I wrote a program in java and php. In which a loop runs 64 times. And keep adding n to n:
Java Code:
public static void main(String[] args) {
double n = 1;
double p = 1;
for(int i = 1;i <= 64;i++){
n = n + n;
p = p + n;
}
System.out.println(p);
}
PHP code:
<?php
$n = 1;
$p = 0;
for($i = 1;$i <= 64;$i++){
$n = $n + $n;
$p = $p + $n;
}
echo($p);
?>
And the output of both of these is:
3.6893488147419E+19
Now I want to know is it possible to convert this big float to int? if yes, Then how. In both languages.
I would use the BigInteger type,
public static void main(String[] args) {
BigInteger n = BigInteger.ONE;
BigInteger p = BigInteger.ONE;
for(int i = 1;i <= 64;i++){
n = n.add(n);
p = p.add(n);
}
System.out.println(p);
}
Output is
36893488147419103231
Edit Based on your comment, you really wanted something more like The Legend of the Chessboard -
BigInteger n = BigInteger.ONE;
BigInteger p = BigInteger.ZERO;
BigInteger TWO = new BigInteger("2");
for (int i = 1; i <= 64; i++) {
StringBuilder sb = new StringBuilder();
sb.append("For square #: " + i);
sb.append(", Grains on square: " + n);
p = p.add(n);
n = n.multiply(TWO);
sb.append(", Running Total: " + p);
System.out.println(sb.toString());
}
The number is too large to fit in a long. To get the closest integral approximation, convert the double to a BigInteger by way of a BigDecimal:
BigDecimal bd = BigDecimal.valueOf(p);
BigInteger bi = bd.toBigInteger();
However, to get an exact result, perform all the calculations using BigIntegers:
import static java.math.BigInteger.ONE;
BigInteger n = ONE;
BigInteger p = ONE;
for (int i = 1; i <= 64; i++) {
n = n.add(n);
p = p.add(n);
}
System.out.println(p);
The difference between the approximate and exact values is:
36893488147419103000
36893488147419103231
Java: Math.round(float), PHP: round(value,precision) However you will precision
Related
My program displays Pascal's triangle. For enlarging the portion of the triangle that may be calculated and displayed, I've rewritten the code using BigInteger instead of primitive types.
Here's the code:
import java.math.BigInteger;
public class ptrig {
public static void main(String args[]) {
BigInteger no = BigInteger.valueOf(5);
// Creating the array
String doubledim[][] = new String[no.intValue()][];
BigInteger k;
for (k = BigInteger.ZERO; k.compareTo(no) < 0; k.add(BigInteger.ONE)) {
doubledim[k.intValue()] = new String[k.intValue() + BigInteger.ONE.intValue()];
}
// Assigning values
BigInteger i, j, p, n;
BigInteger l = BigInteger.ONE;
for (i = BigInteger.ZERO; i.compareTo(no) < 0; i.add(BigInteger.ONE)) {
for (j = BigInteger.ZERO; j.compareTo(i.add(BigInteger.ONE)) < 0; j.add(BigInteger.ONE)) {
BigInteger m = i.subtract(j);
if (j.compareTo(m) > 0) {
for (p = BigInteger.ZERO; p.compareTo(m) < 0; p = p.add(BigInteger.ONE)) {
n = i.subtract(p);
l = l.multiply(n);
}
doubledim[i.intValue()][j.intValue()] = l.divide(factorial.factmet(m)).toString();
l = BigInteger.ONE;
}
if (m.compareTo(j) > 0) {
for (p = BigInteger.ZERO; p.compareTo(j) < 0; p = p.add(BigInteger.ONE)) {
n = i.add(p.add(BigInteger.ONE)).subtract(j);
l = l.multiply(n);
}
doubledim[i.intValue()][j.intValue()] = l.divide(factorial.factmet(j)).toString();
l = BigInteger.ONE;
}
if (m.compareTo(j) == 0) {
for (p = BigInteger.ZERO; p.compareTo(j) < 0; p = p.add(BigInteger.ONE)) {
n = i.subtract(p);
l = l.multiply(n);
}
doubledim[i.intValue()][j.intValue()] = l.divide(factorial.factmet(j)).toString();
l = BigInteger.ONE;
}
}
}
// Printing
for (i = BigInteger.ZERO; i.compareTo(no) < 0; i.add(BigInteger.ONE)) {
for (j = BigInteger.ZERO; j.compareTo(i.add(BigInteger.ONE)) < 0; j.add(BigInteger.ONE)) {
System.out.print(doubledim[i.intValue()][j.intValue()] + " ");
}
System.out.println();
}
}
}
The problem is it displays nothing. I've read on Stack Overflow I need to convert the array values into strings for that they're displayed, so I did. I've also checked the System.out.println statements - they seem to be fine. The error persisted.
The algorithm itself worked fine on a previous version with primitive types.
What's the error here? I did my best to find an answer on the web, I couldn't. Thanks.
Your for-loops aren't incrementing their indices, and will therefor loop forever.
i.add(BigInteger.ONE) doesn't mutate i, it creates a new BigInteger and returns it. If you want to increment the value of i, you need to write i = i.add(BigInteger.ONE)
This means that when you try to initialize your array, you're entering an infinite loop, where you re-initialize doubledim[0] forever.
e.g.
for (k = BigInteger.ZERO; k.compareTo(no) < 0; k.add(BigInteger.ONE)) {
doubledim[k.intValue()] = new String[k.intValue() + BigInteger.ONE.intValue()];
}
should be
for (k = BigInteger.ZERO; k.compareTo(no) < 0; k = k.add(BigInteger.ONE)) {
doubledim[k.intValue()] = new String[k.intValue() + BigInteger.ONE.intValue()];
}
and you'll need to likewise fix the loops that control the population of data in your arrays, and printing of their data later in your program.
So, basically I have this algorithm that codes a word using arithmetic coding. The matrix with the percentages(String[][] tabelaProbs and the word (String palavra) are the following :
Matrix:
String tabelaProbs[][] = {{"A", "E", "I", "O", "U", "!"},{"0.2", "0.3", "0.1", "0.2", "0.1", "0.1"}};
Word:
String palavra = "EAII!"; (in lower case: " e a i i ! ")
The thing is, it's giving me the wrong result because some of sums with the doubles are giving the wrong result and that's affecting the final result aswell.
The final result ( credencialCodificada ) is expected to be : 0.23354
Can anyone help?
public static double codificarCredenciaisAcesso(String[][] tabelaProbs, String palavra) {
double aux = 0;
String letra, palavraAux = "";
int indice = 0;
double[] probabilidadesAux = new double[tabelaProbs[1].length + 2];
probabilidadesAux[0] = 0;
for (int i = 0; i < tabelaProbs[1].length; i++) {
aux += Double.parseDouble(tabelaProbs[1][i].trim());
probabilidadesAux[i + 1] = aux;
}
probabilidadesAux[probabilidadesAux.length - 1] = 1;
for (int indiceLetra = 0; indiceLetra < palavra.length(); indiceLetra++) {
letra = palavra.charAt(indiceLetra) + "";
palavraAux += letra;
for (int iProb = 0; iProb < tabelaProbs[0].length; iProb++) {
if (letra.equalsIgnoreCase(tabelaProbs[0][iProb])) {
indice = iProb;
break;
}
}
double intervaloProb = probabilidadesAux[indice + 1] - probabilidadesAux[indice];
for (int i = 0; i < probabilidadesAux.length; i++) {
if (indice == i) {
probabilidadesAux[0] = probabilidadesAux[indice];
probabilidadesAux[probabilidadesAux.length - 1] = probabilidadesAux[indice + 1];
aux = probabilidadesAux[0];
for (int j = 1; j < probabilidadesAux.length - 1; j++) {
double probabilidadeX = Double.parseDouble(tabelaProbs[1][j - 1]);
probabilidadesAux[j] = aux + (probabilidadeX * intervaloProb);
aux = probabilidadesAux[j];
}
break;
}
}
}
double credencialCodificada = probabilidadesAux[indice];
return credencialCodificada;
}
For example, if you sum 0.1 + 0.2 the result wont be 0.3 but rather something like 0.30000004. Its seems small but it will affect the final result
If you want arbitrary precision floating-point value I recomend you to use BigDecimal, a class found in java.math. More about it here()
The problem is that doubles have accuracy less than their total size. So 3.0000004 is accurate to 4 decimal points, but it is longer than 4 decimal points.
This is also why you should avoid comparing or grouping by doubles.
Here is a link talking about something like that :
how to fix double precision issue in java
I am to find the last ten digits of 1^1 + 2^2 + 3^3.. + 1000^1000.
Is there any way to find this out with pure logic? I think you can't store a number that big.
This question is from a math competition, but I thought of trying to do this in Java.
You don't need to store number that big, you just need the last ten digits. You can store this in a long.
An efficient way to calculate large powers is to multiply and the squares e.g. 19^19 = 19 * 19^2 * 19 ^ 16 = 19 * 19 ^ 2 * 19^2^2^2^2. When you have value which is greater than 10^10 you can truncate the last 10 digits.
BTW the last ten digits of 1000^1000 is 0000000000 and when your add this to your sum, it's the same as adding zero ;)
Edit: While you don't have to use BigInteger, it is simpler to write.
BigInteger tenDigits = BigInteger.valueOf(10).pow(10);
BigInteger sum = BigInteger.ZERO;
for (int i= 1; i <= 1000; i++) {
BigInteger bi = BigInteger.valueOf(i);
sum = sum.add(bi.modPow(bi, tenDigits));
}
sum = sum.mod(tenDigits);
modPow is more efficient than pow with mod seperately as it doesn't have to calculate very large numbers, only the result of the mod.
You could use BigIntegers...
public static void main(String[] args) {
BigInteger acc = BigInteger.ZERO;
for (int k = 1; k <= 1000; k++) {
BigInteger pow = BigInteger.valueOf(k).pow(k);
acc = acc.add(pow);
}
System.out.println(acc);
}
I believe the problem comes from Project Euler, so it's not just a math problem; it should require some computation as well. I don't know how it could be solved with pencil and paper other than by duplicating the calculations a computer might make. I can't see much in the way of a purely mathematical solution. Mathematics can help us optimize the code, however.
To raise a^n, find the binary expansion of n:
n = n_k x 2^k + n_(k-1) x 2^(k-1) + ... + n_0 x 2^0
where n_i = 0 or 1 are the binary digits of n with the zeroth digit on the right. Then
a^n = a^(n_k x 2^k) x a^(n_(k-1) x 2^(k-1)) x ... x a^(n_0 x 2^0).
We can ignore any factors where n_i = 0, since the factor is then a^0 = 1. The process can be written as an algorithm which is O(log n) time and O(1) space (see below).
Next, as a challenge, in order to avoid the use of BigInteger, we can break the calculation into two parts: finding the answer mod 2^10 and finding the answer mod 5^10. In both cases the numbers in the relevant ranges and products of numbers in the relevant ranges fit into longs. The downside is that we have to use the Chinese Remainder Theorem to recombine the results, but it's not that hard, and it's instructive. The hardest part of using the Chinese Remainder Theorem is finding inverses mod m, but that can be accomplished in a straightforward manner using a modification of the Euclidean algorithm.
Asymptotic running time is O(n log n), space is O(1), and everything fits into a few long variables, no BigInteger or other sophisticated library required.
public class SeriesMod1010 {
public static long pow(long a,long n,long m) { // a^n mod m
long result = 1;
long a2i = a%m; // a^2^i for i = 0, ...
while (n>0) {
if (n%2 == 1) {
result *= a2i;
result %= m;
}
a2i *= a2i;
a2i %= m;
n /= 2;
}
return result;
}
public static long inverse(long a, long m) { // mult. inverse of a mod m
long r = m;
long nr = a;
long t = 0;
long nt = 1;
long tmp;
while (nr != 0) {
long q = r/nr;
tmp = nt; nt = t - q*nt; t = tmp;
tmp = nr; nr = r - q*nr; r = tmp;
}
if (r > 1) return -1; // no inverse
if (t < 0) t += m;
return t;
}
public static void main(String[] args) {
long twoTo10 = 1024;
long sum210 = 0;
for (long i=1; i<=1000; i++) {
sum210 += pow(i,i,twoTo10);
sum210 %= twoTo10;
}
long fiveTo10 = 9_765_625;
long sum510 = 0;
for (long i=1; i<=1000; i++) {
sum510 += pow(i,i,fiveTo10);
sum510 %= fiveTo10;
}
// recombine the numbers with the Chinese remainder theorem
long tenTo10 = 10_000_000_000L;
long answer = sum210 * inverse(fiveTo10,twoTo10) * fiveTo10
+ sum510 * inverse(twoTo10,fiveTo10) * twoTo10;
answer %= tenTo10;
System.out.println(answer);
}
}
use BigIntegers :
import java.math.BigInteger;
public class Program {
public static void main(String[] args) {
BigInteger result = new BigInteger("1");
BigInteger temp = new BigInteger("1");
BigInteger I;
for(int i = 1 ; i < 1001 ; i++){
I = new BigInteger(""+i);
for(int j = 1 ; j < i ; j++){
temp = temp.multiply(I);
}
result = result.multiply(temp);
temp = new BigInteger("1");
}
System.out.println(result);
}
}
It can be solved without BigInteger, because you need to store only 10 last digits on every addition or multiplication operation, using % to avoid overflow:
int n = 1000;
long result = 0;
long tenDigits = 10_000_000_000L;
for (int i = 1; i <= n; i++) {
long r = i;
for (int j = 2; j <= i; j++) {
r = (r * i) % tenDigits;
}
result += r;
}
return result % tenDigits;
Complexity is O(N^2), supposed that multiplication runs in constant time.
Answer: 9110846700.
The decimal base uses 0...9 (10 digits) to represent digits, a number that is in the second position right to left represents Digits * base.length^l2rPosition. Using this logics you can create a class that "pretty much does what your primary school teacher told you to, back when we used paper to calculate stuff, but with a baseN number and base-to-base conversions" I have done this class fully functional in C#, but I don't have time to translate it completely to java, this is about the same logics behind java.math.BigInteger. (with less performance I bet for I used a lot of lists >_>" No time to optimize it now
class IntEx {
ArrayList<Integer> digits = new ArrayList<>();
long baseSize = Integer.MAX_VALUE+1;
boolean negative = false;
public IntEx(int init)
{
set(init);
}
public void set(int number)
{
digits = new ArrayList<>();
int backup = number;
do
{
int index = (int)(backup % baseSize);
digits.add(index);
backup = (int) (backup / baseSize);
} while ((backup) > 0);
}
// ... other operations
private void add(IntEx number)
{
IntEx greater = number.digits.size() > digits.size() ? number : this;
IntEx lesser = number.digits.size() < digits.size() ? number : this;
int leftOvers = 0;
ArrayList<Integer> result = new ArrayList<>();
for (int i = 0; i < greater.digits.size() || leftOvers > 0; i++)
{
int sum;
if (i >= greater.digits.size())
sum = leftOvers;
else if(i >= lesser.digits.size())
sum = leftOvers + greater.digits.get(i);
else
sum = digits.get(i) + number.digits.get(i) + leftOvers;
leftOvers = 0;
if (sum > baseSize-1)
{
while (sum > baseSize-1)
{
sum -= baseSize;
leftOvers += 1;
}
result.add(sum);
}
else
{
result.add(sum);
leftOvers = 0;
}
}
digits = result;
}
private void multiply(IntEx target)
{
ArrayList<IntEx> MultiParts = new ArrayList<>();
for (int i = 0; i < digits.size(); i++)
{
IntEx thisPart = new IntEx(0);
thisPart.digits = new ArrayList<>();
for (int k = 0; k < i; k++)
thisPart.digits.add(0);
int Leftovers = 0;
for (int j = 0; j < target.digits.size(); j++)
{
int multiFragment = digits.get(i) * (int) target.digits.get(j) + Leftovers;
Leftovers = (int) (multiFragment / baseSize);
thisPart.digits.add((int)(multiFragment % baseSize));
}
while (Leftovers > 0)
{
thisPart.digits.add((int)(Leftovers % baseSize));
Leftovers = (int) (Leftovers / baseSize);
}
MultiParts.add(thisPart);
}
IntEx newNumber = new IntEx(0);
for (int i = 0; i < MultiParts.size(); i++)
{
newNumber.add(MultiParts.get(i));
}
digits = newNumber.digits;
}
public long longValue() throws Exception
{
int position = 0;
long multi = 1;
long retValue = 0;
if (digits.isEmpty()) return 0;
if (digits.size() > 16) throw new Exception("The number within IntEx class is too big to fit into a long");
do
{
retValue += digits.get(position) * multi;
multi *= baseSize;
position++;
} while (position < digits.size());
return retValue;
}
public static long BaseConvert(String number, String base)
{
boolean negative = number.startsWith("-");
number = number.replace("-", "");
ArrayList<Character> localDigits = new ArrayList<>();
for(int i = number.toCharArray().length - 1; i >=0; i--) {
localDigits.add(number.charAt(i));
}
// List<>().reverse is missing in this damn java. -_-
long retValue = 0;
long Multi = 1;
char[] CharsBase = base.toCharArray();
for (int i = 0; i < number.length(); i++)
{
int t = base.indexOf(localDigits.get(i));
retValue += base.indexOf(localDigits.get(i)) * Multi;
Multi *= base.length();
}
if (negative)
retValue = -retValue;
return retValue;
}
public static String BaseMult(String a, String b, String Base)
{
ArrayList<String> MultiParts = new ArrayList<>();
// this huge block is a tribute to java not having "Reverse()" method.
char[] x = new char[a.length()];
char[] y = new char[b.length()];
for(int i = 0; i < a.length(); i++) {
x[i] = a.charAt(a.length()-i);
}
for(int i = 0; i < b.length(); i++) {
y[i] = a.charAt(a.length()-i);
}
a = new String(x);
b = new String(y);
// ---------------------------------------------------------------------
for (int i = 0; i < a.length(); i++)
{
ArrayList<Character> thisPart = new ArrayList<>();
for (int k = 0; k < i; k++)
thisPart.add(Base.charAt(0));
int leftOvers = 0;
for (int j = 0; j < b.length(); j++)
{
// Need I say repeated characters in base may cause mayhem?
int MultiFragment = Base.indexOf(a.charAt(i)) * Base.indexOf(b.charAt(j)) + leftOvers;
leftOvers = MultiFragment / Base.length();
thisPart.add(Base.charAt(MultiFragment % Base.length()));
}
while (leftOvers > 0)
{
thisPart.add(Base.charAt(leftOvers % Base.length()));
leftOvers = leftOvers / Base.length();
}
char[] thisPartReverse = new char[thisPart.size()];
for(int z = 0; z < thisPart.size();z++)
thisPartReverse[z] = thisPart.get(thisPart.size()-z);
MultiParts.add(new String(thisPartReverse));
}
String retValue = ""+Base.charAt(0);
for (int i = 0; i < MultiParts.size(); i++)
{
retValue = BaseSum(retValue, MultiParts.get(i), Base);
}
return retValue;
}
public static String BaseSum(String a, String b, String Base)
{
// this huge block is a tribute to java not having "Reverse()" method.
char[] x = new char[a.length()];
char[] y = new char[b.length()];
for(int i = 0; i < a.length(); i++) {
x[i] = a.charAt(a.length()-i);
}
for(int i = 0; i < b.length(); i++) {
y[i] = a.charAt(a.length()-i);
}
a = new String(x);
b = new String(y);
// ---------------------------------------------------------------------
String greater = a.length() > b.length() ? a : b;
String lesser = a.length() < b.length() ? a : b;
int leftOvers = 0;
ArrayList<Character> result = new ArrayList();
for (int i = 0; i < greater.length() || leftOvers > 0; i++)
{
int sum;
if (i >= greater.length())
sum = leftOvers;
else if (i >= lesser.length())
sum = leftOvers + Base.indexOf(greater.charAt(i));
else
sum = Base.indexOf(a.charAt(i)) + Base.indexOf(b.charAt(i)) + leftOvers;
leftOvers = 0;
if (sum > Base.length()-1)
{
while (sum > Base.length()-1)
{
sum -= Base.length();
leftOvers += 1;
}
result.add(Base.charAt(sum));
}
else
{
result.add(Base.charAt(sum));
leftOvers = 0;
}
}
char[] reverseResult = new char[result.size()];
for(int i = 0; i < result.size(); i++)
reverseResult[i] = result.get(result.size() -i);
return new String(reverseResult);
}
public static String BaseConvertItoA(long number, String base)
{
ArrayList<Character> retValue = new ArrayList<>();
boolean negative = false;
long backup = number;
if (negative = (backup < 0))
backup = -backup;
do
{
int index = (int)(backup % base.length());
retValue.add(base.charAt(index));
backup = backup / base.length();
} while ((backup) > 0);
if (negative)
retValue.add('-');
char[] reverseRetVal = new char[retValue.size()];
for(int i = 0; i < retValue.size(); i++)
reverseRetVal[i] = retValue.get(retValue.size()-i);
return new String(reverseRetVal);
}
public String ToString(String base)
{
if(base == null || base.length() < 2)
base = "0123456789";
ArrayList<Character> retVal = new ArrayList<>();
char[] CharsBase = base.toCharArray();
int TamanhoBase = base.length();
String result = ""+base.charAt(0);
String multi = ""+base.charAt(1);
String lbase = IntEx.BaseConvertItoA(baseSize, base);
for (int i = 0; i < digits.size(); i++)
{
String ThisByte = IntEx.BaseConvertItoA(digits.get(i), base);
String Next = IntEx.BaseMult(ThisByte, multi, base);
result = IntEx.BaseSum(result, Next, base);
multi = IntEx.BaseMult(multi, lbase, base);
}
return result;
}
public static void main(String... args) {
int ref = 0;
IntEx result = new IntEx(0);
while(++ref <= 1000)
{
IntEx mul = new IntEx(1000);
for (int i = 0; i < 1000; ++i) {
mul.multiply(new IntEx(i));
}
result.add(mul);
}
System.out.println(result.toString());
}
}
Disclaimer: This is a rough translation/localization from a C# study, there are lots of code omitted. This is "almost" the same logics behind java.math.BigInteger (you can open BigInteger code on your favorite designer and check for yourself. If may I be forgetting a overloaded operator behind not translated to java, have a bit of patience and forgiveness, this example is just for a "maybe" clarification of the theory.
Also, just a sidenote, I know it is "Trying to reinvent the wheel", but considering this question has academic purpose I think its fairly rasonable to share.
One can see the result of this study on gitHub (not localized though), I'm not expanding that C# code here for its very extensive and not the language of this question.
This gives the correct answer without excess calculations. A Long is sufficient.
public String lastTen() {
long answer = 0;
String txtAnswer = "";
int length = 0;
int i = 1;
for(i = 1; i <= 1000; i++) {
answer += Math.pow(i, i);
txtAnswer = Long.toString(answer);
length = txtAnswer.length();
if(length > 9) break;
}
return txtAnswer.substring(length-10);
}
Find the last ten digits of the series, 1^1 + 2^2 + 3^3 + ... + 1000^1000
I'm using Java.. I think I can modpow function for this question. (BigInteger) Here is my Java code but it isnt work. How can I do that?
public static void main(String[] args) {
BigInteger a;
BigInteger b = null;
BigInteger c = new BigInteger("10000000000");
for (int i = 0; i <= 1000; i++) {
a = new BigInteger("" + i);
b.add(a.modPow(a, c));
}
System.out.println(b);
}
I get the error of NullPointerException.. Sorry my english, thanks.
BigInteger b = null;
therefore, in the first iteration, when you do b.add(a.modPow(a, c));, b is null
I think you have two basic errors, first you never initialized b - that could be
BigInteger b = BigInteger.ZERO;
Then you need to assign the result of the b.add(a.modPow(a, c)); to b (since BigInteger add doesn't modify in-place). That is,
b = b.add(a.modPow(a, c));
When I make those two changes I get the output
4629110846701
import java.math.BigInteger;
class Main {
public static void main(String[] args) {
BigInteger num = BigInteger.ZERO;
for (int i = 1; i <= 1000; i++) {
num = num.add(BigInteger.valueOf(i).pow(i));
}
BigInteger res = num.mod(new BigInteger("10000000000"));
System.out.println(res);
}
}
output :
9110846700
More efficient solution taken from http://www.mathblog.dk/project-euler-48-last-ten-digits/ as biginteger gets very slow on very large numbers
import java.io.InputStream;
class Main {
public static void main(String[] args) {
long result = 0;
long modulo = 10000000000L;
for (int i = 1; i <= 1000; i++) {
long temp = i;
for (int j = 1; j < i; j++) {
temp *= i;
temp %= modulo;
}
result += temp;
result %= modulo;
}
System.out.println(result);
}
output :
9110846700
null is not a zero value. Initialize your variable with 0 like this
BigInteger b = new BigInteger("0");
Even if, as peter.petrov said, this problem could be solved with one more simple solution without using big integers
I've now googled around and tried various methods myself without any success.
So to the problem,
I've got this loop, I type in a number "n" ex. 10. Then the program counts from 1 to 10.
This is the loop I'm using.
n = Keyboard.readInt();
for(int e = 1; e <=n; e++)
System.out.println(e);
That works fine, but now I want to calculate the numbers that has been shown in loop so..It would be 1+2+3+4+5+6+7+8+9+10 (If 'n' was chosen as number 10) and it should give the calculation of that so it would say 1+2+3+4+5+6+7+8+9+10 = 55.
Would be great if anyone here could help me.
Thanks in advance,
Michael.
You could do it the hard way or the easy way:
The hard way: Keep a running sum and add to it inside the loop.
The easy way: Notice that the sum you're looking for equals n*(n+1)/2 (which is easy to prove).
StringBuilder buffer = new StringBuilder();
int n = Keyboard.readInt();
int sum = 0;
for ( int e = 1; e <=n; e++ )
{
buffer.append( "+ " + e );
sum += e;
}
System.out.println( buffer.substring( 2 ) + " = " + sum );
Do it like that:
public static void main(String[] args) {
int n = 10;
int sum = 0;
for(int e = 1; e <=n; e++)
sum = sum + e;
System.out.println(sum);
}
int sum = 0;
for(int e = 1; e <=n; e++)
{
sum += e;
}
System.out.println(sum);
Use another variable to accumulate the results.
I feel like spoon-feeding, so here's the code:
public static void main(String args[]) {
int n = Keyboard.readInt();
int total = 0;
for (int i = 1; i <= n; i++)
total += i;
System.out.println(total);
}
Try this:
n = Keyboard.readInt();
int total = 0;
StringBuilder arith = new StringBuilder();
for(int e = 1; e <=n; e++) {
total += e;
arith.append(e + (e < n? "+" : ""));
}
arith.append("=" + total);
System.out.println(arith.toString());