get X,Y coords of an isometric cell by its id - java

I have an isometric grid that is numbered like the image above. I need a function that returns X,Y coords from a given cell number, without using any kind of loops.
I've literally spent hours trying to figure this out, here is what I came up with so far:
public static Coords getXY(int cellID)
{
final double CELL_WIDTH = 53;
final double LEVEL_HEIGHT = 27;
final int gridWidth = 6;
boolean isYellowRow = cellID % (gridWidth*2-1) <= gridWidth;
double x = ((cellID % gridWidth) + 1) + (isYellowRow ? 0 : 0.5 );
double y = cellID / (gridWidth*2-1);
y = Math.round(y) + (isYellowRow ? 1 : 0);
System.out.println(x+", "+y);
x *= CELL_WIDTH;
y *= LEVEL_HEIGHT;
System.out.println(x+", "+y);
return Coords(x, y);
}
It's messy not working and isn't complete yet, I'v spent way more time than I should on this and I'm still unable to solve it, so I'm asking your help please.
Some examples of expected results:
getXY(1); // Should return: 53, 27
getXY(2); // Should return: 106, 27
getXY(6); // Should return: 26.5, 40.5 (40.5 is because +=cellHeight/2..)
getXY(7); // Should return: 79.5, 40.5
getXY(12); // Should return: 53, 54

Try this
int n; // cell number
double x, y; // coordinates of top vertex of cell
double CELL_WIDTH = 53;
double LEVEL_HEIGHT = 27;
x = (double)(((n-1)%11) * CELL_WIDTH) - (((n-1)%11 > 4) ? 5.5d*CELL_WIDTH : 0d);
y = (double)((n-1)/11) * LEVEL_HEIGHT * 2d + (((n-1)%11 > 4) ? LEVEL_HEIGHT/2 : 0d);
This places (0,0) at the top vertex of the first cell. Add offsets to move (0,0) wherever you want it to be.
The approach:
The repetitive pattern has period 11, in two rows. So, first calculate the horizontal offset as if the 11 cells were in a straight line: ((n-1)%11) * CELL_WIDTH. Then realize that if the cell is on the second line, the horizontal offset will be left by 5-1/2 cells: - ((n-1)%11 > 4) ? 5.5d*CELL_WIDTH : 0d. Do the same for the vertical offsets and throw in appropriate casting so the result is floating point (since you seem to want half-pixel answers).

Related

What is the range of improved Perlin noise?

I'm trying to find the theoretical output range of improved Perlin noise for 1, 2 and 3 dimensions. I'm aware of existing answers to this question, but they don't seem to accord with my practical findings.
If n is the number of dimensions then according to [1] it should be [-sqrt(n/4), sqrt(n/4)]. According to [2] (which refers to [3]) it should be [-0.5·sqrt(n), 0.5·sqrt(n)] (which amounts to the same thing).
This means that the ranges should be approximately:
Dimensions
Range
1
[-0.5, 0.5]
2
[-0.707, 0.707]
3
[-0.866, 0.866]
However when I run the following code (which uses Ken Perlin's own reference implementation of improved noise from his website), I get higher values for 2 and 3 dimensions, namely approximately:
Dimensions
Range
1
[-0.5, 0.5]
2
[-0.891, 0.999]
3
[-0.997, 0.999]
With different permutations I even sometimes get values slightly over 1.0 for 3 dimensions, and for some strange reason one of the bounds for two dimension always seems to be about 0.89 while the other is about 1.00.
I can't figure out whether this is due to a bug in my code (I don't see how since this is Ken Perlin's own code) or due to those discussions not being correct or not being applicable somehow, in which case I would like to know what the theoretical ranges are for improved Perlin noise.
Can you replicate this? Are the results wrong, or can you point me to a discussion of the theoretical values that accords with this outcome?
The code:
public class PerlinTest {
public static void main(String[] args) {
double lowest1DValue = Double.MAX_VALUE, highest1DValue = -Double.MAX_VALUE;
double lowest2DValue = Double.MAX_VALUE, highest2DValue = -Double.MAX_VALUE;
double lowest3DValue = Double.MAX_VALUE, highest3DValue = -Double.MAX_VALUE;
final Random random = new SecureRandom();
for (int i = 0; i < 10000000; i++) {
double value = noise(random.nextDouble() * 256.0, 0.0, 0.0);
if (value < lowest1DValue) {
lowest1DValue = value;
}
if (value > highest1DValue) {
highest1DValue = value;
}
value = noise(random.nextDouble() * 256.0, random.nextDouble() * 256.0, 0.0);
if (value < lowest2DValue) {
lowest2DValue = value;
}
if (value > highest2DValue) {
highest2DValue = value;
}
value = noise(random.nextDouble() * 256.0, random.nextDouble() * 256.0, random.nextDouble() * 256.0);
if (value < lowest3DValue) {
lowest3DValue = value;
}
if (value > highest3DValue) {
highest3DValue = value;
}
}
System.out.println("Lowest 1D value: " + lowest1DValue);
System.out.println("Highest 1D value: " + highest1DValue);
System.out.println("Lowest 2D value: " + lowest2DValue);
System.out.println("Highest 2D value: " + highest2DValue);
System.out.println("Lowest 3D value: " + lowest3DValue);
System.out.println("Highest 3D value: " + highest3DValue);
}
static public double noise(double x, double y, double z) {
int X = (int)Math.floor(x) & 255, // FIND UNIT CUBE THAT
Y = (int)Math.floor(y) & 255, // CONTAINS POINT.
Z = (int)Math.floor(z) & 255;
x -= Math.floor(x); // FIND RELATIVE X,Y,Z
y -= Math.floor(y); // OF POINT IN CUBE.
z -= Math.floor(z);
double u = fade(x), // COMPUTE FADE CURVES
v = fade(y), // FOR EACH OF X,Y,Z.
w = fade(z);
int A = p[X ]+Y, AA = p[A]+Z, AB = p[A+1]+Z, // HASH COORDINATES OF
B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z; // THE 8 CUBE CORNERS,
return lerp(w, lerp(v, lerp(u, grad(p[AA ], x , y , z ), // AND ADD
grad(p[BA ], x-1, y , z )), // BLENDED
lerp(u, grad(p[AB ], x , y-1, z ), // RESULTS
grad(p[BB ], x-1, y-1, z ))),// FROM 8
lerp(v, lerp(u, grad(p[AA+1], x , y , z-1 ), // CORNERS
grad(p[BA+1], x-1, y , z-1 )), // OF CUBE
lerp(u, grad(p[AB+1], x , y-1, z-1 ),
grad(p[BB+1], x-1, y-1, z-1 ))));
}
static double fade(double t) { return t * t * t * (t * (t * 6 - 15) + 10); }
static double lerp(double t, double a, double b) { return a + t * (b - a); }
static double grad(int hash, double x, double y, double z) {
int h = hash & 15; // CONVERT LO 4 BITS OF HASH CODE
double u = h<8 ? x : y, // INTO 12 GRADIENT DIRECTIONS.
v = h<4 ? y : h==12||h==14 ? x : z;
return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);
}
static final int p[] = new int[512], permutation[] = { 151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
static { for (int i=0; i < 256 ; i++) p[256+i] = p[i] = permutation[i]; }
}
Ken’s not using unit vectors. As [1] says, with my emphasis:
Third, there are many different ways to select the random vectors at the grid cell corners. In Improved Perlin noise, instead of selecting any random vector, one of 12 vectors pointing to the edges of a cube are used instead. Here, I will talk strictly about a continuous range of angles since it is easier – however, the range of value of an implementation of Perlin noise using a restricted set of vectors will never be larger. Finally, the script in this repository assumes the vectors are of unit length. If they not, the range of value should be scaled according to the maximum vector length. Note that the vectors in Improved Perlin noise are not unit length.
For Ken’s improved noise, the maximum vector length is 1 in 1D and √2 in 2D, so the theoretical bounds are [−0.5, 0.5] in 1D and [−1, 1] in 2D. I don’t know why you’re not seeing the full range in 2D; if you shuffled the permutation I bet you would sometimes.
For 3D, the maximum vector length is still √2, but the extreme case identified by [1] isn’t a possible output, so the theoretical range of [−√(3/2), √(3/2)] is an overestimate. These folks tried to work it out exactly, and yes, the maximum absolute value does seem to be strictly greater than 1.

Maths calculation: Compare coordinates to make reasonable shape

i have a mathematical problem. Im making a game where the user is a 12 year old kid. The child's goal is to calculate the area of a drawn shape. In easy and medium mode, the shapes are given and hard coded so they are not hardcore. in the hard mode 5 coordinates are randomly generated and here is where the problem comes. I need to make a shape which area is calculable by a 12 y/o child. With the random coordinates come various hard things, such as intersections, or odd points on a line connecting 2 other points and so. Is there any way to calculate and avoid such problems?
Here is my code which makes the random points + draws it on a dot grid in the application:
private void gameHard ()
{
//distance between points is 65 pixels, the numbers that are generated are 1-8
x1=(genRandomInt())*65;
x2=(genRandomInt())*65;
x3=(genRandomInt())*65;
x4=(genRandomInt())*65;
x5=(genRandomInt())*65;
y1=(genRandomInt())*65;
y2=(genRandomInt())*65;
y3=(genRandomInt())*65;
y4=(genRandomInt())*65;
y5=(genRandomInt())*65;
compareRCoordinates ();
areaImage = new JPanel ()
{
#Override
protected void paintComponent(Graphics g)
{
super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g;
g2.setColor(Color.WHITE);
g2.fillRect(0,0,780,650);
g2.setColor(Color.BLACK);
int xnum = 65, ynum = 65;
for(ynum=65;ynum<650;ynum=ynum+65)
{
int x=0, y=0;
for(xnum = 65;xnum<780;xnum=xnum+65)
{
x = xnum-9;
y = ynum-9;
g2.fillOval(x,y,18,18);
}
xnum=xnum+65;
}
g2.setColor(Color.RED);
g2.setStroke(new BasicStroke(6));
g2.drawLine(x1,y1,x2,y2);
g2.drawLine(x2,y2,x3,y3);
g2.drawLine(x3,y3,x4,y4);
g2.drawLine(x4,y4,x5,y5);
g2.drawLine(x5,y5,x1,y1);
}
};
areaImage.setBounds(20,20,780,650);
areaImage.setBorder(BorderFactory.createLineBorder(Color.black));
this.add(areaImage);
roundsPlayed++;
}
Here's the outline of a fairly straightforward method.
Choose five distinct random points.
Calculate the centroid of the five points (that is, the average X co-ordinate and the average Y co-ordinate).
Calculate the angle from the centroid to each of the five original points. If one of the points happens to be the centroid, then pick any number at all (such as 0) as the angle.
Arrange the points in order of the angle calculated. Ties can be broken arbitrarily.
OK, the points now make a pentagon in the order you've arranged them (including a line segment from the last point to the first one). It's not necessarily convex, but it won't have any "crossing over". You can draw this on the screen.
And you can calculate the area as
( x1 * y2 + x2 * y3 + x3 * y4 + x4 * y5 + x5 * y1 - y1 * x2 - y2 * x3 - y3 * x4 - y4 * x5 - y5 * x1 ) / 2
My basic idea is I divide your 64 (8 by 8) possible points into 5 disjoint rectangular areas and pick one random point from each area. The areas are picked so that connecting the points in order will never cause any connecting lines to cross. It’s quite simple — maybe too simple?
x1 = genRandomInt(1, 3) * 65;
y1 = genRandomInt(1, 4) * 65;
x2 = genRandomInt(1, 3) * 65;
y2 = genRandomInt(5, 8) * 65;
x3 = genRandomInt(4, 8) * 65;
y3 = genRandomInt(6, 8) * 65;
x4 = genRandomInt(4, 8) * 65;
y4 = genRandomInt(4, 5) * 65;
x5 = genRandomInt(6, 8) * 65;
y5 = genRandomInt(1, 3) * 65;
Write genRandomInt(int from, int to) so that it returns a random int in the interval from from through to inclusive. In the code above I have between 10 and 15 possible points in each of the rectangular areas.
Using arrays for the coordinates facilitates.
One could use a random distance to the prior points so points are not near. I'll be math lazy and simply repeat selecting new random numbers till the random point is no longer near.
Finally I cheat and use java.awt.Polygon to check that the new candidate point is not inside the polygon till that.
Polygon one can draw, and even fill.
The fields:
int[] xs = new int[5]; // xs[0] till xs[4]
int[] ys = new int[5];
Polygon pentagon;
Picking random points:
final int NEAR = 20;
for (int i = 0; i < 5; ++i) {
// Pull random numbers for this i'th point till okay.
for (;;) {
xs[i] = random ...
ys[i] = random ...
// Check that the point is not inside the polygon till now:
if (i >= 3) {
Polygon polygon = new Polygon(xs, ys, i);
if (polygon.contains(xs[i], ys[i]) {
continue; // Inside
}
}
// Check that the point are apart:
boolean near = false;
for (int j = 0; j < i && !near; ++j) {
near = Math.abs(xs[i] - xs[j]) < NEAR
&& Math.abs(ys[i] - ys[j]) < NEAR;
}
if (near) {
continue; // Too near
}
break; // Found point i
}
}
pentagon = new Polygon(xs, ys, 5);
Drawing:
g2.setColor(Color.RED);
g2.setStroke(new BasicStroke(6));
g2.draw(pentagon);
g2.setColor(Color.TEAL);
g2.fill(pentagon);
... draw grid
As you might image there might be sufficient looping. Endless when the first four points cover the largest part of the screen.

Slowly reduce the number

I have a number that is being increased by an increment on each step. Let's assume that start number is 0 and increment is 100.
On step #5 and later I want to start decreasing the base increment (100). The increment should be decreased smoothly and at step #10 it equals 0.
Here is a graph that basically explains what am I trying to do (y - increment, x - step).
Code representation:
// x - step
// y - increment
var value = 0;
for(var x = 0; x < 10; x++) {
var y = 100;
if(x > 5) {
// y = ???
}
value += y;
}
So the question is how to represent this? It would be also great to have an option to modify the smoothness of this arc.
Thank you!
This will give you a perfect quarter cirle that starts at (5|100) and ends at (10|0).
if (x > 5) {
y = 100 * Math.sqrt( 1 - Math.pow(((x - 5) / 5), 2) );
}
http://fooplot.com/plot/2i8hy2twl4
Explanation (optional)
Warning! May contain mathematics!
Let's start with a simpler case, a quarter circle with a radius of 1 and its center is (0|0). We know that x² + y² = r²(Pythagorean theorem). x and r are known, so we can calculate y this way: y = sqrt(r² - x²). Since our radius is always 1 and 1² is equal to 1, we can break it down to this:
y = sqrt(1 - x²)
The value of y ranges from 0 to 1. We want it to range from 0 to 100 though. To achieve this, we simply multiply the right side by 100.
y = 100 * sqrt(1 - x²)
^^^^^^
To shift the entire thing 5 to the right, we need to subtract 5 from x.
y = 100 * sqrt(1 - (x - 5)²)
^^^^^
Also, we want to stretch it to the right, so that our quarter circle ranges from x = 5 to x = 10 and not to x = 6, so wie divide (x - 5) by 5.
y = 100 * sqrt(1 - ((x - 5) / 5)^2)
^^^^
Everything to do now is to replace sqrt by Math.sqrt and ^2 by Math.pow to make it valid Javascript code.
y = 100 * Math.sqrt( 1 - Math.pow(((x - 5) / 5), 2) );
If that curve is a quarter circle, then the equation that you want is
y = 20 * Math.sqrt(x * (10 - x));
If it's not a quarter circle, then it's anyone's guess.
if (x<=5)
y = 100;
else if (x>=10)
y = 0;
else {
double radius = 100;
double offset = (x-5)*20;
y = Math.sqrt(raidus*radius - offset*offset);
}
http://fooplot.com/plot/offuyxbfzu

Draw string on ellipse

I'm happy with the output of my clock, however - I am not sure how to properly align my drawString for the numbers which should appear at the tip of each tick mark on the clock.
I am hoping someone might be able show the proper method/formula for this.
private void drawTickMarks(Graphics2D g2)
{
double radius = this.faceRadius;
for (int secs = 0; secs <= 60; secs++)
{
double tickStart;
if (secs % 5 == 0)
tickStart = radius - 15;
else
tickStart = radius - 5;
tick = drawRadii(secs / 60.0, tickStart, radius);
if (secs % 5 == 0)
{
g2.setStroke(new BasicStroke(3));
g2.drawString(""+(secs/5),(int)tick.getX1()+(int)(tick.getX1()-tick.getX2()),
(int)tick.getY1()+(int)(tick.getY1()-tick.getY2()));
}
else
g2.setStroke(new BasicStroke(1));
g2.setColor(Color.WHITE);
g2.draw(tick);
}
}
Thanks to Thinhbk for a valid and correct solution with code and Jon W for the proper steps of coming to a solution.
If you imagine the String enclosed within a box, the x and y values you pass into drawString specify the lower left corner of the box.
I would modify the drawString line as such:
String number = ""+(secs/5);
int xLocation = (int)tick.getX1()+(int)(tick.getX1()-tick.getX2());
int yLocation = (int)tick.getY1()+(int)(tick.getY1()-tick.getY2());
int offsetX = /*Insert some value here to shift the position of all the strings
along the x-axis. Make this an expression that contains number.length(),
so that two-digit numbers are shifted more than one digit numbers. */
int offsetY = /*Insert some value here to shift the position of all the strings along
the y-axis.*/
g2.drawString(number, xLocation + offsetX, yLocation + offsetY);
You'll have to play around with the specific values for offsetX and offsetY to make it look nice.
If you want to be even fancier and make it so that drawString will automatically adjust the location depending on what font is being used, take a look at this and the FontMetrics class. You'll want to make offsetX and offsetY vary depending on width and height of the characters being drawn and whatnot.
As a supplemental to the solution provided by Jon W, I create a method that calculate the offset, and IMO, it looks fine. (#Jon W: sorry for not adding comment to your solution as it's rather long.)
/**
* Calculate the offset *
* #param i
* #return array:
* 0: x offset
* 1: y offset
*/
private int[] calculateOffSet(int i) {
int[] val = new int[2];
int deflt = -12;
if(i == 12) {
val[0] = -15;
val[1] = 9;
}else if (i > 6) {
val[0] = deflt + i - 6 ;
val[1] = i ;
}else {
val[0] = deflt + i ;
val[1] = i + 6;
}
return val;
}
And in your code, just call this:
int xLocation = (int)tick.getX1()+(int)(tick.getX1()-tick.getX2());
int yLocation = (int)tick.getY1()+(int)(tick.getY1()-tick.getY2());
int[] offset = calculateOffSet((secs / 5));
g2.drawString(number, xLocation + offset[0], yLocation + offset[1]);

Creating a Squircle

I'm a first year programmer. I'm trying to create a squircle. (square with round corners).
So far i have managed to get. I have been given the constants of a,b and r. If anyone could help i would be really thankful. I'm a total noob to this. So be nice :)
package squircle;
import java.awt.*;
import javax.swing.*;
import java.lang.Math;
public class Main extends javax.swing.JApplet {
public void paint(Graphics g){
// (x-a)^4 + (y-b)^4 = r^4
// y = quadroot( r^4 - (x-a)^4 + b)
// x values must fall within a-r < x < a+r
int[] xPoints = new int[200];
int[] yPoints = new int[200];
int[] mypoints = new int[200];
for(int c = 0; c <200; c++){
int a = 100;
int r = 100;
int b = 100;
double x = c ;
double temp = (r*r*r*r);
double temp2 = x-a;
double temp3 = ((temp2)*(temp2)*(temp2)*(temp2));
double temp6 = Math.sqrt(temp-temp3);
double y = (Math.sqrt(temp6) + b );
double z = (y*-1)+300;
mypoints[c]=(int)z;
// if (c>100){
// y = y*1;
// }
// else if(c<100){
// y = y*1;
// }
xPoints[c]=(int)x;
yPoints[c]=(int)y;
// change the equation to find x co-ordinates
// change it to find y co-ordinates.
// r is the minor radius
// (a,b) is the location of the centre
// a = 100
// b = 100
// r = 100
// x value must fall within 0 or 200
}
g.drawPolygon(xPoints, yPoints, xPoints.length);
g.drawPolygon(xPoints, (mypoints), xPoints.length);
}
}
Is it homework or is there some other reason why you're not using Graphics#drawRoundRect()?
If you are submitting this as homework there are some elements of style that may help you. What are the roles of 200, 100 and 300? These are "magic constants" which should be avoided. Are they related or is it just chance that they have these values? Suggest you use symbols such as:
int NPOINTS = 200;
or
double radius = 100.0
That would reveal whether the 300 was actually the value you want. I haven't checked.
Personally I wouldn't write
y*-1
but
-y
as it's too easy to mistype the former.
I would also print out the 200 points as floats and see if you can tell by eye where the error is. It's highly likely that the spurious lines are either drawn at the start or end of the calculation - it's easy to make "end-effect" errors where exactly one point is omitted or calculated twice.
Also it's cheap to experiment. Try iterating c from 0 to 100. or 0 to 10, or 0 to 198 or 1 to 200. Does your spurious line/triangle always occur?
UPDATE Here is what I think is wrong and how to tackle it. You have made a very natural graphics error and a fence-post error (http://en.wikipedia.org/wiki/Off-by-one_error) and it's hard to detect what is wrong because your variable names are poorly chosen.
What is mypoints? I believe it is the bottom half of the squircle - if you had called it bottomHalf then those replying woulod have spotted the problem quicker :-).
Your graphics problem is that you are drawing TWO HALF-squircles. Your are drawing CLOSED curves - when you get to the last point (c==199) the polygon is closed by drawing back to c==0. That makes a D-shape. You have TWO D-shapes, one with the bulge UP and one DOWN. Each has a horizontal line closing the polygon.
Your fence-post error is that you are drawing points from 0 to 199. For the half-squircle you want to draw from 0 to 200. That's 201 points! The loss of one point means that you have a very slightly sloping line. The bottom lines slopes in tghe opposite direction from the top. That gives you a very then wedge shape, which you refer to as a triangle. I'm guessing that your triangle is not actually closed but like a slice from a pie but very then/sharp.
(The code below could be prettier and more compact. However it is often useful to break symmetrical problems into quadrants or octants. It would also be interesting to use an anngle to sweep out the polygon).
You actually want ONE polygon. The code should be something like:
int NQUADRANT = 100;
int NPOINTS = 4*NQUADRANT ; // closed polygon
double[] xpoints = new double[NPOINTS];
double[] ypoints = new double[NPOINTS];
Your squircle is at 100, 100 with radius 100. I have chosen different values here
to emphasize they aren't related. By using symbolic names you can easily vary them.
double xcenter = 500.0;
double ycentre = 200.0;
double radius = 100.;
double deltax = radius/(double) NQUADRANT;
// let's assume squircle is centered on 0,0 and add offsets later
// this code is NOT complete or correct but should show the way
// I might have time later
for (int i = 0; i < NPOINTS; i++) {
if (i < NQUADRANT) {
double x0 = -radius + i* deltax;
double y0 = fourthRoot(radius, x0);
x[i] = x0+xcenter;
y[i] = y0+ycenter;
}else if (i < 2*NQUADRANT) {
double x0 = (i-NQUADRANT)* deltax;
double y0 = fourthRoot(radius, x0);
x[i] = x0+xcenter;
y[i] = y0+ycenter;
}else if (i < 3*NQUADRANT) {
double x0 = (i-2*NQUADRANT)* deltax;
double y0 = -fourthRoot(radius, x0);
x[i] = x0+xcenter;
y[i] = y0+ycenter;
}else {
double x0 = -radius + (i-3*NQUADRANT)* deltax;
double y0 = -fourthRoot(radius, x0);
x[i] = x0+xcenter;
y[i] = y0+ycenter;
}
}
// draw single polygon
private double fourthRoot(double radius, double x) {
return Math.sqrt(Math.sqrt(radius*radius*radius*radius - x*x*x*x));
}
There is a javascript version here. You can view the source and "compare notes" to potentially see what you are doing wrong.
Ok, upon further investigation here is why you are getting the "triangle intersecting it". When you drawPolygon the points are drawn and the last point connects the first point, closing the points and making the polygon. Since you draw one half it is drawn (then connected to itself) and then the same happens for the other side.
As a test of this change your last couple lines to this:
for( int i = 0; i < yPoints.length; i++ ) {
g.drawString( "*", xPoints[ i ], yPoints[ i ] );
}
for( int i = 0; i < mypoints.length; i++ ) {
g.drawString( "*", xPoints[ i ], mypoints[ i ] );
}
// g.drawPolygon( xPoints, yPoints, xPoints.length );
// g.drawPolygon( xPoints, ( mypoints ), xPoints.length );
It is a little crude, but I think you'll get the point. There are lots of solutions out there, personally I would try using an array of the Point class and then sort it when done, but I don't know the specifics of what you can and can not do.
Wow, are you guys overthinking this, or what! Why not just use drawLine() four times to draw the straight parts of the rectangle and then use drawArc() to draw the rounded corners?

Categories