Checking 2 arrays to see if they have the same values? - java

I would like to compare two arrays to see if they have the same values.
If I have a array called
public static float data[][]
which holds Y coordinates of a terrain, how can I check that array with another
public static int coords[][]
without iterating through all the coordinates?
Both arrays have over 1000 values in them. Iterating through them is not an option, since I must iterate through them over four times per second.
I am doing this to attempt to find if two objects are colliding. I have attempted using libraries for this, however I cannot find per-coordinate collision detection as specific as I need it.
Edit: Why I am unable to just iterate through this small amount of vertices is this.
The problem is, this is a MultiPlayer game,and I would have to iterate through all 1000 coordinates for every player. Meaning that just 10 players online is 10,000 100 online is 100,000. You can see how easily that would lag or at least take up a large percentage of the CPU.
Input of coordinates into the "Data" variable:
try {
// Load the heightmap-image from its resource file
BufferedImage heightmapImage = ImageIO.read(new File(
"res/images/heightmap.bmp"));
//width = heightmapImage.getWidth();
//height = heightmapImage.getHeight();
BufferedImage heightmapColour = ImageIO.read(new File(
"res/images/colours.bmp"));
// Initialise the data array, which holds the heights of the
// heightmap-vertices, with the correct dimensions
data = new float[heightmapImage.getWidth()][heightmapImage
.getHeight()];
// collide = new int[heightmapImage.getWidth()][50][heightmapImage.getHeight()];
red = new float[heightmapColour.getWidth()][heightmapColour
.getHeight()];
blue = new float[heightmapColour.getWidth()][heightmapColour
.getHeight()];
green = new float[heightmapColour.getWidth()][heightmapColour
.getHeight()];
// Lazily initialise the convenience class for extracting the
// separate red, green, blue, or alpha channels
// an int in the default RGB color model and default sRGB
// colourspace.
Color colour;
Color colours;
// Iterate over the pixels in the image on the x-axis
for (int z = 0; z < data.length; z++) {
// Iterate over the pixels in the image on the y-axis
for (int x = 0; x < data[z].length; x++) {
colour = new Color(heightmapImage.getRGB(z, x));
data[z][x] = setHeight;
}
}
}catch (Exception e){
e.printStackTrace();
System.exit(1);
}
And how coordinates are put into the "coords" variable (Oh wait, it was called "Ship", not coords. I forgot that):
try{
File f = new File("res/images/coords.txt");
String coords = readTextFile(f.getAbsolutePath());
for (int i = 0; i < coords.length();){
int i1 = i;
for (; i1 < coords.length(); i1++){
if (String.valueOf(coords.charAt(i1)).contains(",")){
break;
}
}
String x = coords.substring(i, i1).replace(",", "");
i = i1;
i1 = i + 1;
for (; i1 < coords.length(); i1++){
if (String.valueOf(coords.charAt(i1)).contains(",")){
break;
}
}
String y = coords.substring(i, i1).replace(",", "");;
i = i1;
i1 = i + 1;
for (; i1 < coords.length(); i1++){
if (String.valueOf(coords.charAt(i1)).contains(",")){
break;
}
}
String z = coords.substring(i, i1).replace(",", "");;
i = i1 + 1;
//buildx.append(String.valueOf(coords.charAt(i)));
////System.out.println(x);
////System.out.println(y);
////System.out.println(z);
//x = String.valueOf((int)Double.parseDouble(x));
//y = String.valueOf((int)Double.parseDouble(y));
//z = String.valueOf((int)Double.parseDouble(z));
double sx = Double.valueOf(x);
double sy = Double.valueOf(y);
double sz = Double.valueOf(z);
javax.vecmath.Vector3f cor = new javax.vecmath.Vector3f(Float.parseFloat(x), Float.parseFloat(y), Float.parseFloat(z));
//if (!arr.contains(cor)){
if (cor.y > 0)
arr.add(new javax.vecmath.Vector3f(cor));
if (!ship.contains(new Vector3f((int) sx, (int) sy, (int) sz)))
ship.add(new Vector3f((int) sx, (int) sy, (int) sz));
// arr.add(new javax.vecmath.Vector3f(Float.parseFloat(x), Float.parseFloat(y), Float.parseFloat(z)));
}
Thanks!

You can do like this but only applicable for same data type.
Arrays.deepEquals(data, coords);
For single dimension Array you can use this
Arrays.equals(array1, array1);

Arrays.deepEquals(a, b);
Try this but this will work only if the elements are in order.

No way around it, I'm afraid. Comparing data sets to see if they are identical demands looking at all elements, by definition. On a side note, comparing 1000 values is nothing even on relatively old hardware. You can do it thousands of time per second.

Related

Java geotools how to create coverage grid

How to create grid coverage when each cell is 5M ?
I found this :
GridCoverage2D coverage = reader.read(null);
// direct access
DirectPosition position = new DirectPosition2D(crs, x, y);
double[] sample = (double[]) coverage.evaluate(position); // assume double
// resample with the same array
sample = coverage.evaluate(position, sample);
Source : https://docs.geotools.org/latest/userguide/library/coverage/grid.html
I didn't found a lot of tutorial about how to create grid coverage on geotools...
To create an empty coverage you need to use the GridCoverageFactory and one of the create methods. Since you are not constructing from an existing image you need to provide some memory for your raster to be stored in (this can also hold any initial values you want). For this your choices are a float[][] or a WritableRaster. Finally, you need a Envelope to say where the coverage is and what it's resolution is (otherwise it is just an array of numbers), I favour using a ReferencedEnvelope so that I know what the units are etc, so in the example below I have used EPSG:27700 which is the OSGB national grid so I know that it is in metres and I can define the origin somewhere in the South Downs. By specifying the lower left X and Y coordinates and the upper right X and Y as resolution times the width and height (plus the lower left corner) the maths all works out to make sure that the size of my pixels is resolution.
So keeping it simple for now you could do something like:
float[][] data;
int width = 100;
int height = 200;
data = new float[width][height];
int resolution = 5;
for(int i=0;i<width;i++){
for(int j=0;j<height;j++ ){
data[i][j] = 0.0f;
}
}
GridCoverageFactory gcf = new GridCoverageFactory();
CoordinateReferenceSystem crs = CRS.decode("EPSG:27700");
int llx = 500000;
int lly = 105000;
ReferencedEnvelope referencedEnvelope = new ReferencedEnvelope(llx, llx + (width * resolution), lly, lly + (height * resolution),
crs);
GridCoverage2D gc = gcf.create("name", data, referencedEnvelope);
If you want more bands in your coverage then you need to use a WriteableRaster as the base for your coverage.
WritableRaster raster2 = RasterFactory.createBandedRaster(java.awt.image.DataBuffer.TYPE_INT, width,
height, 3, null);
for (int i = 0; i < width; i++) {//width...
for (int j = 0; j < height; j++) {
raster2.setSample(i, j, 0, rn.nextInt(200));
raster2.setSample(i, j, 1, rn.nextInt(200));
raster2.setSample(i, j, 2, rn.nextInt(200));
}
}

ArUco Axis Swap while drawing 3dAxis

I'm currently trying to develop a ArUco cube detector for a project. The goal is to have a more stable and accurate pose estimation without using a large ArUco board. For this to work however, I need to know the orientation of each of the markers. Using the draw3dAxis method, I discovered that the X and Y axis did not consistently appear in the same location. Here is a video demonstrating the issue: https://youtu.be/gS7BWKm2nmg
It seems to be a problem with the Rvec detection. There is a clear shift in the first two values of the Rvec, which will stay fairly consistent until the axis swaps. When this axis swap happens the values can change by a magnitude anywhere from 2-6. The ARuco library does try to deal with rotations as shown in the Marker.calculateMarkerId() method:
/**
* Return the id read in the code inside a marker. Each marker is divided into 7x7 regions
* of which the inner 5x5 contain info, the border should always be black. This function
* assumes that the code has been extracted previously.
* #return the id of the marker
*/
protected int calculateMarkerId(){
// check all the rotations of code
Code[] rotations = new Code[4];
rotations[0] = code;
int[] dists = new int[4];
dists[0] = hammDist(rotations[0]);
int[] minDist = {dists[0],0};
for(int i=1;i<4;i++){
// rotate
rotations[i] = Code.rotate(rotations[i-1]);
dists[i] = hammDist(rotations[i]);
if(dists[i] < minDist[0]){
minDist[0] = dists[i];
minDist[1] = i;
}
}
this.rotations = minDist[1];
if(minDist[0] != 0){
return -1; // matching id not found
}
else{
this.id = mat2id(rotations[minDist[1]]);
}
return id;
}
and the MarkerDetector.detect() does call that method and uses the getRotations() Method:
// identify the markers
for(int i=0;i<nCandidates;i++){
if(toRemove.get(i) == 0){
Marker marker = candidateMarkers.get(i);
Mat canonicalMarker = new Mat();
warp(in, canonicalMarker, new Size(50,50), marker.toList());
marker.setMat(canonicalMarker);
marker.extractCode();
if(marker.checkBorder()){
int id = marker.calculateMarkerId();
if(id != -1){
// rotate the points of the marker so they are always in the same order no matter the camera orientation
Collections.rotate(marker.toList(), 4-marker.getRotations());
newMarkers.add(marker);
}
}
}
}
The full source code for the ArUco library is here: https://github.com/sidberg/aruco-android/blob/master/Aruco/src/es/ava/aruco/MarkerDetector.java
If anyone has any advice or solutions I'd be very gracious. Please contact me if you have any questions.
I did find the problem. It turns out that the Marker Class has a rotation variable that can be used to rotate the axis to align with the orientation of the marker. I wrote the following method in the Utils class:
protected static void alignToId(Mat rotation, int codeRotation) {
//get the matrix corresponding to the rotation vector
Mat R = new Mat(3, 3, CvType.CV_64FC1);
Calib3d.Rodrigues(rotation, R);
codeRotation += 1;
//create the matrix to rotate around Z Axis
double[] rot = {
Math.cos(Math.toRadians(90) * codeRotation), -Math.sin(Math.toRadians(90) * codeRotation), 0,
Math.sin(Math.toRadians(90) * codeRotation), Math.cos(Math.toRadians(90) * codeRotation), 0,
0, 0, 1
};
// multiply both matrix
Mat res = new Mat(3, 3, CvType.CV_64FC1);
double[] prod = new double[9];
double[] a = new double[9];
R.get(0, 0, a);
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++) {
prod[3 * i + j] = 0;
for (int k = 0; k < 3; k++) {
prod[3 * i + j] += a[3 * i + k] * rot[3 * k + j];
}
}
// convert the matrix to a vector with rodrigues back
res.put(0, 0, prod);
Calib3d.Rodrigues(res, rotation);
}
and I called it from the Marker.calculateExtrinsics Method:
Utils.alignToId(Rvec, this.getRotations());

How can I effectively implement collision for a 2D game?

I just started a new 2D game using Java, LWJGL, and Slick Util but I can't seem to figure out a good way to make collision detection.
If I wanted to, it would be easy to detect collision between 2 entities with the Rectangle intersect method, but it can only check the collision with a certain area you specify.
I have thought that I could make a list of every entity and its coordinates as its created and then run the intersect method through the list, but then it would check for collision with every entity on the entire map for every time the game updated and I think that would be too inefficient.
Does anyone know a more efficient way to create collision detection? If there was some way i could check if there was an entity at every point the character moved that would probably be the best.
If I have not enough information or I made this sound too confusing please tell me and I can try to clarify things. Also as a side question, what are the benefits of using slick util or slick 2D over one another. Thanks for the help!
The usual way to solve this is a scene graph, a hierarchical system of the objects of the game world.
You might want to look at this and this.
Shortened: you logically group your objects under nodes and assign the nodes a bounding rectangle that encompasses all its sub-nodes and leaves(objects). Everything is grouped again under one main node to access the tree. Now you can test a object for collision with a node, usually starting from the main node. If you get a hit you check its sub-nodes and leaves.
This will take some time to implement but can cut down on CPU usage if the tree structure/grouping is done right. It has also the benefit that you can implement local transforms which makes moving objects relative to each other easier.
Because I hate "The usual way", I made an array of all the coordinates and then checked if a single point hit the coordinate.
Here is a slight modification of my code to demonstrate (It is in 3D):
for (CannonBall can : GameServer.ballss){ //Go through all cannonballs
if (can.owner != cl){ //Can.owner is the ship, cl is the player the cannonball is being checked with to see if colliding.
int distancex = (int) (can.x - cl.z);
int distancez = (int) (can.z - cl.x);
final int distancey = (int) (can.y - cl.y);
double xRot = Math.cos(Math.toRadians(cl.rotation)) * (distancex - 0) - Math.sin(Math.toRadians(cl.rotation)) * (distancez - 0) + 0;
double zRot = Math.sin(Math.toRadians(cl.rotation)) * (distancex - 0) - Math.cos(Math.toRadians(cl.rotation)) * (distancez - 0) + 0;
distancex = (int) xRot;
distancez = (int) zRot;
try{
if (true){ //Skip different coordinates for different ships for demonstration purposes
i = GameServer.coords[GameServer.DELTA + distancex][GameServer.DELTA + distancez][GameServer.DELTA + (distancey)];
}
if (i == 1){
if (can.owner != cl){
remcan.add(can);
if (can.type == 0){
double damage = (100 + Math.random()*25);
if (cl.type == 1){
damage/=2;
}
if (cl.type == 2){
damage*=2;
}
cl.damage-=damage;
}
if (can.type == 1){
double damage = (Math.random() * 500);
if (cl.type == 1){
damage/=2;
}
if (cl.type == 2){
damage*=2;
}
cl.damage-=damage;
}else{
double damage = (100 + Math.random()*25);
if (cl.type == 1){
damage/=2;
}
if (cl.type == 2){
damage*=2;
}
cl.damage-=damage;
}
crash = true;
if (cl.damage < 1){
if (!cl.sinking){
cl.sinking = true;
}
}
}
}
}catch (Exception e){
e.printStackTrace();
}
}
GameServer.coords is an int[][][], which is given coordinates like so:
public static int[][][] coords;
public void CollisionSetup(){
try{
File f = new File("res/coords.txt");
String coords = readTextFile(f.getAbsolutePath());
for (int i = 0; i < coords.length();){
int i1 = i;
for (; i1 < coords.length(); i1++){
if (String.valueOf(coords.charAt(i1)).contains(",")){
break;
}
}
String x = coords.substring(i, i1).replace(",", "");
i = i1;
i1 = i + 1;
for (; i1 < coords.length(); i1++){
if (String.valueOf(coords.charAt(i1)).contains(",")){
break;
}
}
String y = coords.substring(i, i1).replace(",", "");;
i = i1;
i1 = i + 1;
for (; i1 < coords.length(); i1++){
if (String.valueOf(coords.charAt(i1)).contains(",")){
break;
}
}
String z = coords.substring(i, i1).replace(",", "");;
i = i1 + 1;
//buildx.append(String.valueOf(coords.charAt(i)));
////System.out.println(x);
////System.out.println(y);
////System.out.println(z);
//x = String.valueOf((int)Double.parseDouble(x));
//y = String.valueOf((int)Double.parseDouble(y));
//z = String.valueOf((int)Double.parseDouble(z));
double sx = Double.valueOf(x);
double sy = Double.valueOf(y);
double sz = Double.valueOf(z);
javax.vecmath.Vector3f cor = new javax.vecmath.Vector3f(Float.parseFloat(x), Float.parseFloat(y), Float.parseFloat(z));
//if (!arr.contains(cor)){
if (cor.y > 0)
arr.add(new javax.vecmath.Vector3f(cor));
if (!ship.contains(new Vector3f((int) sx, (int) sy, (int) sz)))
ship.add(new Vector3f((int) sx, (int) sy, (int) sz));
Float.parseFloat(z)));
}
}
public void setUpPhysics() {
//coords = new int[20][20];
coords = new int[80][80][80];
coords1 = new int[80][80];
//coords[-5 + DELTA][7 + DELTA] = 11;
for (javax.vecmath.Vector3f vec : arr){
coords[DELTA+(int) vec.x][DELTA+(int) vec.z][DELTA + (int) vec.y] = 1; //This is line 124
coords1[DELTA+(int) vec.x][DELTA+(int) vec.z] = 1;
}
}
Though it has limitations on collision interaction, it works for cannonballs colliding with a ship and checking the front of a ship to see if it has hit another ship. Also, it uses barely any CPU.
No idea on the opinions of other programmers on such a method.

Slow map in java

I'm making a game in java, is a rpg, however, only with the map the game is slow.
The map is made ​​in TiledMap Editor, therefore, an XML that is read and loaded into an ArrayList. My PC is a dual-core 3.0, 4GB RAM, 1GB Video.
The do the rendering is done as follows:
//method of tileset class
public void loadTileset(){
positions = new int[1 + tilesX * tilesY][2];
int yy = 0;
int xx = 0;
int index = 0;
// save the initial x and y point of each tile in an array named positions
// positions[tileNumber] [0] - X position
// positions[tileNumber] [1] - Y position
for(int i = 1 ; i < positions.length; i++){
if(index == tilesX ){
yy += tileHeight;
xx = 0;
index = 0;
}
positions[i][0] = xx;
positions[i][1] = yy;
xx += tileWidth;
index++;
}
}
//method of map class
public void draw(Graphics2D screen){
//x and y position of each tile on the screen
int x = 0; int y = 0;
for(int j = 0; j < 20 ; j++){
for(int i = initialTile ; i < initialTile + quantTiles ; i++){
int tile = map[j][i];
if(tile != 0){
screen.drawImage(tileSet.getTileImage().getSubimage(tileSet.getTileX(tile), tileSet.getTileY(tile),tileSet.getTileWidth(), tileSet.getTileHeight()),x,y,null);
}
x += tileSet.getTileWidth();
}
x = 0;
y += tileSet.getTileHeight();
}
}
Am I doing something wrong?
Note: I'm new to the forum and to make matters worse I do not understand very much English, so excuse any mistake.
First of all, you should not create the subimages for the tiles during each call. Strictly speaking, you should not call getSubimage at all for images that you want to paint: It will make the image "unmanaged", and this can degrade rendering performance by an order of magnitude. You should only call getSubimage for images that you do not want to render - for example, when you are initially creating individual images for the tiles.
You obviously already have a TileSet class. You could add a bit of functionality to this class so that you can directly access images for the tiles.
Your current code looks like this:
screen.drawImage(
tileSet.getTileImage().getSubimage(
tileSet.getTileX(tile),
tileSet.getTileY(tile),
tileSet.getTileWidth(),
tileSet.getTileHeight()),
x,y,null);
You could change it to look like this:
screen.drawImage(tileSet.getTileImage(tile), x,y,null);
The getTileImage(int tile) method suggested here could then obtain tiles that have been stored internally.
I'll sketch a few lines of code from the tip of my head, you'll probably be able to transfer this into your TileSet class:
class TileSet
{
private Map<Integer, BufferedImage> tileImages;
TileSet()
{
....
prepareTileImages();
}
private void prepareTileImages()
{
tileImages = new HashMap<Integer, BufferedImage>();
for (int tile : allPossibleTileValuesThatMayBeInTheMap)
{
// These are the tiles that you originally rendered
// in your "draw"-Method
BufferedImage image =
getTileImage().getSubimage(
getTileX(tile),
getTileY(tile),
getTileWidth(),
getTileHeight());
// Create a new, managed copy of the image,
// and store it in the map
BufferedImage managedImage = convertToARGB(image);
tileImages.put(tile, managedImage);
}
}
private static BufferedImage convertToARGB(BufferedImage image)
{
BufferedImage newImage = new BufferedImage(
image.getWidth(), image.getHeight(),
BufferedImage.TYPE_INT_ARGB);
Graphics2D g = newImage.createGraphics();
g.drawImage(image, 0, 0, null);
g.dispose();
return newImage;
}
// This is the new method: For a given "tile" value
// that you found at map[x][y], this returns the
// appropriate tile:
public BufferedImage getTileImage(int tile)
{
return tileImages.get(tile);
}
}

Check if an array of points is inside an array of rectangles?

I have a list of vertices and a list of regions (which are square/rectangle) shaped. Vertex has x and y coordinates, and a region has (x, y, height and width). How can I efficiently check which vertex lies in which region for every vertex/region?
EDIT:
This is the code I wrote to do this.
if (!g.getVertices().isEmpty()) {
for (int i = 0; i < g.getVertices().size(); i++) {
Vertex v = g.getVertices().get(i);
Point vertexPoint = new Point(v.getX(), v.getY());
for (int j = 0; j < g.getNumberOfRegions(); j++) {
int x = g.getRegions().get(j).getX();
int y = g.getRegions().get(j).getY();
int height = g.getRegions().get(j).getHeight();
int width = g.getRegions().get(j).getWidth();
Grid regionGrid = new Grid(j+1, x, y, height, width);
Rectangle regionRectangle = new Rectangle(x, y, height, width);
if (regionRectangle.contains(vertexPoint)) {
System.out.println("Vertex " + v + " lies inside region " + regionGrid.getRegionID());
}
}
}
}
EDIT 2: I used this to generate the regions, but I need a way to assign each region in the grid a regionID from left to right. For example:
1 - 2 - 3
4 - 5 - 6
7 - 8 - 9
for a 3x3 grid. At the moment it is in the following form:
1 - 1 - 1
2 - 2 - 2
3 - 3 - 3
for (int i = 0; i < rowValue; i++) {
for (int j = 0; j < columnValue; j++) {
Grid r = new Grid(0, 20 + i * size, 20 + j * size, size, size);
r.setRegionID(j + 1);
g.addRegion(r);
}
}
checking if a vertex is inside a square or a circle can be done in O(1). you can do it with library function or elementary math. so the works algorithm you can create is O(#vertices * #regions). you can try to optimise by sorting the vertices and regions by X-axis and then by Y-axis and try to eliminate checking that for sure return false. but seems that in pessimistic scenario you will still have O(#vertices * #regions) time.
You can probably use the Core Java libraries itself:
List<Rectangle2D.Double> rectangles = Arrays.asList(
new Rectangle2D.Double(0d, 0d, 100d, 100d),
new Rectangle2D.Double(100d, 0d, 100d, 100d),
new Rectangle2D.Double(0d, 100d, 100d, 100d),
new Rectangle2D.Double(100d, 100d, 100d, 100d));
Point2D.Double aPoint = new Point2D.Double(30d, 40d);
for (Rectangle2D.Double rectangle:rectangles){
if (rectangle.contains(aPoint)){
System.out.println(rectangle + " has the point " + aPoint);
}
}
Working with plane geometry is extremely easy while using JTS. You can try convert the objects you are using to JTS-specific.

Categories