I'm trying to draw a circle with a random center inside a big bigger circular surface. (I'm actually trying to simulate a human and his eyesight inside a room!) I need to draw a random line (call it line1) passing through its center which will intersect with the surface. line1 does not necessarily pass the center of circular surface. I also need to draw two lines forming 60 degree, facing on one side of line1. Can anyone help me with that?
I created an example of what I need to draw.
import java.awt.Color;
import java.awt.Frame;
import java.awt.Graphics;
import java.awt.Point;
import java.util.Random;
import javax.swing.JFrame;
public class ShapeTest extends JFrame{
int width=500;
int height=500;
public ShapeTest(){
setSize(width,height);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setResizable(false);
setLocationRelativeTo(null);
setVisible(true);
}
public static void main(String a[]){
new ShapeTest();
}
public void paint(Graphics g){
// Circular Surface
drawCircleByCenter(g, width/2, height/2, width/2);
Random r = new Random();
Point center = new Point();
center.x=r.nextInt(width/2);
center.y=r.nextInt(width/2);
drawCircleByCenter(g, center.x, center.y, width/15);
}
void drawCircleByCenter(Graphics g, int x, int y, int radius){
//g.setColor(Color.LIGHT_GRAY);
g.drawOval(x-radius, y-radius, 2*radius, 2*radius);
}
}
Start by changing your method to draw a circle based on its center and radius to a method which returns a Ellipse2D object representing the circle. This will allow us to do some clipping and other things with the shape besides just draw it.
Setting the clip to be the shape of your large circle prevents stray marks from being made where you don't want them (think "color inside the lines"). This is important because when we draw the circles and lines inside the big circle, some of them will be too big and would otherwise mark outside the bounds of the big circle.
Once we set the clip, we use the method Line2D getVector(Point2D, double, length) with an origin at the center of the large circle, a random angle and a random length (capped to keep the small blue circle inside the big circle). Think of this a random polar coordinate with the center of the large circle as the origin. The end point of this vector is used to mark the center of the small circle.
Using the center of the small circle as a starting point, we can generate two vectors in opposite directions (just negate the length of one to get it going the other direction) by using a random direction angle. We use a length equal to the diameter of the big circle to make certain that the lines will always go all the way up to the edge of the big circle (but not past, thanks to our clip).
We simply add 60 and 120 degrees to the angle of our blue dashed line and draw two green lines calculating the vectors the same way we did for the two blue dashed lines, except we don't need to create ones with negated lengths. We can also add a normal vector in for good measure simply by adding 90 degrees to the angle of the blue dashed line.
Lastly, we pick some random polar coordinates (just like we did for the small blue circle) to represent some people, and using the intersection of the people with the areas created by the various lines, we can see where they are at and draw them up with color coded values.
Now that we have all the people, we eliminate the clip and draw the big circle and voila!
Check out Draw a line at a specific angle in Java for details on how I calculated the vectors for the lines.
But enough talk, here's the code:
import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.Font;
import java.awt.FontMetrics;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.Shape;
import java.awt.Stroke;
import java.awt.geom.Area;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import java.awt.geom.Path2D;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.awt.image.BufferedImage;
import java.util.ArrayList;
import java.util.Random;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;
public class ShapeTest extends JFrame {
private static final long serialVersionUID = 1L;
private int width = 500;
private int height = 500;
private int padding = 50;
private BufferedImage graphicsContext;
private JPanel contentPanel = new JPanel();
private JLabel contextRender;
private Stroke dashedStroke = new BasicStroke(3.0f, BasicStroke.CAP_BUTT, BasicStroke.JOIN_ROUND, 2f, new float[] {3f, 3f}, 0f);
private Stroke solidStroke = new BasicStroke(3.0f);
private RenderingHints antialiasing;
private Random random = new Random();
public static void main(String[] args) {
//you should always use the SwingUtilities.invodeLater() method
//to perform actions on swing elements to make certain everything
//is happening on the correct swing thread
Runnable swingStarter = new Runnable()
{
#Override
public void run(){
new ShapeTest();
}
};
SwingUtilities.invokeLater(swingStarter);
}
public ShapeTest(){
antialiasing = new RenderingHints(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
graphicsContext = new BufferedImage(width + (2 * padding), width + (2 * padding), BufferedImage.TYPE_INT_RGB);
contextRender = new JLabel(new ImageIcon(graphicsContext));
contentPanel.add(contextRender);
contentPanel.setSize(width + padding * 2, height + padding * 2);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
this.setResizable(false);
this.setContentPane(contentPanel);
//take advantage of auto-sizing the window based on the size of its contents
this.pack();
this.setLocationRelativeTo(null);
this.paint();
setVisible(true);
}
public void paint() {
Graphics2D g2d = graphicsContext.createGraphics();
g2d.setRenderingHints(antialiasing);
//Set up the font to print on the circles
Font font = g2d.getFont();
font = font.deriveFont(Font.BOLD, 14f);
g2d.setFont(font);
FontMetrics fontMetrics = g2d.getFontMetrics();
//clear the background
g2d.setColor(Color.WHITE);
g2d.fillRect(0, 0, graphicsContext.getWidth(), graphicsContext.getHeight());
//set up the large circle
Point2D largeCircleCenter = new Point2D.Double((double)width / 2 + padding, (double)height / 2 + padding);
double largeCircleRadius = (double)width / 2;
Ellipse2D largeCircle = getCircleByCenter(largeCircleCenter, largeCircleRadius);
//here we build the small circle
Point2D smallCircleCenter = new Point2D.Double();
double smallCircleRadius = 15;
//we need to make certain it is confined inside the larger circle
//so we choose the following values carefully
//we want to go a random direction from the circle, so chose an
//angle randomly in any direction
double smallCenterVectorAngle = random.nextDouble() * 360.0d;
//and we want to be a random distance from the center of the large circle, but
//we limit the distance based on the radius of the small circle to prevent it
//from appearing outside the large circle
double smallCenterVectorLength = random.nextDouble() * (largeCircleRadius - smallCircleRadius);
Line2D vectorToSmallCenter = getVector(largeCircleCenter, smallCenterVectorAngle, smallCenterVectorLength);
//the resulting end point of the vector is a random distance from the center of the large circle
//in a random direction, and guaranteed to not place the small circle outside the large
smallCircleCenter.setLocation(vectorToSmallCenter.getP2());
Ellipse2D smallCircle = getCircleByCenter(smallCircleCenter, smallCircleRadius);
//before we draw any of the circles or lines, set the clip to the large circle
//to prevent drawing outside our boundaries
g2d.setClip(largeCircle);
//chose a random angle for the line through the center of the small circle
double angle = random.nextDouble() * 360.0d;
//we create two lines that start at the center and go out at the angle in
//opposite directions. We use 2*largeCircleRadius to make certain they
//will be large enough to fill the circle, and the clip we set prevent stray
//marks outside the big circle
Line2D centerLine1 = getVector(smallCircleCenter, angle, largeCircleRadius * 2);
Line2D centerLine2 = getVector(smallCircleCenter, angle, -largeCircleRadius * 2);
//now we just add 20 and 120 to our angle for the center-line, start at the center
//and again, use largeCircleRadius*2 to make certain the lines are big enough
Line2D sightVector1 = getVector(smallCircleCenter, angle + 60, largeCircleRadius * 2);
Line2D sightVector2 = getVector(smallCircleCenter, angle + 120, largeCircleRadius * 2);
Path2D visible = new Path2D.Double();
visible.moveTo(sightVector1.getX2(), sightVector1.getY2());
visible.lineTo(smallCircleCenter.getX(), smallCircleCenter.getY());
visible.lineTo(sightVector2.getX2(), sightVector2.getY2());
visible.closePath();
Path2D greenSide = new Path2D.Double();
greenSide.moveTo(centerLine1.getX2(), centerLine1.getY2());
greenSide.lineTo(smallCircleCenter.getX(), smallCircleCenter.getY());
greenSide.lineTo(centerLine2.getX2(), centerLine2.getY2());
greenSide.lineTo(sightVector1.getX2(), sightVector1.getY2());
greenSide.closePath();
int personCount = 5;
Area visibleArea = new Area(visible);
visibleArea.intersect(new Area(largeCircle));
Area greenSideArea = new Area(greenSide);
greenSideArea.intersect(new Area(largeCircle));
//we create a list of the people in the circle to
//prevent overlap
ArrayList<Shape> people = new ArrayList<Shape>();
people.add(smallCircle);
int i = 0;
personLoop: while (i < personCount){
double personCenterVectorAngle = random.nextDouble() * 360.0d;
double personCenterVectorLength = random.nextDouble() * (largeCircleRadius - smallCircleRadius);
Line2D vectorToPersonCenter = getVector(largeCircleCenter, personCenterVectorAngle, personCenterVectorLength);
Point2D personCircleCenter = vectorToPersonCenter.getP2();
Ellipse2D personCircle = getCircleByCenter(personCircleCenter, smallCircleRadius);
//this little loop lets us skip a person if they have overlap
//with another person, since people don't generally overlap
Area personArea = new Area(personCircle);
for (Shape person : people)
{
Area overlapArea = new Area(person);
overlapArea.intersect(personArea);
//this means that we have found a conflicting
//person, so should skip them
if (!overlapArea.isEmpty()){
continue personLoop;
}
}
people.add(personCircle);
personArea.intersect(visibleArea);
Area greenSideAreaTest = new Area(personCircle);
greenSideAreaTest.intersect(greenSideArea);
if (personArea.isEmpty()){
if (greenSideAreaTest.isEmpty()){
g2d.setColor(Color.orange);
System.out.println("Person " + i + " is behind the blue line");
}
else {
System.out.println("Person " + i + " is in front of the blue line");
g2d.setColor(Color.cyan);
}
}
else
{
System.out.println("Person " + i + " is between the green lines");
g2d.setColor(Color.magenta);
}
//alternatively to circles intersecting the area of interest, we can check whether the center
//is in the area of interest which may make more intuitive sense visually
// if (visibleArea.contains(personCircleCenter)){
// System.out.println("Person " + i + " is between the green lines");
// g2d.setColor(Color.magenta);
// }
// else {
// if (greenSideArea.contains(personCircleCenter)) {
// System.out.println("Person " + i + " is in front of the blue line");
// g2d.setColor(Color.cyan);
// }
// else{
// g2d.setColor(Color.orange);
// System.out.println("Person " + i + " is behind the blue line");
// }
// }
g2d.fill(personCircle);
g2d.setColor(Color.black);
String itemString = "" + i;
Rectangle2D itemStringBounds = fontMetrics.getStringBounds(itemString, g2d);
double textX = personCircleCenter.getX() - (itemStringBounds.getWidth() / 2);
double textY = personCircleCenter.getY() + (itemStringBounds.getHeight()/ 2);
g2d.drawString("" + i, (float)textX, (float)textY);
i++;
}
//fill the small circle with blue
g2d.setColor(Color.BLUE);
g2d.fill(smallCircle);
//draw the two center lines lines
g2d.setStroke(dashedStroke);
g2d.draw(centerLine1);
g2d.draw(centerLine2);
//create and draw the black offset vector
Line2D normalVector = getVector(smallCircleCenter, angle + 90, largeCircleRadius * 2);
g2d.setColor(Color.black);
g2d.draw(normalVector);
//draw the offset vectors
g2d.setColor(new Color(0, 200, 0));
g2d.draw(sightVector1);
g2d.draw(sightVector2);
//we save the big circle for last, to cover up any stray marks under the stroke
//of its perimeter. We also set the clip back to null to prevent the large circle
//itselft from accidentally getting clipped
g2d.setClip(null);
g2d.setStroke(solidStroke);
g2d.setColor(Color.BLACK);
g2d.draw(largeCircle);
g2d.dispose();
//force the container for the context to re-paint itself
contextRender.repaint();
}
private static Line2D getVector(Point2D start, double degrees, double length){
//we just multiply the unit vector in the direction we want by the length
//we want to get a vector of correct direction and magnitute
double endX = start.getX() + (length * Math.sin(Math.PI * degrees/ 180.0d));
double endY = start.getY() + (length * Math.cos(Math.PI * degrees/ 180.0d));
Point2D end = new Point2D.Double(endX, endY);
Line2D vector = new Line2D.Double(start, end);
return vector;
}
private static Ellipse2D getCircleByCenter(Point2D center, double radius)
{
Ellipse2D.Double myCircle = new Ellipse2D.Double(center.getX() - radius, center.getY() - radius, 2 * radius, 2 * radius);
return myCircle;
}
}
The logic of the geometry turned out to be more tricky than I'd presumed, but this is what I think you are after.
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.awt.image.BufferedImage;
import java.io.*;
import java.util.Random;
import javax.imageio.ImageIO;
import javax.swing.*;
class HumanEyesightLines {
int rad = 150;
int radSmall = 15;
int pad = 10;
JPanel gui = new JPanel(new BorderLayout());
BufferedImage img = new BufferedImage(
2 * (rad + pad),
2 * (rad + pad),
BufferedImage.TYPE_INT_RGB);
Timer timer;
JLabel imgDisplay;
Random rnd = new Random();
RenderingHints rh = new RenderingHints(
RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
HumanEyesightLines() {
imgDisplay = new JLabel(new ImageIcon(img));
gui.add(imgDisplay);
File f = new File(System.getProperty("user.home"));
final File f0 = new File("HumanEyesiteLines");
f0.mkdirs();
try {
Desktop.getDesktop().open(f0);
} catch (IOException ex) {
ex.printStackTrace();
}
ActionListener animationListener = new ActionListener() {
int ii = 0;
#Override
public void actionPerformed(ActionEvent e) {
paintImage();
ii++;
if (ii < 100) {
System.out.println(ii);
File f1 = new File(f0, "eg" + ii + ".png");
try {
ImageIO.write(img, "png", f1);
} catch (IOException ex) {
ex.printStackTrace();
}
}
}
};
timer = new Timer(100, animationListener);
paintImage();
}
float[] dash = {3f, 3f};
float phase = 0f;
private final void paintImage() {
Graphics2D g = img.createGraphics();
g.setRenderingHints(rh);
g.setStroke(new BasicStroke(2f));
// fill the BG
g.setColor(Color.WHITE);
g.fillRect(0, 0, 2 * (rad + pad), 2 * (rad + pad));
// draw the big circle
Point center = new Point(rad + pad, rad + pad);
Shape bigCircle = new Ellipse2D.Double(pad, pad, 2 * rad, 2 * rad);
g.setColor(Color.MAGENTA.darker());
g.fill(bigCircle);
// set the clip to that of the big circle
g.setClip(bigCircle);
// draw the small circle
int xOff = rnd.nextInt(rad) - rad / 2;
int yOff = rnd.nextInt(rad) - rad / 2;
int x = center.x - xOff;
int y = center.y - yOff;
Shape smallCircle = new Ellipse2D.Double(
x - radSmall, y - radSmall,
2 * radSmall, 2 * radSmall);
g.setColor(Color.YELLOW);
g.fill(smallCircle);
g.setColor(Color.ORANGE);
g.draw(smallCircle);
g.setStroke(new BasicStroke(
1.5f,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_ROUND,
2f,
dash,
phase));
// I don't know what the rule is for where the blue line goes, so
// will use the top left corner of the image as a 2nd anchor point.
int x0 = 0;
int y0 = 0;
double grad = (double) (y - y0) / (double) (x - x0);
// now calculate the RHS point from y = mx + b
// where b = 0 and m is the gradient
int x1 = 2 * (pad + rad);
int y1 = (int) (grad * x1);
Line2D.Double line1 = new Line2D.Double(x0, y0, x1, y1);
g.setColor(Color.BLUE);
g.draw(line1);
//find the perpendicular gradient.
double perpGrad = -1d / grad;
double perpTheta = Math.atan(perpGrad);
// angle from perp
double diffTheta = Math.PI / 6d;
g.setColor(Color.GREEN);
double viewLine1Theta = perpTheta + diffTheta;
Line2D.Double viewLine1 = getLine(x, y, viewLine1Theta);
double viewLine2Theta = perpTheta - diffTheta;
Line2D.Double viewLine2 = getLine(x, y, viewLine2Theta);
g.draw(viewLine1);
g.draw(viewLine2);
g.setColor(Color.BLACK);
Line2D.Double viewPerp = getLine(x, y, perpTheta);
g.draw(viewPerp);
g.setColor(Color.RED);
g.draw(bigCircle);
g.dispose();
imgDisplay.repaint();
}
/**
* Returns a Line2D starting at the point x1,y1 at angle theta.
*/
private final Line2D.Double getLine(double x1, double y1, double theta) {
double m;
double b;
double x2;
double y2;
if (theta < (-Math.PI / 2d)) {
System.out.println("CHANGE IT! " + theta);
m = Math.tan(theta);
b = y1 - (m * x1);
x2 = 0;
y2 = (m * x2) + b;
} else {
m = Math.tan(theta);
b = y1 - (m * x1);
x2 = 2 * (rad + pad);
y2 = (m * x2) + b;
}
/*
* System.out.println("Perp theta: " + theta); System.out.println("Line
* grad: " + m); System.out.println("Line off: " + b);
* System.out.println("x1,y1: " + x1 + "," + y1);
* System.out.println("x2,y2: " + x2 + "," + y2);
*
*/
return new Line2D.Double(x1, y1, x2, y2);
}
public JComponent getGui() {
return gui;
}
public void start() {
timer.start();
}
public void stop() {
timer.stop();
}
public static void main(String[] args) {
Runnable r = new Runnable() {
#Override
public void run() {
HumanEyesightLines hel = new HumanEyesightLines();
hel.start();
JOptionPane.showMessageDialog(null, hel.getGui());
hel.stop();
}
};
// Swing GUIs should be created and updated on the EDT
// http://docs.oracle.com/javase/tutorial/uiswing/concurrency
SwingUtilities.invokeLater(r);
}
}
Related
I'm trying to draw a rotated shape at a given point. To give an example, in the following image, the red rectangle is a non-rotated rectangle drawn at a point and then the blue rectangle is rotated and drawn at the same position. The blue rectangle is the outcome I'm aiming for.
I've been experimenting and trying different methods. Currently, here is what I used for the image:
Point point = new Point(300, 300);
Dimension dim = new Dimension(200, 100);
double radians = Math.toRadians(30);
g.setColor(new java.awt.Color(1f, 0f, 0f, .5f));
g.fillRect(point.x, point.y, dim.width, dim.height);
translate(g, dim, radians);
g.rotate(radians, point.getX(), point.getY());
g.setColor(new java.awt.Color(0f, 0f, 1f, .5f));
g.fillRect(point.x, point.y, dim.width, dim.height);
private static void translate(Graphics2D g, Dimension dim, double radians) {
if (radians > Math.toRadians(360)) {
radians %= Math.toRadians(360);
}
int xOffsetX = 0;
int xOffsetY = 0;
int yOffsetX = 0;
int yOffsetY = 0;
if (radians > 0 && radians <= Math.toRadians(90)) {
xOffsetY -= dim.getHeight();
} else if (radians > Math.toRadians(90) && radians <= Math.toRadians(180)) {
xOffsetX -= dim.getWidth();
xOffsetY -= dim.getHeight();
yOffsetY -= dim.getHeight();
} else if (radians > Math.toRadians(180) && radians <= Math.toRadians(270)) {
xOffsetX -= dim.getWidth();
yOffsetX -= dim.getWidth();
yOffsetY -= dim.getHeight();
} else {
yOffsetX -= dim.getWidth();
}
int x = rotateX(xOffsetX, xOffsetY, radians);
int y = rotateY(yOffsetX, yOffsetY, radians);
g.translate(x, y);
}
private static int rotateX(int x, int y, double radians) {
if (x == 0 && y == 0) {
return 0;
}
return (int) Math.round(x * Math.cos(radians) - y * Math.sin(radians));
}
private static int rotateY(int x, int y, double radians) {
if (x == 0 && y == 0) {
return 0;
}
return (int) Math.round(x * Math.sin(radians) + y * Math.cos(radians));
}
This works for rectangles but doesn't work for other types of shapes. I'm trying to figure out if there is a way to accomplish this for every type of shape. Also note that the code is just for testing purposes and there are a lot of bad practices in it, like calling Math.toRadians so much.
Something like this?
It can be achieved using a rotate transform first, then using the bounds of the rotated shape as a basis, the translate transform can be used to shift it back to meet the top most y and leftmost x values of the original rectangle.
See the getImage() method for one implementation of that.
int a = angleModel.getNumber().intValue();
AffineTransform rotateTransform = AffineTransform.getRotateInstance((a*2*Math.PI)/360d);
// rotate the original shape with no regard to the final bounds
Shape rotatedShape = rotateTransform.createTransformedShape(rectangle);
// get the bounds of the rotated shape
Rectangle2D rotatedRect = rotatedShape.getBounds2D();
// calculate the x,y offset needed to shift it to top/left bounds of original rectangle
double xOff = rectangle.getX()-rotatedRect.getX();
double yOff = rectangle.getY()-rotatedRect.getY();
AffineTransform translateTransform = AffineTransform.getTranslateInstance(xOff, yOff);
// shift the new shape to the top left of original rectangle
Shape rotateAndTranslateShape = translateTransform.createTransformedShape(rotatedShape);
Here is the complete source code:
import java.awt.*;
import java.awt.geom.*;
import java.awt.image.BufferedImage;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.border.EmptyBorder;
public class TransformedShape {
private JComponent ui = null;
JLabel output = new JLabel();
JToolBar tools = new JToolBar("Tools");
ChangeListener changeListener = (ChangeEvent e) -> {
refresh();
};
int pad = 5;
Rectangle2D.Double rectangle = new Rectangle2D.Double(pad,pad,200,100);
SpinnerNumberModel angleModel = new SpinnerNumberModel(30, 0, 90, 1);
public TransformedShape() {
initUI();
}
private BufferedImage getImage() {
int a = angleModel.getNumber().intValue();
AffineTransform rotateTransform = AffineTransform.getRotateInstance((a*2*Math.PI)/360d);
Shape rotatedShape = rotateTransform.createTransformedShape(rectangle);
Rectangle2D rotatedRect = rotatedShape.getBounds2D();
double xOff = rectangle.getX()-rotatedRect.getX();
double yOff = rectangle.getY()-rotatedRect.getY();
AffineTransform translateTransform = AffineTransform.getTranslateInstance(xOff, yOff);
Shape rotateAndTranslateShape = translateTransform.createTransformedShape(rotatedShape);
Area combinedShape = new Area(rotateAndTranslateShape);
combinedShape.add(new Area(rectangle));
Rectangle2D r = combinedShape.getBounds2D();
BufferedImage bi = new BufferedImage((int)(r.getWidth()+(2*pad)), (int)(r.getHeight()+(2*pad)), BufferedImage.TYPE_INT_ARGB);
Graphics2D g = bi.createGraphics();
g.setRenderingHint(RenderingHints.KEY_ALPHA_INTERPOLATION, RenderingHints.VALUE_ALPHA_INTERPOLATION_QUALITY);
g.setRenderingHint(RenderingHints.KEY_COLOR_RENDERING, RenderingHints.VALUE_COLOR_RENDER_QUALITY);
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g.setColor(new Color(255,0,0,127));
g.fill(rectangle);
g.setColor(new Color(0,0,255,127));
g.fill(rotateAndTranslateShape);
g.dispose();
return bi;
}
private void addModelToToolbar(String label, SpinnerNumberModel model) {
tools.add(new JLabel(label));
JSpinner spinner = new JSpinner(model);
spinner.addChangeListener(changeListener);
tools.add(spinner);
}
public final void initUI() {
if (ui!=null) return;
ui = new JPanel(new BorderLayout(4,4));
ui.setBorder(new EmptyBorder(4,4,4,4));
ui.add(output);
ui.add(tools,BorderLayout.PAGE_START);
addModelToToolbar("Angle", angleModel);
refresh();
}
private void refresh() {
output.setIcon(new ImageIcon(getImage()));
}
public JComponent getUI() {
return ui;
}
public static void main(String[] args) {
Runnable r = () -> {
try {
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (Exception ex) {
ex.printStackTrace();
}
TransformedShape o = new TransformedShape();
JFrame f = new JFrame(o.getClass().getSimpleName());
f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
f.setLocationByPlatform(true);
f.setContentPane(o.getUI());
f.pack();
f.setMinimumSize(f.getSize());
f.setVisible(true);
};
SwingUtilities.invokeLater(r);
}
}
You have a shape, any shape.
You have a point (px,py) and you want to rotate the shape around this point and angle ag measured counter-clokwise.
For each point of the shape the proccess has three steps:
Translate to (px,py)
Rotate
Translate back to (0,0)
The translation is fully simple
xNew = xOld - px
yNew = yOld - py
The rotation is a bit less simple
xRot = xNew * cos(ag) - yNew * sin(ag)
yRot = xNew * sin(ag) + yNew * cos(ag)
Finally the translation back:
xDef = xRot + px
yDef = yRot + py
A bit of explanation: Any transformation can be seen in two ways: 1) I move the shape 2) I move the axis-system. If you think about it, you'll find that the trasnsformation is relative: seen from the axis point of view or seen from the shape point of view.
So, you can say "I want coordinates in the translated system", or you can also say "I want the coordinates of the translated shape".
It doesn't matter what point of view you chose, the equations are the same.
I'm explaining this so much, just to achieve you realize which is the positive direction of the angle: clockwise or counter-clockwise.
I am having issues figuring out three things. (Created using Drawing Panel: http://www.buildingjavaprograms.com/DrawingPanel.java)
Problem #1: Drawing the polygon so it's centered and not crooked. It's unnoticeable with more points drawn.
Problem #2: Connecting all points of the star together so it's a giant circle (dotted). I don't see why it's happening unless maybe the method is not the best.
Problem #3: When drawn with low amounts of points, I notice that it doesn't draw a point correctly, and it looks like a square.
I'd really appreciate the help!
import java.awt.*;
public class StarSampler {
public static void main(String[] args)
{
DrawingPanel panel = new DrawingPanel(500, 500);
Graphics2D g = panel.getGraphics();
g.setColor(Color.BLUE);
fillStar(g, 250, 250, 150, 5, 1);
}
public static void fillStar(Graphics2D g, int ctrX, int ctrY, int radius, int nPoints, double spikiness)
{
double xDouble[] = new double[2*nPoints];
double yDouble[] = new double[2*nPoints];
int xPoint[] = new int[100];
int yPoint[] = new int[100];
for (int i = 0; i < 2*nPoints; i++)
{
double iRadius = (i % 2 == 0) ? radius : (radius * spikiness);
double angle = (i * 720.0) / (2*nPoints);
xDouble[i] = ctrX + iRadius * Math.cos(Math.toRadians(angle));
yDouble[i] = ctrY + iRadius * Math.sin(Math.toRadians(angle));
for (int j = 0; j < nPoints; j++) // Casts for ints and doubles
{
xPoint[j] = (int) xDouble[j];
yPoint[j] = (int) yDouble[j];
}
}
g.fillPolygon(xPoint, yPoint, nPoints); // Creates polygon
// Polygon gets drawn crookedly
g.drawPolyline(xPoint, yPoint, nPoints); // Draws lines to connect points
// Two lines go straight to (0,0) when nPonts*2 and nothing without *2?
}
}
My Output:
My Target Output (Without labeled points, two stars just for example):
The issues with your code are of logical nature or due to a sloppy coding style:
for (int j = 0; j < nPoints; j++) // Casts for ints and doubles
{
xPoint[j] = (int) xDouble[j];
yPoint[j] = (int) yDouble[j];
}
This piece of code is supposed to transform all portions of the polygon into integers. There are several issues with this piece of code:
It doesn't cover all points. The loop produces a total of 2 * nPoints points, but only half of them is converted. This is where the missing spikes come from
Why do this in a inner loop? This shouldn't be done in the loop that generates the values. It's just an enormous number of redundant copies and casts.
Why keep two separate arrays at all? Just convert them directly on creation. Since no value will be reused, there's no point in keeping a value with full precision anyways.
A circle is 360 degrees, not 720. This code:
double angle = (i * 720.0) / (2*nPoints);
Will alter the angle between created points. This means you either only generate half of the spikes, if the number is even, or generate a lot of crossing lines (doesn't look bad either, but not what you want, I guess).
The unit-circle (relevant for the trignometry-part) is defined in a way such that (1, 0) is the point with an angle of 0° to the center. This is also where your first spike will be created. Simply substract 90° of the angle to rotate the circle by 90° counter-clockwise.
Here's working solution based on your code. The main-method only holds the code to manage a simple testing-UI:
import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;
public class StarSampler
{
private static final int WIDTH = 500,
HEIGHT = 500,
RADIUS = 200;
private static final double SPIKINESS = 0.5;
public static void main(String[] args)
{
BufferedImage bi = new BufferedImage(500, 500, BufferedImage.TYPE_4BYTE_ABGR);
updateImage(5, bi);
JFrame frame = new JFrame("Some Test");
frame.setLayout(new BorderLayout());
frame.add(new JLabel(new ImageIcon(bi)), BorderLayout.CENTER);
//menu to update number of spikes
JPanel sub = new JPanel();
sub.setLayout(new BoxLayout(sub, BoxLayout.X_AXIS));
sub.add(new JLabel("Spikes: "));
JSpinner spikeSpinner = new JSpinner(new SpinnerNumberModel(5, 1, 500, 1));
spikeSpinner.addChangeListener(e -> {
updateImage((Integer) spikeSpinner.getModel().getValue(), bi);
SwingUtilities.invokeLater(()->frame.repaint());
});
sub.add(spikeSpinner);
frame.add(sub, BorderLayout.SOUTH);
frame.pack();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setLocationRelativeTo(null);
frame.setVisible(true);
}
private static void updateImage(int nSpikes, BufferedImage bi)
{
int ctrX = WIDTH / 2, ctrY = HEIGHT / 2;
int nPoints = nSpikes * 2 + 1;
int xPoint[] = new int[nPoints];
int yPoint[] = new int[nPoints];
//generate star
for (int i = 0; i < nPoints; i++)
{
double iRadius = (i % 2 == 0) ? RADIUS : (RADIUS * SPIKINESS);
double angle = (i * 360.0) / (2*nSpikes);
xPoint[i] = (int) (ctrX + iRadius * Math.cos(Math.toRadians(angle - 90)));
yPoint[i] = (int) (ctrY + iRadius * Math.sin(Math.toRadians(angle - 90)));
}
//paint the star
Graphics2D g2 = (Graphics2D) bi.getGraphics();
g2.setColor(Color.blue);
g2.fillRect(0, 0, WIDTH, HEIGHT);
g2.setStroke(new BasicStroke(4.f));
g2.setColor(Color.yellow);
g2.drawPolyline(xPoint, yPoint, nPoints);
//insert control lines
g2.setStroke(new BasicStroke(1.f));
g2.setColor(Color.black);
for(int i = 0; i < nSpikes * 2; i++)
g2.drawLine(ctrX, ctrY, xPoint[i], yPoint[i]);
int w1 = RADIUS,
w2 = (int) (RADIUS * SPIKINESS);
g2.drawOval(ctrX - w1, ctrY - w1, w1 * 2, w1 * 2);
g2.drawOval(ctrX - w2, ctrY - w2, w2 * 2, w2 * 2);
}
}
I am, first of all, drawing two arcs randomly using the Graphics drawArc and fillArc methods. One arc, say arc1 is bigger than the other arc, say arc2.
Now i want to see if arc1, contains(wholly or partly) arc2. I have tried various ways but to no avail. Forexample, first of all calculating the distances between them and then taking the dot product of these two and seeing if its greater than the radius of the first arc multiplied by the cosine of its orientation.
Still no success, any help or suggestions offered will be greatly appreciated.
Is there a better/another approach to achieve this?
Is it also possible to estimate how much of arc2 is covered by arc1? thanks,
I will give you an easy solution that counts for any shape - not only arcs:
public Vector measureArea(int[] pix) {
int i;
Vector v=new Vector();
for(i=0; i<pix.length; i++)
if((pix[i]&0x00ffffff)==0x00000000) v.add(i);
return v;
}
This finds the pixels that belong to this area: you could fill the arc as follows then call this function:
BufferedImage bim=new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
Graphics g=bim.getGraphics();
g.setColor(Color.white);
g.fillRect(0, 0, w, h);
g.setColor(Color.black);
g2.fillArc(x, y, 2*w/16, 2*h/16, 270, 250);
int[] pix=bim.getRGB(0, 0, w, h, null, 0, w);
Vector v=measureArea(pix);
Repeat with the second arc then find the common points.
for(i=0; i<v.size(); i++) {
int I=((Integer)v.get(i)).intValue();
for(j=0; j<v2.size(); j++) {
int J=((Integer)v2.get(j)).intValue();
if(I==J) ..... // do something
}
}
If you want more of a mathematical approach you have to define the filled arc in terms of circle (or maybe two wedges) and find the area of the intersecting these shapes.
There is a third approach using Areas in java.
Area a=new Area(new Arc2D.Double(x+3*w/4-w/16, y+h/4-h/16, 2*w/16, 2*h/16, 270, 250, Arc2D.OPEN));
Area a2=new Area(new Arc2D.Double(x+3*w/4, y+h/4, 2*w/16, 2*h/16, 270, 200, Arc2D.OPEN));
Area intrsct=new Area(new Arc2D.Double(x+3*w/4-w/16, y+h/4-h/16, 2*w/16, 2*h/16, 270, 250, Arc2D.OPEN));
intrsct.intersect(a2);
Now intrsct has the intersection.
If we expand this to simple Shapes we have:
Arc2D.Double a=new Arc2D.Double(x+3*w/4-w/16, y+h/4-h/16, 2*w/16, 2*h/16, 270, 250, Arc2D.OPEN);
Arc2D.Double a2=new Arc2D.Double(x+3*w/4, y+h/4, 2*w/16, 2*h/16, 270, 200, Arc2D.OPEN);
Rectangle b=a.getBounds();
int intrsct=0;
for(i=0; i<b.getWidth(); i++)
for(j=0; j<b.getHeight(); j++)
if(a.contains(b.x+i, b.y+j) && a2.contains(b.x+i, b.y+j)) intrsct++;
A fourth approach.
--
If you want an arc with a given color you need to check for that color in the first approach. So we change measure area as follows:
public Vector measureArea(int[] pix, int color) {
int i;
Vector v=new Vector();
int c=color&0x00ffffff;
for(i=0; i<pix.length; i++)
if((pix[i]&0x00ffffff)==c) v.add(i);
return v;
}
and call it measureArea(pix, Color.red.getRGB()) for example.
And make sure you clear the image for each shape to be counted on its own:
public Image init( Graphics g )
{
bim=new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
g=bim.getGraphics();
g.setColor(Color.yellow);
g.fillRect(0, 0, w, h);
g.setColor(Color.red);
g.fillArc(x, y, 300, 300, 270, 75); // 2*w/16, 2*h/16
int[] pix=bim.getRGB(0, 0, w, h, null, 0, w);
Vector v1=measureArea(pix, Color.red.getRGB());
g.setColor(Color.yellow);
g.fillRect(0, 0, w, h);
g.setColor(Color.blue);
g.fillArc(x+100, y+100, 150, 150, 270, 45); //2*w/32, 2*h/32,
pix=bim.getRGB(0, 0, w, h, null, 0, w);
Vector v2=measureArea(pix, Color.blue.getRGB());
System.out.println( intersect(v1, v2) );
return bim;
}
Notes 3: the method with Areas is independent of color - use that if it works.
The method with pixels can be used later if you have complicated shapes:
To draw all the shapes together just do what you do now: keep them in one image. To measure the area use another image bim2 where you draw each shape successively call the measure area function clear the image etc - it doesnt have to be shown any where - you have the other image to show all the shapes together. I hope this works.
The answer by gpash lists several options. As mentioned in a comment, I'd recommend Area-based apprach for the generic case. Although area computations (like computing the intersection, for this example) can be expensive, they are likely a good tradeoff between the image-based and the purely analytical approaches:
The image-based approach raises some questions, e.g. regarding the image size. Additionally, the runtime and memory consumption may be large for "large" shapes (imagine shapes that cover a region of, say, 1000x1000 pixels).
The purely analytical solution may be rather mathematically involved. One could consider breaking it down to simpler tasks, and it's certainly doable, but not trivial. Maybe more importantly: This approach does not generalize for other Shape types.
With the Area based solution, computing the intersection between two arbitrary shapes s0 and s1 (which may be Arc2D, or any other shape) is fairly trivial:
Area a = new Area(s0);
a.intersect(new Area(s1));
(that's it).
A side note: One could consider performing a conservative test: The shapes can not intersect if their bounding volumes do not intersect. So for certain use-cases, one could consider doing something like this:
Shape s0 = ...;
Shape s1 = ...;
if (!s0.getBounds().intersects(s1.getBounds()))
{
// The bounds do not intersect. Then the shapes
// can not intersect.
return ...;
}
else
{
// The bounds DO intesect. Perform the Area-based
// intersection computation here:
...
}
What is left then is the computation of the area of an Area - that is, the size of the intersection area. The Area class has a method that can be used to check whether the area isEmpty. But it does not have a method to compute the size of the area. However, this can be computed by converting the resulting area into a polygon using a (flattening!) PathIterator, and then computing the polygon area as, for example in the answers to this question.
What may be tricky about this is that in general, areas can be signed (that is, they can be positive or negative, depending on whether the vertices of the polygon are given in counterclockwise or or clockwise order, respectively). Additionally, the intersection between two shapes does not necessarily result in a single, connected shape, but may result in different closed regions, as shown in this image:
The image is a screenshot from the following MCVE that allows dragging around the given shapes with the mouse, and prints the area of the shapes and their intersection.
This uses some utility methods for the area computation that are taken from a set of utilites for geometry in general, and shapes in particular, which I started collecting a while ago)
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Point;
import java.awt.RenderingHints;
import java.awt.Shape;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.event.MouseMotionListener;
import java.awt.geom.AffineTransform;
import java.awt.geom.Arc2D;
import java.awt.geom.Area;
import java.awt.geom.PathIterator;
import java.awt.geom.Point2D;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;
public class ShapeIntersectionAreaTest
{
public static void main(String[] args)
{
SwingUtilities.invokeLater(() -> createAndShowGUI());
}
private static void createAndShowGUI()
{
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.getContentPane().add(new ShapeIntersectionAreaTestPanel());
f.setSize(800,800);
f.setLocationRelativeTo(null);
f.setVisible(true);
}
}
class ShapeIntersectionAreaTestPanel extends JPanel
implements MouseListener, MouseMotionListener
{
private Shape shape0;
private Shape shape1;
private Shape draggedShape;
private Point previousMousePosition;
ShapeIntersectionAreaTestPanel()
{
shape0 = new Arc2D.Double(100, 160, 200, 200, 90, 120, Arc2D.PIE);
shape1 = new Arc2D.Double(300, 400, 100, 150, 220, 260, Arc2D.PIE);
addMouseListener(this);
addMouseMotionListener(this);
}
#Override
protected void paintComponent(Graphics gr)
{
super.paintComponent(gr);
Graphics2D g = (Graphics2D)gr;
g.setRenderingHint(
RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
g.setColor(Color.RED);
g.fill(shape0);
g.setColor(Color.BLUE);
g.fill(shape1);
Shape intersection =
ShapeIntersectionAreaUtils.computeIntersection(shape0, shape1);
g.setColor(Color.MAGENTA);
g.fill(intersection);
double area0 = Math.abs(
ShapeIntersectionAreaUtils.computeSignedArea(shape0, 1.0));
double area1 = Math.abs(
ShapeIntersectionAreaUtils.computeSignedArea(shape1, 1.0));
double areaIntersection = Math.abs(
ShapeIntersectionAreaUtils.computeSignedArea(intersection, 1.0));
g.setColor(Color.BLACK);
g.setFont(new Font("Monospaced", Font.PLAIN, 12));
g.drawString(String.format("Red area : %10.3f", area0), 10, 20);
g.drawString(String.format("Blue area : %10.3f", area1), 10, 40);
g.drawString(String.format("Intersection area: %10.3f", areaIntersection), 10, 60);
}
#Override
public void mouseDragged(MouseEvent e)
{
int dx = e.getX() - previousMousePosition.x;
int dy = e.getY() - previousMousePosition.y;
AffineTransform at =
AffineTransform.getTranslateInstance(dx, dy);
if (draggedShape == shape0)
{
shape0 = at.createTransformedShape(draggedShape);
draggedShape = shape0;
}
if (draggedShape == shape1)
{
shape1 = at.createTransformedShape(draggedShape);
draggedShape = shape1;
}
repaint();
previousMousePosition = e.getPoint();
}
#Override
public void mouseMoved(MouseEvent e)
{
}
#Override
public void mouseClicked(MouseEvent e)
{
}
#Override
public void mousePressed(MouseEvent e)
{
draggedShape = null;
if (shape0.contains(e.getPoint()))
{
draggedShape = shape0;
}
if (shape1.contains(e.getPoint()))
{
draggedShape = shape1;
}
previousMousePosition = e.getPoint();
}
#Override
public void mouseReleased(MouseEvent e)
{
draggedShape = null;
}
#Override
public void mouseEntered(MouseEvent e)
{
}
#Override
public void mouseExited(MouseEvent e)
{
}
}
// Utility methods related to shape and shape area computations, mostly taken from
// https://github.com/javagl/Geom/blob/master/src/main/java/de/javagl/geom/Shapes.java
class ShapeIntersectionAreaUtils
{
public static Shape computeIntersection(Shape s0, Shape s1)
{
Area a = new Area(s0);
a.intersect(new Area(s1));
return a;
}
/**
* Compute all closed regions that occur in the given shape, as
* lists of points, each describing one polygon
*
* #param shape The shape
* #param flatness The flatness for the shape path iterator
* #return The regions
*/
static List<List<Point2D>> computeRegions(
Shape shape, double flatness)
{
List<List<Point2D>> regions = new ArrayList<List<Point2D>>();
PathIterator pi = shape.getPathIterator(null, flatness);
double coords[] = new double[6];
List<Point2D> region = Collections.emptyList();
while (!pi.isDone())
{
switch (pi.currentSegment(coords))
{
case PathIterator.SEG_MOVETO:
region = new ArrayList<Point2D>();
region.add(new Point2D.Double(coords[0], coords[1]));
break;
case PathIterator.SEG_LINETO:
region.add(new Point2D.Double(coords[0], coords[1]));
break;
case PathIterator.SEG_CLOSE:
regions.add(region);
break;
case PathIterator.SEG_CUBICTO:
case PathIterator.SEG_QUADTO:
default:
throw new AssertionError(
"Invalid segment in flattened path");
}
pi.next();
}
return regions;
}
/**
* Computes the (signed) area enclosed by the given point list.
* The area will be positive if the points are ordered
* counterclockwise, and and negative if the points are ordered
* clockwise.
*
* #param points The points
* #return The signed area
*/
static double computeSignedArea(List<? extends Point2D> points)
{
double sum0 = 0;
double sum1 = 0;
for (int i=0; i<points.size()-1; i++)
{
int i0 = i;
int i1 = i + 1;
Point2D p0 = points.get(i0);
Point2D p1 = points.get(i1);
double x0 = p0.getX();
double y0 = p0.getY();
double x1 = p1.getX();
double y1 = p1.getY();
sum0 += x0 * y1;
sum1 += x1 * y0;
}
Point2D p0 = points.get(0);
Point2D pn = points.get(points.size()-1);
double x0 = p0.getX();
double y0 = p0.getY();
double xn = pn.getX();
double yn = pn.getY();
sum0 += xn * y0;
sum1 += x0 * yn;
double area = 0.5 * (sum0 - sum1);
return area;
}
/**
* Compute the (signed) area that is covered by the given shape.<br>
* <br>
* The area will be positive for regions where the points are
* ordered counterclockwise, and and negative for regions where
* the points are ordered clockwise.
*
* #param shape The shape
* #param flatness The flatness for the path iterator
* #return The signed area
*/
public static double computeSignedArea(Shape shape, double flatness)
{
double area = 0;
List<List<Point2D>> regions = computeRegions(shape, flatness);
for (List<Point2D> region : regions)
{
double signedArea = computeSignedArea(region);
area += signedArea;
}
return area;
}
}
(Note: The mechanisms for dragging the shapes are not particularly elegant. In a real application, this should be solved differently - this is just for the demonstration of the area computation methods)
I have been working on a game in Java, that has rotational based movement (meaning you rotate to turn, and can only move forwards and backwards in the direction you are rotated towards). I have it almost working, but ran into a problem at the very end. In order to use AffineTransform, you use g2d.drawImage([image], [name of AffineTransform], null);
This does not allow for the input of coordinates of where to place my character, meaning that I cannot move my character on the screen, only rotate it.
How can I transform my player image (to rotate it), AND then place it correctly on my screen through the xPos and yPos variables I have set on my screen?
If it is any help, here is my code.
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.geom.AffineTransform;
import java.awt.image.BufferedImage;
public class Player
{
imageLoader loader = new imageLoader();
private BufferedImage player = loader.loadImage("/player.png");
private BufferedImage rotater = loader.loadImage("/player.png");
AffineTransform transform = new AffineTransform();
public int xPos = 200;
public int yPos = 200;
public double degrees = 90.0;
public Input input;
public void render(Graphics g) //SOMEWHERE IN THIS RENDER METHOD I HAVE TO ROTATE AND DRAW THE PLAYER TO THE SCREEN.
{
transform.setToIdentity();
transform.translate(player.getWidth() / 2, player.getHeight() / 2);
transform.rotate(Math.toRadians(degrees));
transform.translate(-player.getWidth()/2, -player.getHeight()/2);
Graphics2D g2d = (Graphics2D) g;
g2d.drawImage(player, transform, null);
System.out.println("PLAYER_X = "+xPos+" | " + "PLAYER_Y " + yPos + " | " + "ROTATION " + degrees);
}
public void moveForward()
{
xPos += (int) (Math.sin(degrees * (Math.PI/180)) * 4);
yPos += (int) (Math.cos(degrees * (Math.PI/180)) * -4);
}
public void moveBackward()
{
xPos -= (int) (Math.sin(degrees * (Math.PI/180)) * 4);
yPos -= (int) (Math.cos(degrees * (Math.PI/180)) * -4);
}
public void rotateLeft()
{
degrees = degrees - 4;
}
public void rotateRight()
{
degrees = degrees + 4;
}
}
Thank you so much,
I hope one of you can help me.
Ryan Corkery
You already have the code to rotate and translate (draw at a certain position) in your method.
Your original code was already drawing the image at coordinate -width/2, -height/2 (because your image is rotate about its center, not about it's top-left corner)
So, it's a matter of adding the extra translation that you need to draw it at xPos, yPos:
transform.translate(-xPos + player.getWidth() / 2, -yPos + player.getHeight() / 2);
transform.rotate(Math.toRadians(degrees));
transform.translate(xPos - player.getWidth()/2, yPos - player.getHeight()/2);
I've been trying to rotate a polygon around a specified center point but everything I've tried has failed miserably. I've googled for example and found many but not a single one seems to work.
The result I'm trying to replicate is similar with the first answer to this
How to rotate an image gradually in Swing?
The difference is that I need the polygon to actually rotate, just drawing it in an angle won't cut it. (it's for simple physics modelling)
Here's my code, with several different methods I've tried to implement
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Point;
import java.awt.Polygon;
import java.awt.Shape;
import java.awt.geom.AffineTransform;
import java.util.Timer;
import java.util.TimerTask;
import javax.swing.JPanel;
public class rotationPanel extends JPanel {
private static final int SIZE = 500;
private static final Shape outline = makeShape();
Point p;
Point p2;
Point p3;
Point p4;
Point[] points;
Point[] npoints;
Point center;
Polygon poly;
double angle;
Timer timer;
long start;
long sleepTime;
static int runTime;
public rotationPanel(){
setSize(500,500);
setBackground(Color.DARK_GRAY);
setVisible(true);
runTime = 100; //ms
start = 0;
sleepTime = 0;
timer = new Timer();
center = new Point(250,250);
p = new Point(200,200);
p2 = new Point(150,150);
p3 = new Point(250,150);
p4 = new Point(200,100);
/*
points = new Point[4];
points[0]=p;
points[1]=p2;
points[2]=p3;
points[3]=p4;
npoints = new Point[4];
npoints[0]=p;
npoints[1]=p2;
npoints[2]=p3;
npoints[3]=p4;
poly = new Polygon();
*/
}
public void mainloop(){
start= System.currentTimeMillis();
//rotate(points,2);
p = rotatePoint(p,center);
p2 = rotatePoint(p2,center);
p3 = rotatePoint(p3,center);
p4 = rotatePoint(p4,center);
repaint();
sleepTime = runTime -(System.currentTimeMillis()-start);
System.out.println("Looped. Sleeping for:" +sleepTime+"ms");
if(sleepTime>0)
timer.schedule(new loop(), sleepTime);
else
mainloop();
}
private static Shape makeShape() {
AffineTransform at = new AffineTransform();
at.translate(SIZE/2, SIZE/2);
at.scale(20, 20);
at.rotate(Math.toRadians(35));
return at.createTransformedShape(initPoly());
}
/** Create a U shaped outline. */
private static Polygon initPoly() {
Polygon poly = new Polygon();
poly.addPoint( 1, 0);
poly.addPoint( 1, -2);
poly.addPoint( 2, -2);
poly.addPoint( 2, 1);
poly.addPoint(-2, 1);
poly.addPoint(-2, -2);
poly.addPoint(-1, -2);
poly.addPoint(-1, 0);
return poly;
}
public void rotatePoint(Point pt, double rotationAngle){
AffineTransform.getRotateInstance
(Math.toRadians(rotationAngle), center.x, center.y)
.transform(pt,pt);
}
public Point rotatePoint(Point pt, Point center)
{
angle = (Math.toRadians(150));
double cosAngle = Math.cos(angle);
double sinAngle = Math.sin(angle);
pt.x = center.x + (int) ((pt.x-center.x)*cosAngle-(pt.y-center.y)*sinAngle);
pt.y = center.y + (int) ((pt.x-center.x)*sinAngle+(pt.y-center.y)*cosAngle);
return pt;
}
public void rotate(Point[] pts, int angle){
AffineTransform.getRotateInstance
(Math.toRadians(angle), center.x, center.y)
.transform(pts,0,npoints,0,4);
points = new Point[4];
points[0]=npoints[0];
points[1]=npoints[1];
points[2]=npoints[2];
points[3]=npoints[3];
}
public void paintComponent(Graphics g) {
super.paintComponent(g);
g.setColor(Color.BLUE);
g.fillRect(center.x-4, center.y-4, 8, 8);
g.setColor(Color.YELLOW);
//g.fillRect(p.x-4, p.y-4, 8, 8);
//g.fillRect(p2.x-4, p2.y-4, 8, 8);
//g.fillRect(p3.x-4, p3.y-4, 8, 8);
//g.fillRect(p4.x-4, p4.y-4, 8, 8);
g.fillRect(p.x, p.y, 2, 2);
g.fillRect(p2.x, p2.y, 2, 2);
g.fillRect(p3.x, p3.y, 2, 2);
g.fillRect(p4.x, p4.y, 2, 2);
}
class loop extends TimerTask{
public void run() {
mainloop();
}
}
}
As you didn't help me vary much I was forced to figure this out by myself. Here we go:
The correct approach (or at least one of them) is to use affine transform to the points of the polygon you wish to rotate. The catch is that you cannot rotate the same polygon over and over again as it will severely deform due to the continuous rounding.
So the trick is to keep " an original version" of the polygon and always rotate that one.
Of course, this approach is only critical when rotating the polygon several times. If you want to only rotate it once you can simply use the values from the polygon you want to rotate.
Here's a little example I managed to put together:
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Point;
import java.awt.Polygon;
import java.awt.RenderingHints;
import java.awt.geom.AffineTransform;
import java.util.Timer;
import java.util.TimerTask;
import javax.swing.JFrame;
import javax.swing.JPanel;
public class rotationPanel extends JPanel {
private static final long serialVersionUID = 117L;
private static final int SIZE = 500;
// point arrays which contain the points that are rotated around the center
Point[] points1;
Point[] points2;
Point[] points3;
// The center of rotation
Point center;
// the polygons being rotated
Polygon poly1;
Polygon poly2;
Polygon poly3;
// the angle of rotation
double angle;
Timer timer;
long start;
long sleepTime;
static int runTime;
public rotationPanel(){
setSize(500,500);
setBackground(Color.DARK_GRAY);
setVisible(true);
// time loop is set to run at fixed rate of 50 ms
runTime = 50;
start = 0;
sleepTime = 0;
timer = new Timer();
angle = 0;
// initializing the arrays (not neccesary)
points1 = getOriginalPoints(1);
points3 = getOriginalPoints(3);
points2 = getOriginalPoints(2);
// setting the rotation to the middle of the screen
center = new Point(250,250);
// start the looping
mainloop();
}
public void mainloop(){
start= System.currentTimeMillis();
// rotate the points the spcified angle and store the rotated
//points to the correct array
rotatePointMatrix(getOriginalPoints(1),angle,points1);
rotatePointMatrix(getOriginalPoints(2),angle,points2);
rotatePointMatrix(getOriginalPoints(3),angle,points3);
// Make the points into a polygon
poly1 = polygonize(points1);
poly2 = polygonize(points2);
poly3 = polygonize(points3);
// increase the angle by one degree, resulting to rotation in the longer run
angle++;
if (angle>=360){
angle=0;
}
// restatring the sequence
repaint();
sleepTime = runTime -(System.currentTimeMillis()-start);
System.out.println("Looped. Sleeping for:" +sleepTime+"ms");
if(sleepTime>0)
timer.schedule(new loop(), sleepTime);
else
mainloop();
}
public void rotatePointMatrix(Point[] origPoints, double angle, Point[] storeTo){
/* We ge the original points of the polygon we wish to rotate
* and rotate them with affine transform to the given angle.
* After the opeariont is complete the points are stored to the
* array given to the method.
*/
AffineTransform.getRotateInstance
(Math.toRadians(angle), center.x, center.y)
.transform(origPoints,0,storeTo,0,5);
}
public Polygon polygonize(Point[] polyPoints){
//a simple method that makes a new polygon out of the rotated points
Polygon tempPoly = new Polygon();
for(int i=0; i < polyPoints.length; i++){
tempPoly.addPoint(polyPoints[i].x, polyPoints[i].y);
}
return tempPoly;
}
public Point[] getOriginalPoints(int type){
/* In this example the rotated "polygon" are stored in this method.
* The Point is that if we want to rotate a polygon constatnly/frequently
* we cannot use the values of an already rotated polygon as this will
* lead to the polygon deforming severely after few translations due
* to the points being constantly rounded. So the trick is to save the
* original Points of the polygon and always rotate that one to the new
* angle instead of rotating the same one again and again.
*/
Point[] originalPoints = new Point[5];
if(type == 2){
originalPoints[0]= new Point(200, 100);
originalPoints[1]= new Point(250, 50);
originalPoints[2]= new Point(300, 100);
originalPoints[3]= new Point(300, 400);
originalPoints[4]= new Point(200, 400);
}
else if(type == 1){
originalPoints[0]= new Point(210, 150);
originalPoints[1]= new Point(250, 150);
originalPoints[2]= new Point(250, 190);
originalPoints[3]= new Point(230, 220);
originalPoints[4]= new Point(210, 190);
}
else{
originalPoints[0]= new Point(250, 300);
originalPoints[1]= new Point(290, 300);
originalPoints[2]= new Point(290, 340);
originalPoints[3]= new Point(270, 370);
originalPoints[4]= new Point(250, 340);
}
return originalPoints;
}
public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2d = (Graphics2D) g;
g2d.setRenderingHint(
RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
g2d.setColor(Color.GRAY);
g2d.fillPolygon(poly2);
g2d.setColor(Color.yellow);
g2d.fillPolygon(poly1);
g2d.setColor(Color.yellow);
g2d.fillPolygon(poly3);
g2d.setColor(Color.WHITE);
for(int i=0; i < points1.length; i++){
g2d.fillRect(points1[i].x-1, points1[i].y-1, 3, 3);
g2d.fillRect(points3[i].x-1, points3[i].y-1, 3, 3);
}
g2d.setColor(Color.BLUE);
g2d.fillOval(center.x-4, center.y-4, 8, 8);
g2d.setColor(Color.yellow);
g2d.drawString("Angle: "+angle, 10,450);
}
class loop extends TimerTask{
public void run() {
mainloop();
}
}
public static void main(String[] args){
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.add(new rotationPanel());
f.setSize(500,500);
f.setVisible(true);
}
}
I hope this helps! Don't hesitate to contact me if you run into trouble!
Here is a simple method to build a polygon from a set of points, rotated around a center point, at a specified angle:
/**
* Builds a polygon from a set of points, rotated around a point, at the
* specified rotation angle.
*
* #param centerX the int center x coordinate around which to rotate
* #param centerY the int center y coordinate around which to rotate
* #param xp the int[] of x points which make up our polygon points. This
* array is parallel to the yp array where each index in this array
* corresponds to the same index in the yp array.
* #param yp the int[] of y points which make up our polygon points. This
* array is parallel to the xp array where each index in this array
* corresponds to the same index in the xp array.
* #param rotationAngle the double angle in which to rotate the provided
* coordinates (specified in degrees).
* #return a Polygon of the provided coordinates rotated around the center point
* at the specified angle.
* #throws IllegalArgumentException when the provided x points array is not the
* same length as the provided y points array
*/
private Polygon buildPolygon(int centerX, int centerY, int[] xp, int[] yp, double rotationAngle) throws IllegalArgumentException {
// copy the arrays so that we dont manipulate the originals, that way we can
// reuse them if necessary
int[] xpoints = Arrays.copyOf(xp,xp.length);
int[] ypoints = Arrays.copyOf(yp,yp.length);
if(xpoints.length != ypoints.length){
throw new IllegalArgumentException("The provided x points are not the same length as the provided y points.");
}
// create a list of Point2D pairs
ArrayList<Point2D> list = new ArrayList();
for(int i = 0; i < ypoints.length; i++){
list.add(new Point2D.Double(xpoints[i], ypoints[i]));
}
// create an array which will hold the rotated points
Point2D[] rotatedPoints = new Point2D[list.size()];
// rotate the points
AffineTransform transform = AffineTransform.getRotateInstance(Math.toRadians(rotationAngle), centerX, centerY);
transform.transform(list.toArray(new Point2D[0]), 0, rotatedPoints, 0, rotatedPoints.length);
// build the polygon from the rotated points and return it
int[] ixp = new int[list.size()];
int[] iyp = new int[list.size()];
for(int i = 0; i < ixp.length; i++){
ixp[i] = (int)rotatedPoints[i].getX();
iyp[i] = (int)rotatedPoints[i].getY();
}
return new Polygon(ixp, iyp, ixp.length);
}