pow(bits).subtract(ONE);
// The last one we delivered.
BigInteger last;
#Override
public boolean hasNext() {
if (next == null) {
// Next one!
// t gets v's least significant 0 bits set to 1
// unsigned int t = v | (v - 1);
BigInteger t = last.or(last.subtract(BigInteger.ONE));
// Silly optimisation.
BigInteger notT = t.not();
// Next set to 1 the most significant bit to change,
// set to 0 the least significant ones, and add the necessary 1 bits.
// w = (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctz(v) + 1));
// The __builtin_ctz(v) GNU C compiler intrinsic for x86 CPUs returns the number of trailing zeros.
next = t.add(ONE).or(notT.and(notT.negate()).subtract(ONE).shiftRight(last.getLowestSetBit() + 1));
if (next.compareTo(stop) >= 0) {
// Dont go there.
next = null;
}
}
return next != null;
}
#Override
public BigInteger next() {
last = hasNext() ? next : null;
next = null;
return last;
}
#Override
public void remove() {
throw new UnsupportedOperationException("Not supported.");
}
#Override
public String toString() {
return next != null ? next.toString(2) : last != null ? last.toString(2) : "";
}
}
}
Using that to iterate your solution:
public void allRoutes(char[][] grid) {
int rows = grid.length;
int cols = grid[0].length;
BitPattern p = new BitPattern(rows - 1, cols + rows - 2);
for (BigInteger b : p) {
//System.out.println(b.toString(2));
/**
* Walk all bits, taking a step right/down depending on it's set/clear.
*/
int x = 0;
int y = 0;
StringBuilder s = new StringBuilder(rows + cols);
for (int i = 0; i < rows + cols - 2; i++) {
s.append(grid[y][x]);
if (b.testBit(i)) {
y += 1;
} else {
x += 1;
}
}
s.append(grid[y][x]);
// That's a solution.
System.out.println("\t" + s);
}
}
public void test() {
char[][] grid = {{'A', 'B', 'C'}, {'D', 'E', 'F'}, {'G', 'H', 'I'}};
allRoutes(grid);
char[][] grid2 = {{'A', 'B', 'C'}, {'D', 'E', 'F'}, {'G', 'H', 'I'}, {'J', 'K', 'L'}};
allRoutes(grid2);
}
printing
ADGHI
ADEHI
ABEHI
ADEFI
ABEFI
ABCFI
ADGJKL
ADGHKL
ADEHKL
ABEHKL
ADGHIL
ADEHIL
ABEHIL
ADEFIL
ABEFIL
ABCFIL
which - to my mind - looks right.
I try to make a program which it can find palindromic number (it has to be pruduct of two 3-digits number and I hope that it contain 6 digit but it is not important). Here is my code:
public class palindromicNumber {
public static void getPalindromicNumber() {
boolean podminka = false;
int test;
String s;
for (int a = 999; podminka == false && a > 100; a--) {
for (int b = 999; podminka == false && b > 100; b--) {
test = a * b;
s = Integer.toString(test);
int c = 0;
int d = s.length();
while (c != d && podminka == false) {
if (s.charAt(c) == s.charAt(d)) { // I think that problem is here but I can't see what
System.out.println(s);
podminka = true;
}
c++;
d--;
}
}
}
}
}
and if I want to compile it :
Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index out of range: 6
at java.lang.String.charAt(String.java:695)
at faktorizace.palindromicNumber.getPalindromicNumber(palindromicNumber.java:24)
at faktorizace.Faktorizace.main(Faktorizace.java:19)
Java Result: 1
There are two problems here:
You're starting off with the wrong upper bound, as other answers have mentioned
If c starts off odd and d starts off even, then c will never equal d. You need to use
while (c < d && !podminka) // Prefer !x to x == false
Additionally, judicious use of break and return would avoid you having to have podminka at all.
As another aside, you've got a separation of concerns issue. Your method currently does three things:
Iterates over numbers in a particular way
Checks whether or not they're palandromic
Prints the first it finds
You should separate those out. For example:
public void printFirstPalindrome() {
long palindrome = findFirstPalindrome();
System.out.println(palindrome);
}
public long findFirstPalindrome() {
// Looping here, calling isPalindrome
}
public boolean isPalindrome(long value) {
// Just checking here
}
I suspect findFirstPalindrome would normally take some parameters, too. At this point, you'd have methods which would be somewhat easier to both write and test.
String indices go from [0..length - 1]
Change int d = s.length(); to int d = s.length() - 1;
Update: As a quick aside, you are setting podminka to true when
s.charAt(c) == s.charAt(d)
If s = 100101 for example, you will terminate all of the loops on the first iteration of the while loop because the first and last characters are the same.
int d = s.length();
An array of the strings chars will only go from 0 - length-1.
s.charAt(d) will always be out of bounds on the first iteration.
Take a look on JDK source code:
public char charAt(int index) {
if ((index < 0) || (index >= count)) {
throw new StringIndexOutOfBoundsException(index);
}
return value[index + offset];
}
You can see that this exception is thrown when index is less then zero or exceeds the string length. Now use debugger, debug your code and see why do you pass this wrong parameter value to charAt().
public class palindromicNumber {
public static void getPalindromicNumber(){
boolean podminka = false;
int test;
String s;
for(int a = 999;podminka == false && a>100; a-- ){
for(int b = 999;podminka == false && b>100; b-- ){
test = a*b;
s = Integer.toString(test);
int c = 0;
int d = s.length();
while(c!=d && podminka == false){
if(s.charAt(c)==s.charAt(d - 1)){
System.out.println(s);
podminka = true;
}
c++;
d--;
}
}
}
try this! string count starts from 0!
I'm stumped on how to convert 3 letters and 3 numbers to ascii and increment them by one...it's the old next-license-plate problem. Can anyone give me a nudge in the right direction?
This problem actually have real applications. I wrote an account number generator that works just like this. I modified it to your format. Here you go,
public class LicenseNumber {
int numericSum;
int letterSum;
public LicenseNumber() {
numericSum = letterSum = 0;
}
public LicenseNumber(String number) {
if (!number.matches("^[A-Za-z]{3}[0-9]{3}$"))
throw new IllegalArgumentException("Number doesn't match license format");
numericSum = Integer.valueOf(number.substring(3));
letterSum = value(number, 0) * 26 * 26 + value(number, 1) * 26 +
value(number, 2);
}
public void increment() {
increment(1);
}
public void increment(int inc) {
numericSum += inc;
if (numericSum >= 1000) {
letterSum += numericSum/1000;
numericSum %= 1000;
}
}
public String toString() {
char[] letters = new char[3];
int n = letterSum;
for (int i = 0; i < 3; i++) {
letters[2-i] = (char)('A' + (n%26));
n /= 26;
}
return new String(letters) + String.format("%03d", numericSum);
}
private int value(String s, int index) {
return Character.toUpperCase(s.charAt(index)) - 'A';
}
/**
* Example
*/
public static void main(String[] args) {
LicenseNumber lic = new LicenseNumber("ABC999");
for (int i=0; i < 100; i++) {
lic.increment(500);
System.out.println(lic);
}
}
}
String str = "abc123"
String newstr = "";
for(int i=0; i<str.length(); i++) {
newstr += (char) (str.charAt(i) + 1);
}
// newstr now is "bcd234"
Note that this does not handle the characters 'z','Z' or '9' the way you would want. But it should give you a start.
Also note that using StringBuilder to create newstr would be more efficient.
I guess,
char c='A';
int no=97;
System.out.println( (++c) + " " + (char)++no);
You can do this by converting your String of letters and numbers to a char[]. Once you have done that you can iterate over the array and ++ each.
You're making strings like this: "AAA000", "AAA001", ..., "AAA999", "AAB000", ..., "ZZZ999", right?
Think of it like a number system where the different columns don't use the same number of digits. So where our numbers are 10-10-10-10, your numbers are 26-26-26-10-10-10. Use an underlying integer which you increment, then convert to letters and digits by dividing and taking the modulo successively by 10, 10, 10, 26, 26, 26.
To convert a license plate to its underlying integer, multiply out the letter position (A == 0, B == 1, etc) by the proper power of 26, and the digits by the proper power of 10, and add them all together.
An easy way to generate plate numbers would be to have an integer variable which gets incremented and three integer variables corresponding to the letters, something like this, please modify where appropriate. One trick is to use String.format which seamlessly converts between an integer and its char counterpart (you can also use casts.)
class plateGenerator {
int minLetter = "A".charAt(0);
int maxLetter = "Z".charAt(0);
int curLetter1 = minLetter;
int curLetter2 = minLetter;
int curLetter3 = minLetter;
int number = 0;
public String generatePlate() {
String plate = String.format("%c%c%c-%03d",curLetter1,
curLetter2,curLetter3,number);
increment();
return plate;
}
private void increment() {
number++;
if (number == 1000) {
number = 0;
curLetter1++;
}
if (curLetter1 > maxLetter) {
curLetter1 = minLetter;
curLetter2++;
}
if (curLetter2 > maxLetter) {
curLetter2 = minLetter;
curLetter3++;
}
if (curLetter3 > maxLetter) {
curLetter3 = minLetter;
number++;
}
}
public static void main(String[] args) {
plateGenerator pg = new plateGenerator();
for (int i = 0; i < 50000; i++) {
System.out.println(pg.generatePlate());
}
}
}
I haven't seen any code samples for general solutions for incrementing alphanumeric strings so I though I'd post mine.
This takes a string of any length with any ordering of alpha numeric characters, converts them to upper case and increments it by one (as if it were base 26). It also throws an exception if the numbers wrap. Its really up to you if wrapping makes sense...
private static string IncrementAlphaNumericString(string alphaNumericString)
{
char[] an = alphaNumericString.ToCharArray();
int i = an.Length - 1;
while (true)
{
if (i <= 0)
throw new Exception("Maxed out number!!!");
an[i]++;
if (an[i] - 1 == '9')
{
an[i] = 'A';
}
if (an[i] - 1 == 'Z')
{
an[i] = '0';
i--;
continue;
}
return new string(an);
}
}