The answer to this question seems obvious, but I need to be completely sure. So if answer can provide authoritative reference with clear non-ambiguous statements, that would be great.
Say I have the following two methods
public CollectionResponse<Dog> getDogs(Identification request){
MemcacheService syncCacheDog = MemcacheServiceFactory.getMemcacheService();
syncCacheDog.setErrorHandler(ErrorHandlers.getConsistentLogAndContinue(Level.INFO));
// ........
value = (byte[]) syncCacheDog.get(key); // read from cache
if (value == null) {
// get value from other source
// ........
syncCacheDog.put(key, value); // populate cache
}
// ........
}
public CollectionResponse<Cat> getCats(Identification request){
MemcacheService syncCacheCat = MemcacheServiceFactory.getMemcacheService();
syncCacheCat.setErrorHandler(ErrorHandlers.getConsistentLogAndContinue(Level.INFO));
// ........
value = (byte[]) syncCacheCat.get(key); // read from cache
if (value == null) {
// get value from other source
// ........
syncCacheCat.put(key, value); // populate cache
}
// ........
}
Are syncCacheDog and syncCacheCat pointing to the same map? Or if I want them to be pointing to the same map, do I have to create
static MemcacheService syncCache = MemcacheServiceFactory.getMemcacheService();
and then use syncCache inside both methods?
On the other hand, if it is a singleton, how do I maintain two different caches? I.e. can someone please copy and paste one of my methods and show it written with a namespace and instead of dealing with generic byte to deal with a specific object such as Dog?
Yes, from my experience with GAE and its documentation, Memcache service is a singleton. Even more, different versions of the application all see the same cache.
In order to maintain different caches do the usual: use a prefix. Maintaining a unique set of prefixes for different classes should be relatively easy - have an enum somewhere, keeping track of the maximum prefix. And never reuse the old prefix numbers.
public enum MemcachePrefix {
DOGS(1),
CATS(2);
// Max: 2.
public final int value;
private MemcachePrefix (int value) {this.value = value;}
};
public class Dog {
static final MemcachePrefix MEMCACHE_PREFIX = MemcachePrefix.DOGS;
};
class Main {
public static void main (String[] args) {
Dog dog = new Dog();
System.out.println (dog.MEMCACHE_PREFIX);
}
}
There is also Namespaces. Instead of manually adding the prefix to the cache key you can use it as a namespace, letting GAE do the key manipulations for you.
Related
I am sorry for the vague question. I am not sure what I'm looking for here.
I have a Java class, let's call it Bar. In that class is an instance variable, let's call it foo. foo is a String.
foo cannot just have any value. There is a long list of strings, and foo must be one of them.
Then, for each of those strings in the list I would like the possibility to set some extra conditions as to whether that specific foo can belong in that specific type of Bar (depending on other instance variables in that same Bar).
What approach should I take here? Obviously, I could put the list of strings in a static class somewhere and upon calling setFoo(String s) check whether s is in that list. But that would not allow me to check for extra conditions - or I would need to put all that logic for every value of foo in the same method, which would get ugly quickly.
Is the solution to make several hundred classes for every possible value of foo and insert in each the respective (often trivial) logic to determine what types of Bar it fits? That doesn't sound right either.
What approach should I take here?
Here's a more concrete example, to make it more clear what I am looking for. Say there is a Furniture class, with a variable material, which can be lots of things, anything from mahogany to plywood. But there is another variable, upholstery, and you can make furniture containing cotton of plywood but not oak; satin furniture of oak but not walnut; other types of fabric go well with any material; et cetera.
I wouldn't suggest creating multiple classes/templates for such a big use case. This is very opinion based but I'll take a shot at answering as best as I can.
In such a case where your options can be numerous and you want to keep a maintainable code base, the best solution is to separate the values and the logic. I recommend that you store your foo values in a database. At the same time, keep your client code as clean and small as possible. So that it doesn't need to filter through the data to figure out which data is valid. You want to minimize dependency to data in your code. Think of it this way: tomorrow you might need to add a new material to your material list. Do you want to modify all your code for that? Or do you want to just add it to your database and everything magically works? Obviously the latter is a better option. Here is an example on how to design such a system. Of course, this can vary based on your use case or variables but it is a good guideline. The basic rule of thumb is: your code should have as little dependency to data as possible.
Let's say you want to create a Bar which has to have a certain foo. In this case, I would create a database for BARS which contains all the possible Bars. Example:
ID NAME FOO
1 Door 1,4,10
I will also create a database FOOS which contains the details of each foo. For example:
ID NAME PROPERTY1 PROPERTY2 ...
1 Oak Brown Soft
When you create a Bar:
Bar door = new Bar(Bar.DOOR);
in the constructor you would go to the BARS table and query the foos. Then you would query the FOOS table and load all the material and assign them to the field inside your new object.
This way whenever you create a Bar the material can be changed and loaded from DB without changing any code. You can add as many types of Bar as you can and change material properties as you goo. Your client code however doesn't change much.
You might ask why do we create a database for FOOS and refer to it's ids in the BARS table? This way, you can modify the properties of each foo as much as you want. Also you can share foos between Bars and vice versa but you only need to change the db once. cross referencing becomes a breeze. I hope this example explains the idea clearly.
You say:
Is the solution to make several hundred classes for every possible
value of foo and insert in each the respective (often trivial) logic
to determine what types of Bar it fits? That doesn't sound right
either.
Why not have separate classes for each type of Foo? Unless you need to define new types of Foo without changing the code you can model them as plain Java classes. You can go with enums as well but it does not really give you any advantage since you still need to update the enum when adding a new type of Foo.
In any case here is type safe approach that guarantees compile time checking of your rules:
public static interface Material{}
public static interface Upholstery{}
public static class Oak implements Material{}
public static class Plywood implements Material{}
public static class Cotton implements Upholstery{}
public static class Satin implements Upholstery{}
public static class Furniture<M extends Material, U extends Upholstery>{
private M matrerial = null;
private U upholstery = null;
public Furniture(M matrerial, U upholstery){
this.matrerial = matrerial;
this.upholstery = upholstery;
}
public M getMatrerial() {
return matrerial;
}
public U getUpholstery() {
return upholstery;
}
}
public static Furniture<Plywood, Cotton> cottonFurnitureWithPlywood(Plywood plywood, Cotton cotton){
return new Furniture<>(plywood, cotton);
}
public static Furniture<Oak, Satin> satinFurnitureWithOak(Oak oak, Satin satin){
return new Furniture<>(oak, satin);
}
It depends on what you really want to achieve. Creating objects and passing them around will not magically solve your domain-specific problems.
If you cannot think of any real behavior to add to your objects (except the validation), then it might make more sense to just store your data and read them into memory whenever you want. Even treat rules as data.
Here is an example:
public class Furniture {
String name;
Material material;
Upholstery upholstery;
//getters, setters, other behavior
public Furniture(String name, Material m, Upholstery u) {
//Read rule files from memory or disk and do all the checks
//Do not instantiate if validation does not pass
this.name = name;
material = m;
upholstery = u;
}
}
To specify rules, you will then create three plain text files (e.g. using csv format). File 1 will contain valid values for material, file 2 will contain valid values for upholstery, and file 3 will have a matrix format like the following:
upholstery\material plywood mahogany oak
cotton 1 0 1
satin 0 1 0
to check if a material goes with an upholstery or not, just check the corresponding row and column.
Alternatively, if you have lots of data, you can opt for a database system along with an ORM. Rule tables then can be join tables and come with extra nice features a DBMS may provide (like easy checking for duplicate values). The validation table could look something like:
MaterialID UpholsteryID Compatability_Score
plywood cotton 1
oak satin 0
The advantage of using this approach is that you quickly get a working application and you can decide what to do as you add new behavior to your application. And even if it gets way more complex in the future (new rules, new data types, etc) you can use something like the repository pattern to keep your data and business logic decoupled.
Notes about Enums:
Although the solution suggested by #Igwe Kalu solves the specific case described in the question, it is not scalable. What if you want to find what material goes with a given upholstery (the reverse case)? You will need to create another enum which does not add anything meaningful to the program, or add complex logic to your application.
This is a more detailed description of the idea I threw out there in the comment:
Keep Furniture a POJO, i.e., just hold the data, no behavior or rules implemented in it.
Implement the rules in separate classes, something along the lines of:
interface FurnitureRule {
void validate(Furniture furniture) throws FurnitureRuleException;
}
class ValidMaterialRule implements FurnitureRule {
// this you can load in whatever way suitable in your architecture -
// from enums, DB, an XML file, a JSON file, or inject via Spring, etc.
private Set<String> validMaterialNames;
#Overload
void validate(Furniture furniture) throws FurnitureRuleException {
if (!validMaterialNames.contains(furniture.getMaterial()))
throws new FurnitureRuleException("Invalid material " + furniture.getMaterial());
}
}
class UpholsteryRule implements FurnitureRule {
// Again however suitable to implement/config this
private Map<String, Set<String>> validMaterialsPerUpholstery;
#Overload
void validate(Furniture furniture) throws FurnitureRuleException {
Set<String> validMaterialNames = validMaterialsPerUpholstery.get(furniture.getUpholstery();
if (validMaterialNames != null && !validMaterialNames.contains(furniture.getMaterial()))
throws new FurnitureRuleException("Invalid material " + furniture.getMaterial() + " for upholstery " + furniture.getUpholstery());
}
}
// and more complex rules if you need to
Then have some service along the lines of FurnitureManager. It's the "gatekeeper" for all Furniture creation/updates:
class FurnitureManager {
// configure these via e.g. Spring.
private List<FurnitureRule> rules;
public void updateFurniture(Furniture furniture) throws FurnitureRuleException {
rules.forEach(rule -> rule.validate(furniture))
// proceed to persist `furniture` in the database or whatever else you do with a valid piece of furniture.
}
}
material should be of type Enum.
public enum Material {
MAHOGANY,
TEAK,
OAK,
...
}
Furthermore you can have a validator for Furniture that contains the logic which types of Furniture make sense, and then call that validator in every method that can change the material or upholstery variable (typically only your setters).
public class Furniture {
private Material material;
private Upholstery upholstery; //Could also be String depending on your needs of course
public void setMaterial(Material material) {
if (FurnitureValidator.isValidCombination(material, this.upholstery)) {
this.material = material;
}
}
...
private static class FurnitureValidator {
private static boolean isValidCombination(Material material, Upholstery upholstery) {
switch(material) {
case MAHOGANY: return upholstery != Upholstery.COTTON;
break;
//and so on
}
}
}
}
We often are oblivious of the power inherent in enum types. The Java™ Tutorials clearly states "you should use enum types any time you need to represent a fixed set of constants."
How do you simply make the best of enum in resolving the challenge you presented? - Here goes:
public enum Material {
MAHOGANY( "satin", "velvet" ),
PLYWOOD( "leather" ),
// possibly many other materials and their matching fabrics...
OAK( "some other fabric - 0" ),
WALNUT( "some other fabric - 0", "some other fabric - 1" );
private final String[] listOfSuitingFabrics;
Material( String... fabrics ) {
this.listOfSuitingFabrics = fabrics;
}
String[] getListOfSuitingFabrics() {
return Arrays.copyOf( listOfSuitingFabrics );
}
public String toString() {
return name().substring( 0, 1 ) + name().substring( 1 );
}
}
Let's test it:
public class TestMaterial {
for ( Material material : Material.values() ) {
System.out.println( material.toString() + " go well with " + material.getListOfSuitingFabrics() );
}
}
Probably the approach I'd use (because it involves the least amount of code and it's reasonably fast) is to "flatten" the hierarchical logic into a one-dimensional Set of allowed value combinations. Then when setting one of the fields, validate that the proposed new combination is valid. I'd probably just use a Set of concatenated Strings for simplicity. For the example you give above, something like this:
class Furniture {
private String wood;
private String upholstery;
/**
* Set of all acceptable values, with each combination as a String.
* Example value: "plywood:cotton"
*/
private static final Set<String> allowed = new HashSet<>();
/**
* Load allowed values in initializer.
*
* TODO: load allowed values from DB or config file
* instead of hard-wiring.
*/
static {
allowed.add("plywood:cotton");
...
}
public void setWood(String wood) {
if (!allowed.contains(wood + ":" + this.upholstery)) {
throw new IllegalArgumentException("bad combination of materials!");
}
this.wood = wood;
}
public void setUpholstery(String upholstery) {
if (!allowed.contains(this.wood + ":" + upholstery)) {
throw new IllegalArgumentException("bad combination of materials!");
}
this.upholstery = upholstery;
}
public void setMaterials(String wood, String upholstery) {
if (!allowed.contains(wood + ":" + upholstery)) {
throw new IllegalArgumentException("bad combination of materials!");
}
this.wood = wood;
this.upholstery = upholstery;
}
// getters
...
}
The disadvantage of this approach compared to other answers is that there is no compile-time type checking. For example, if you try to set the wood to plywoo instead of plywood you won’t know about your error until runtime. In practice this disadvantage is negligible since presumably the options will be chosen by a user through a UI (or through some other means), so you won’t know what they are until runtime anyway. Plus the big advantage is that the code will never have to be changed so long as you’re willing to maintain a list of allowed combinations externally. As someone with 30 years of development experience, take my word for it that this approach is far more maintainable.
With the above code, you'll need to use setMaterials before using setWood or setUpholstery, since the other field will still be null and therefore not an allowed combination. You can initialize the class's fields with default materials to avoid this if you want.
I'm trying to automate the testing process for customly written programs designed to solve competitive programming challenges. Below is a dummy sample implementation of Solution:
public class Solution {
private static String dummyField = "initial";
public static int initialize(InputStream in) {
//competitive programmer custom code
System.out.println(dummyField);
dummyField = "changed";
return subCaseCount;
}
public void processSingleSubCase(InputStream in) {
//competitive programmer custom code
}
}
Prewritten test code for solution regardless of its implementation:
public void testSolution() throws FileNotFoundException {
for(File testResource : testResources) {
InputStream in = new FileInputStream(testResource);
int subCaseCount = Foo.initialize(in);
for (int subCase = 0; subCase < subCaseCount; subCase++) {
new Foo().processSingleSubCase(in);
}
//magic call to re-init all static fields without knowing their number/names in advance goes here
}
//console current output:
//initial
//changed
//changed
//...
//desired:
//initial
//initial
//initial
//....
}
The static fields can be mutable, so caching the initial values and mapping them to field names using reflection as a first setup, then reassigning them in between iterations won't do.
I did manage to come up with a working solution which basically reloads the class using a different class loader in between iterations, it did work but was slow: it took about 50 seconds just to reload classes 300 times (test resources are auto generated and I'd like to have the flexibility to auto generate as many as tolerable).
Is there a faster alternative?
My two thoughts for how to do this are:
Use instances rather than statics, since that way the new instance for each test is fresh.
If you need (or want) to stick with statics: Prior to the first test, cache the static values, then reassign them from the cache between tests. If the static values are object references referring to mutable objects, you'll need to make deep copies.
I'm learning about Sets and Maps in the Introduction to Java Programming book by Daniel Liang. My professor has assigned a problem in the back of the chapter that asks me to create a program that:
Queries the user for input on name
Queries the user for gender
Using these two criteria, and this/these website(s): http://cs.armstrong.edu/liang/data/babynamesranking2001.txt
... http://cs.armstrong.edu/liang/data/babynamesranking2010.txt
I have to be able to get the ranking.
I'm supposed to get this information into an array of 10 maps.
Each map corresponds with a .txt file/year. This is where I'm having problems with. How do I do this?
The (Int) rank of the student is the value of the map, and the key is the name (String) of the baby.
The way I was thinking was to create an array of maps or maybe a list of them. So like:
List<Map<Int, String>> or <Map<Int, String>[] myArray;
Yet even after that the issue of how I get all of this information from the .txt file to my maps is a hard one for me.
This is what I've come up so far. I can't say I'm happy with it. It doesn't even work when I try to start reading information is because I haven't specified the size of my array.
public class BabyNamesAndPopularity
{
public static void main (String[] args) throws IOException
{
Map<Integer, String>[] arrayOfMaps;
String myURL = "cs.armstrong.edu/liang/data/babynamesranking2001.txt";
java.net.URL url = new java.net.URL(myURL);
Scanner urlInput = new Scanner (url.openStream());
while(urlInput.hasNext())
{
...
}
}
}
Would it be viable to make a set OF MAPS? I was kind of thinking it would be better to make a set OF maps because of the fact that sets expand as needed (according to the load factor). I just need some general guidance. Unfortunately the CS program at my university (Francis Marion University in Florence, SC) is VERY small and we don't have any tutors for this stuff.
This answer rather vague, because of broad nature of question, and it may be more suitable for
programmers SE site. Still, you may find these two points worth something.
Instead of thinking in terms of 'raw' compound collections, such as lists of maps of sets or such, try to invent set of domain types, which would reflect your problem domain, and, as the next step, implement these types using suitable Java collections or arrays.
Unit-testing and incremental refinement. Instead of immediately starting with access to remote data (via java.net.URL), start with static source of data. Idea here is to have 'reliable' and easily accessible input data hand, which would allow you to write unit tests easily and w/o access to network or even to file system, using set of domain types from 1st point, above. As you write unit tests you can invent necessary domain types/methods names in unit tests at first, then implement these types/methods, then make unit tests pass.
For example, you may start by writing following unit test (I assume you know how to organize your Java project in your IDE, so unit test(s) can be run properly):
public class SingleFileProcessingTest {
private static String[] fileRawData;
#BeforeClass
public static void fillRawData() {
fileRawData = new String[2];
// values are from my head, resembling format from links you've posted
fileRawData[0] = "Jacob\t20000\tEmily\t19999";
fileRawData[1] = "Michael\t18000\tMadison\t17000";
}
#Test
public void test() {
Rankings rankings = new Rankings();
rankings.process(fileRawData);
assertEquals("Jacob", rankings.getTop().getName());
assertEquals("Madison", rankings.getScorerOfPosition(4).getName());
assertEquals(18000, rankings.getScoreOf("Michael"));
assertEquals(4, rankings.getSize());
}
}
Of course, this won't even compile -- you need to type in code of Rankings class, code of class returned by getTop() or getScorerOfPosition(int) and so on. After you made this compile, you'll need to make test pass. But you get main idea here -- domain types and incremental refinement. And easily verifiable code w/o dependencies on file system or network. Just plain old java objects (POJOs). Code for working with external data sources can be added later on, after you get your POJOs right and make tests, which cover most parts of your use cases, pass.
UPDATE Actually, I've mixed up levels of abstraction in code above: proper Rankings class should not process raw data, this is better to be done in separate class, say, RankingsDataParser. With that, unit test, renamed to RankingsProcessingTest, will be:
public class RankingsProcessingTest {
#Test
public void test() {
Rankings rankings = new Rankings();
rankings.addScorer(new Scorer("Jacob", 20000));
rankings.addScorer(new Scorer("Emily", 19999));
rankings.addScorer(new Scorer("Michael", 18000));
rankings.addScorer(new Scorer("Madison", 17000));
assertEquals("Jacob", rankings.getTop().getName());
// assertEquals("Madison", rankings.getScorerOfPosition(4).getName());
// implementation of getScorerOfPosition(int) left as exercise :)
assertEquals(18000, rankings.getScoreOf("Michael"));
assertEquals(4, rankings.getSize());
}
}
With following initial implementation of Rankings and Scorer, this is actually compiles and passes:
class Scorer {
private final String name;
private final int rank;
Scorer(String name, int rank) {
this.name = name;
this.rank = rank;
}
public String getName() {
return name;
}
public int getRank() {
return rank;
}
}
class Rankings {
private final HashMap<String, Scorer> scorerByName = new HashMap<>();
private Scorer topScorer;
public Scorer getTop() {
return topScorer;
}
public void addScorer(Scorer scorer) {
if (scorerByName.get(scorer.getName()) != null)
throw new IllegalArgumentException("This version does not support duplicate names of scorers!");
if (topScorer == null || scorer.getRank() > topScorer.getRank()) {
topScorer = scorer;
}
scorerByName.put(scorer.getName(), scorer);
}
public int getSize() {
return scorerByName.size();
}
public int getScoreOf(String scorerName) {
return scorerByName.get(scorerName).getRank();
}
}
And unit test for parsing of raw data will start with following (how to download raw data should be responsibility of yet another class, to be developed and tested separately):
public class SingleFileProcessingTest {
private static String[] fileRawData;
#BeforeClass
public static void fillRawData() {
fileRawData = new String[2];
// values are from my head
fileRawData[0] = "Jacob\t20000\tEmily\t19999";
fileRawData[1] = "Michael\t18000\tMadison\t17000";
}
#Test
public void test() {
// uncomment, make compile, make pass
/*
RankingsDataParser parser = new RankingsDataParser();
parser.parse(fileRawData);
Rankings rankings = parser.getParsedRankings();
assertNotNull(rankings);
*/
}
}
There is a Sonar Violation:
Sonar Violation: Security - Array is stored directly
public void setMyArray(String[] myArray) {
this.myArray = myArray;
}
Solution:
public void setMyArray(String[] newMyArray) {
if(newMyArray == null) {
this.myArray = new String[0];
} else {
this.myArray = Arrays.copyOf(newMyArray, newMyArray.length);
}
}
But I wonder why ?
It's complaining that the array you're storing is the same array that is held by the caller. That is, if the caller subsequently modifies this array, the array stored in the object (and hence the object itself) will change.
The solution is to make a copy within the object when it gets passed. This is called defensive copying. A subsequent modification of the collection won't affect the array stored within the object.
It's also good practice to normally do this when returning a collection (e.g. in a corresponding getMyArray() call). Otherwise the receiver could perform a modification and affect the stored instance.
Note that this obviously applies to all mutable collections (and in fact all mutable objects) - not just arrays. Note also that this has a performance impact which needs to be assessed alongside other concerns.
It's called defensive copying. A nice article on the topic is "Whose object is it, anyway?" by Brian Goetz, which discusses difference between value and reference semantics for getters and setters.
Basically, the risk with reference semantics (without a copy) is that you erronously think you own the array, and when you modify it, you also modify other structures that have aliases to the array. You can find many information about defensive copying and problems related to object aliasing online.
I had the same issue:
Security - Array is stored directly The user-supplied array
'palomitas' is stored directly.
my original method:
public void setCheck(boolean[] palomitas) {
this.check=palomitas;
}
fixed turned to:
public void setCheck(boolean[] palomitas) {
if(palomitas == null) {
this.check = new boolean[0];
} else {
this.check = Arrays.copyOf(palomitas, palomitas.length);
}
}
Other Example:
Security - Array is stored directly The user-supplied array
private String[] arrString;
public ListaJorgeAdapter(String[] stringArg) {
arrString = stringArg;
}
Fixed:
public ListaJorgeAdapter(String[] stringArg) {
if(stringArg == null) {
this.arrString = new String[0];
} else {
this.arrString = Arrays.copyOf(stringArg, stringArg.length);
}
}
To eliminate them you have to clone the Array before storing / returning it as shown in the following class implementation, so noone can modify or get the original data of your class but only a copy of them.
public byte[] getarrString() {
return arrString.clone();
}
/**
* #param arrStringthe arrString to set
*/
public void arrString(byte[] arrString) {
this.arrString= arrString.clone();
}
I used it like this and Now I am not getting any SONAR violation...
It's more ease than all of this. You only need to rename the method parameter to anything else to avoid Sonar violations.
http://osdir.com/ml/java-sonar-general/2012-01/msg00223.html
public void setInventoryClassId(String[] newInventoryClassId)
{
if(newInventoryClassId == null)
{
this.inventoryClassId = new String[0];
}
else
{
this.inventoryClassId = Arrays.copyOf(newInventoryClassId, newInventoryClassId.length);
}
}
To go the defensive-implementation-way can save you a lot of time.
In Guava you get another nice solution to reach the goal: ImmutableCollections
http://code.google.com/p/guava-libraries/wiki/ImmutableCollectionsExplained
There are certain cases where it is a design decision and not missed out. In these cases, you need to modify the Sonar rules to exclude it so that it doesn't show such issues in report.
The problem: Maintain a bidirectional many-to-one relationship among java objects.
Something like the Google/Commons Collections bidi maps, but I want to allow duplicate values on the forward side, and have sets of the forward keys as the reverse side values.
Used something like this:
// maintaining disjoint areas on a gameboard. Location is a space on the
// gameboard; Regions refer to disjoint collections of Locations.
MagicalManyToOneMap<Location, Region> forward = // the game universe
Map<Region, <Set<Location>>> inverse = forward.getInverse(); // live, not a copy
Location parkplace = Game.chooseSomeLocation(...);
Region mine = forward.get(parkplace); // assume !null; should be O(log n)
Region other = Game.getSomeOtherRegion(...);
// moving a Location from one Region to another:
forward.put(parkplace, other);
// or equivalently:
inverse.get(other).add(parkplace); // should also be O(log n) or so
// expected consistency:
assert ! inverse.get(mine).contains(parkplace);
assert forward.get(parkplace) == other;
// and this should be fast, not iterate every possible location just to filter for mine:
for (Location l : mine) { /* do something clever */ }
The simple java approaches are: 1. To maintain only one side of the relationship, either as a Map<Location, Region> or a Map<Region, Set<Location>>, and collect the inverse relationship by iteration when needed; Or, 2. To make a wrapper that maintains both sides' Maps, and intercept all mutating calls to keep both sides in sync.
1 is O(n) instead of O(log n), which is becoming a problem. I started in on 2 and was in the weeds straightaway. (Know how many different ways there are to alter a Map entry?)
This is almost trivial in the sql world (Location table gets an indexed RegionID column). Is there something obvious I'm missing that makes it trivial for normal objects?
I might misunderstand your model, but if your Location and Region have correct equals() and hashCode() implemented, then the set of Location -> Region is just a classical simple Map implementation (multiple distinct keys can point to the same object value). The Region -> Set of Location is a Multimap (available in Google Coll.). You could compose your own class with the proper add/remove methods to manipulate both submaps.
Maybe an overkill, but you could also use in-memory sql server (HSQLDB, etc). It allows you to create index on many columns.
I think you could achieve what you need with the following two classes. While it does involve two maps, they are not exposed to the outside world, so there shouldn't be a way for them to get out of sync. As for storing the same "fact" twice, I don't think you'll get around that in any efficient implementation, whether the fact is stored twice explicitly as it is here, or implicitly as it would be when your database creates an index to make joins more efficient on your 2 tables. you can add new things to the magicset and it will update both mappings, or you can add things to the magicmapper, which will then update the inverse map auotmatically. The girlfriend is calling me to bed now so I cannot run this through a compiler - it should be enough to get you started. what puzzle are you trying to solve?
public class MagicSet<L> {
private Map<L,R> forward;
private R r;
private Set<L> set;
public MagicSet<L>(Map forward, R r) {
this.forward = map;
this.r = r;
this.set = new HashSet<L>();
}
public void add(L l) {
set.add(l);
forward.put(l,r);
}
public void remove(L l) {
set.remove(l);
forward.remove(l);
}
public int size() {
return set.size();
}
public in contains(L l){
return set.contains(l);
}
// caution, do not use the remove method from this iterator. if this class was going
// to be reused often you would want to return a wrapped iterator that handled the remove method properly. In fact, if you did that, i think you could then extend AbstractSet and MagicSet would then fully implement java.util.Set.
public Iterator iterator() {
return set.iterator();
}
}
public class MagicMapper<L,R> { // note that it doesn't implement Map, though it could with some extra work. I don't get the impression you need that though.
private Map<L,R> forward;
private Map<R,MagicSet<L>> inverse;
public MagicMapper<L,R>() {
forward = new HashMap<L,R>;
inverse = new HashMap<R,<MagicSet<L>>;
}
public R getForward(L key) {
return forward.get(key);
}
public Set<L> getBackward(R key) {
return inverse.get(key); // this assumes you want a null if
// you try to use a key that has no mapping. otherwise you'd return a blank MagicSet
}
public void put (L l, R r) {
R oldVal = forward.get(l);
// if the L had already belonged to an R, we need to undo that mapping
MagicSet<L> oldSet = inverse.get(oldVal);
if (oldSet != null) {oldSet.remove(l);}
// now get the set the R belongs to, and add it.
MagicSet<L> newSet = inverse.get(l);
if (newSet == null) {
newSet = new MagicSet<L>(forward, r);
inverse.put(r,newSet);
}
newSet.add(l); // magically updates the "forward" map
}
}