I am using java.util.concurrent.Executors and java.util.concurrent.ExecutorService to execute parallel threads. Please let me know how to capture Time taken for complete all threads.
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class CallBackTest {
private static int NUM_OF_TASKS = 50;
Object result;
int cnt = 0;
long begTest, endTest;
public CallBackTest() { }
public void callBack(Object result) {
System.out.println("result "+result);
this.result = result;
}
public void run() {
ExecutorService es = Executors.newFixedThreadPool(50);
for(int i = 0; i < NUM_OF_TASKS; i++) {
CallBackTask task = new CallBackTask(i);
task.setCaller(this);
es.submit(task);
// at this point after submitting the tasks the
// main thread is free to perform other work.
}
}
public static void main(String[] args) {
new CallBackTest().run();
}
}
Create Simple Task as
public class SimpleTask implements Runnable {
AtomicLong totalTime;
public SimpleTask(AtomicLong totalTime) {
this.totalTime = totalTime;
}
#Override
public void run() {
long currentTime = System.nanoTime();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
totalTime.addAndGet(System.nanoTime()-currentTime);
}
}
// Main Pass AtomicLong to each task to capture the time taken for that thread. and sum it to the same instance. AtomicLong is thread safe.
AtomicLong totalTime = new AtomicLong(0);
long currentTime = System.nanoTime();
ExecutorService executor = Executors.newFixedThreadPool(numberofThread);
for (int i = 0; i < numberofTasks; i++) {
SimpleTask task = new SimpleTask(totalTime);
executor.submit(task);
}
executor.shutdown();
// Wait until all the threads completed.
try {
executor.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
} catch (InterruptedException e) {}
// Calculate the time
System.out.println("Overall time"+ (System.nanoTime()-currentTime));
// Get the value from Atomic Long
System.out.println("All Threads Spent time"+ totalTime);
Related
I have a bunch of threads that spawn somewhat arbitrarily. When they are racing each other, only the one that spawned last is relevant. The other threads can be thrown away or stopped. But I am not sure how to do that, so I have implemented a very basic counter that checks whether the thread is the latest spawned thread.
edit: I would like to be able to kill threads that are taking too long (as they are no longer necessary); probably not from within the threads themselves as they are busy doing something else.
This code works, it seems. But it doesn't feel robust. Can someone give me a hint toward a proper way to do this?
class Main {
private static volatile int latestThread = 0;
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
spawnThread();
}
}
private static void spawnThread() {
latestThread++;
int thisThread = latestThread;
new Thread(() -> {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
if (latestThread == thisThread) {
// only the latest "active" thread is relevant
System.out.println("I am the latest thread! " + thisThread);
}
}).start();
}
}
output:
I am the latest thread! 10
code in replit.com
ThreadPoolExecutor is almost what I need, specifically DiscardOldestPolicy. You can set the queue size to 1, so one thread is running and one thread is in the queue, and the oldest in the queue just gets shunted. Clean!
But it finishes two threads (not only the latest), which is not 100% what I was looking for. Although arguably good enough:
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
public class DiscardOldest {
private static int threadCounter = 1;
public static void main(String[] args) throws InterruptedException {
int poolSize = 0;
int maxPoolSize = 1;
int queueSize = 1;
long aliveTime = 1000;
ArrayBlockingQueue<Runnable> queue = new ArrayBlockingQueue<>(queueSize);
ThreadPoolExecutor executor = new ThreadPoolExecutor(poolSize, maxPoolSize, aliveTime, TimeUnit.MILLISECONDS, queue, new ThreadPoolExecutor.DiscardOldestPolicy());
for (int i = 0; i < 4; i++) {
spawnThread(executor);
}
}
private static void spawnThread(ThreadPoolExecutor executor) {
final int thisThread = threadCounter++;
System.out.println(thisThread + " spawning");
executor.execute(() -> {
try {
Thread.sleep(100);
System.out.println(thisThread + " finished!");
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
}
Ouput:
1 spawning
2 spawning
3 spawning
4 spawning
1 finished!
4 finished!
Rather than relaying on an index, a born time could be set. If there's a younger thread (was born later) the thread should terminate its execution.
public class Last {
private static volatile long latestThread = 0L;
/**
* #param args
*/
public static void main(String[] args) {
for (int i = 0; i < 3; i++) {
spawnThread(System.nanoTime(), i);
}
}
private static void spawnThread(long startTime, int index) {
new Thread(() -> {
latestThread = startTime;
long thisThread = startTime;
boolean die = false;
try {
while (!die) {
Thread.sleep(1);
if (thisThread < latestThread) {
System.out.println(
index + ": I am not the latest thread :-(\n\t" + thisThread + "\n\t" + latestThread);
die = true;
} else if (thisThread == latestThread) {
System.out.println(
index + ": Yes! This is the latest thread!\n\t" + thisThread + "\n\t" + latestThread);
Thread.sleep(1);
System.out.println("Bye!");
die = true;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
}
}
Result:
0: I am not the latest thread :-(
39667589567880
39667602317461
2: Yes! This is the latest thread!
39667602317461
39667602317461
1: I am not the latest thread :-(
39667602257160
39667602317461
Bye!
I did a little research based on comments from everybody (thanks!) and ThreadPoolExecutor is almost what I need, but I want a pool with the total size of 1 (no queue) that kills the active thread once a new thread comes along, which is not allowed in a thread pool and not in line with what a ThreadPool is for. So instead, I came up with a reference to the active thread, and when a new thread comes a long it kills the old one, which seems to do what I want:
import java.util.concurrent.atomic.AtomicInteger;
public class Interrupt {
private static final AtomicInteger CURRENT_THREAD = new AtomicInteger(0);
private static Thread activeThread = new Thread(() -> {});
public static void main(String[] args) throws InterruptedException {
for (int i = 0; i < 4; i++) {
spawnThread();
Thread.sleep(3);
}
}
private static void spawnThread() {
if (activeThread.isAlive()) {
activeThread.interrupt();
}
activeThread = new Thread(() -> {
int thisThread = CURRENT_THREAD.incrementAndGet();
System.out.println(thisThread + " working");
try {
Thread.sleep(1000);
System.out.println(thisThread + " finished!");
} catch (InterruptedException ignored) {}
});
activeThread.start();
}
}
Output:
3 working
2 working
1 working
4 working
4 finished!
The code below randomly freezing.
The queue is pre-filled at the start and only taken from after the threads start taking items from it.
I think I'm not using the queue properly. Despite the isEmpty() check, the queue might be empty when one thread tries to take one item, making it to wait indefinitely.
#Override
public void run() {
long milisecs;
try {
while ( ! queue.isEmpty()) { // !!!
milisecs = queue.take(); // !!!
worker(milisecs);
}
} catch (InterruptedException ex) {}
}
For example, it would hang is this scenario happens:
threadA checks if queue.isEmpty(), gets a false and tries to proceed.
threadB take() the last item from the queue
threadA tries to take() an item from an empty queue, making it to hang.
The process "take if queue not empty" should be synched so that the queue doesn't change in between.
What is the proper way to do that?
Full code below. Should take about 1s per run.
package multithreadperformance;
import java.util.ArrayList;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadLocalRandom;
public class MultithreadPerformance implements Runnable {
static int numThreads = 50;
static int numJobs = 5000;
final BlockingQueue<Long> queue = new LinkedBlockingQueue<>();;
static ArrayList<Thread> threads;
public static void main(String[] args) {
MultithreadPerformance bench = new MultithreadPerformance();
bench.go();
}
public void go() {
System.out.print("Go... ");
long t0 = System.nanoTime();
// Fill up the queue of jobs with a random number of miliseconds.
long milisecs, milisecsMax = 20; // ms
//
try {
for (int i = 0; i < numJobs; i++) {
milisecs = ThreadLocalRandom.current().nextLong(milisecsMax);
queue.put(milisecs);
}
} catch (InterruptedException ex) {
System.out.println(ex.toString());
}
// Create all threads
threads = new ArrayList<>();
for(int i = 0; i < numThreads; i++) {
Thread thread = new Thread(this);
thread.setName("Thread" + i);
threads.add(thread);
}
// Start all threads
threads.forEach((thread) -> {thread.start();});
// Join all threads
threads.forEach((thread) -> {try {
thread.join();
} catch (InterruptedException ex) {
System.out.println(ex.toString());
}
});
long et = System.nanoTime() - t0;
System.out.println(String.format("done. Elapsed time %.3f s.", et/1e9));
}
// Worker function
// Sleep a number of miliseconds.
public void worker(long milisecs) throws InterruptedException {
Thread.sleep(milisecs);
}
#Override
public void run() {
long milisecs;
try {
while ( ! queue.isEmpty()) {
milisecs = queue.take();
worker(milisecs);
}
} catch (InterruptedException ex) {
System.out.println(ex.toString());
}
}
}
You could call poll() which will atomically remove the head of the queue or return null if the queue was empty.
Long millisecs;
while ( (millisecs = queue.poll()) != null) {
worker(millisecs);
}
Just have the worker threads block on the queue. When you're done, put n End-Of-Queue messages in the queue with n the number of worker threads and have the worker threads exit their loop when they see an End-Of-Queue message.
I am using single thread executor for long-running threads like this:
executor = Executors.newSingleThreadExecutor(THREAD_FACTORY);
executor.submit(new LongRunnable());
which checks a flag to be stopped:
private class LongRunnable implements Runnable {
#Override
public void run() {
while (isRunning.get()) {
try {
doSomething();
} catch (InterruptedException e) {
...
}
}
}
}
and whole execution is interrupted that way:
#Override
public void close() throws Exception {
isRunning.set(false);
executor.shutdownNow();
}
Still I can see some threads not gc-ed in profiler (while by logs, runnable they were executing has quit outermost while loop).
Question: does provided working with threads strategy memory-leak-free and thread-leak-free?
I am not able to see any issue with executor or shutDownNow. Probably you are looking at different threads in your profiler.
Try this program which is similar to the one in your question and you can see the thread is no longer there after successful shutdown.
public class ExecutorShutdownTest {
private static ExecutorService executor;
private static AtomicLong executorThreadId = new AtomicLong(0);
public static void main(String[] args) {
// get thread MX bean
ThreadMXBean threadMXBean = ManagementFactory.getThreadMXBean();
// create an executor and start the task
executor = Executors.newSingleThreadExecutor(new TestThreadFactory());
LongRunnable runnable = new LongRunnable();
executor.submit(runnable);
// main thread: keep running for sometime
int count = 5;
while (count-- > 0) {
try {
Thread.sleep(1000);
System.out.println(String.valueOf(threadMXBean.getThreadInfo(executorThreadId.longValue())).replace("\r", "").replace(
"\n", ""));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// main thread: stop the task
try {
runnable.close();
System.out.println(String.valueOf(threadMXBean.getThreadInfo(executorThreadId.longValue())).replace("\r", "").replace("\n", ""));
} catch (Exception e) {
e.printStackTrace();
}
// main thread: run some more time to verify the executor thread no longer exists
count = 5;
while (count-- > 0) {
try {
Thread.sleep(1000);
System.out.println(String.valueOf(threadMXBean.getThreadInfo(executorThreadId.longValue())).replace("\r", "").replace("\n", ""));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
private static class LongRunnable implements Runnable {
private volatile boolean isRunning = true;
#Override
public void run() {
while (isRunning) {
System.out.println("Running");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
//ignore
}
}
System.out.println("Stopped");
}
public void close() throws Exception {
System.out.println("Stopping");
isRunning = false;
executor.shutdownNow();
}
}
private static class TestThreadFactory implements ThreadFactory {
private static final AtomicInteger poolNumber = new AtomicInteger(1);
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix;
TestThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();
namePrefix = "pool-" + poolNumber.getAndIncrement() + "-thread-";
}
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0) {
#Override protected void finalize() throws Throwable {
super.finalize();
// probably bad idea but lets see if it gets here
System.out.println("Executor thread removed from JVM");
}
};
if (t.isDaemon())
t.setDaemon(false);
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
executorThreadId.set(t.getId());
System.out.println("Executor thread created");
return t;
}
}
}
Here's a sample program using the single-thread Executor that manages to strand a thread so that the JVM can't shut down, but it only manages to do it by not calling shutdownNow:
import java.util.concurrent.*;
public class Exec {
public static void main(String[] args) throws Exception {
ExecutorService executor = Executors.newSingleThreadExecutor();
executor.submit(new MyTask());
Thread.sleep(20000L);
// executor.shutdownNow();
int retryCount = 4;
while (!executor.isTerminated() && retryCount > 0) {
System.out.println("waiting for tasks to terminate");
Thread.sleep(500L);
retryCount -= 1;
}
}
}
class MyTask implements Runnable {
public void run() {
int count = 0;
try {
while (!Thread.currentThread().isInterrupted() && count < 10) {
Thread.sleep(1000L);
count += 1;
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
System.out.println("all done");
}
}
The thread used by the executor has a separate life cycle from the task, this example shows how the task finishes but the thread goes on. Uncommenting the shutdownNow results in the executor's thread terminating. Otherwise the main thread sleeps for a while and exits, leaving the executor's thread hanging out, preventing the JVM from exiting.
My guess is that your close method isn't getting called and your executor never gets shut down. To get more useful answers please add a MVCE so that we can reproduce the problem.
Consider that with interruption there's no need to keep a reference to the Runnable to set the flag. As I read the question the task not finishing is not an issue here, but it would still be better to make the Runnable respond to interruption and lose the flag, just because having less things to keep track of is always an improvement.
I am trying to figure out how I can track all the threads that my application is spawning. Initially, I thought I had it figured out using a CyclicBarrier, however I am seeing threads executing after my await call.
Below is the working pseudo code:
public class ThreadTesterRunner {
public static void main(String[] args) throws InterruptedException {
final CyclicBarrier cb = new CyclicBarrier(1);
ThreadRunner tr = new ThreadRunner(cb);
Thread t = new Thread(tr, "Thread Runner");
t.start();
boolean process = true;
// wait until all threads process, then print reports
while (process){
if(tr.getIsFinished()){
System.out.println("Print metrics");
process = false;
}
Thread.sleep(1000);
}
}
}
class ThreadRunner implements Runnable {
static int timeOutTime = 2;
private ExecutorService executorService = Executors.newFixedThreadPool(10);
private final CyclicBarrier barrier;
private boolean isFinished=false;
public ThreadRunner(CyclicBarrier cb) {
this.barrier = cb;
}
public void run(){
try {
boolean stillLoop = true; int i = 0;
while (stillLoop){
int size;
Future<Integer> future = null;
try {
future = executorService.submit(new Reader()); // sleeps
size = future.get();
} catch (InterruptedException | ExecutionException ex) {
// handle Errs
}
if(i == 3){
stillLoop = false;
this.barrier.await();
this.isFinished=true;
}
//System.out.println("i = "+i+" Size is: "+size+"\r");
i++;
}
} catch (InterruptedException | BrokenBarrierException e1) {
e1.printStackTrace();
}
}
public boolean getIsFinished(){
return this.isFinished;
}
}
class Reader implements Callable {
private ExecutorService executorService = Executors.newFixedThreadPool(1);
#Override
public Object call() throws Exception {
System.out.println("Reading...");
Thread.sleep(2000);
executorService.submit(new Writer());
return 1000;
}
}
class Writer implements Callable {
#Override
public Void call() throws Exception {
Thread.sleep(4000);
System.out.println("Wrote");
return null;
}
}
Can anyone suggest a way to ONLY print "print metrics" after all threads have run?
It doesn't seem like you're doing anything to coordinate with your Reader and Writer threads, which are the ones you want to wait for. If you pass your synchronization barrier through to those threads so that they can register and signal when they are done, it works just fine.
Here's a version rewritten to do so, using a Phaser instead of a CyclicBarrier. Note that each Reader and Writer registers itself upon construction, and notifies the synchronization barrier when it is done executing:
public class ThreadTesterRunner {
public static void main(String[] args) throws InterruptedException {
final Phaser cb = new Phaser();
ThreadRunner tr = new ThreadRunner(cb);
Thread t = new Thread(tr, "Thread Runner");
t.start();
boolean process = true;
// wait until all threads process, then print reports
while (process){
if(tr.getIsFinished()){
System.out.println("Print metrics");
process = false;
}
//else {
// System.out.println("Waiting: registered=" + cb.getRegisteredParties() + ", arrived=" + cb.getArrivedParties() + ", unarrived=" + cb.getUnarrivedParties());
//}
Thread.sleep(1000);
}
}
}
class ThreadRunner implements Runnable {
static int timeOutTime = 2;
private ExecutorService executorService = Executors.newFixedThreadPool(10);
private final Phaser barrier;
private boolean isFinished=false;
public ThreadRunner(Phaser phaser) {
this.barrier = phaser;
}
public void run(){
try {
boolean stillLoop = true; int i = 0;
while (stillLoop){
int size;
Future<Integer> future = null;
try {
future = executorService.submit(new Reader(this.barrier)); // sleeps
size = future.get();
} catch (InterruptedException | ExecutionException ex) {
// handle Errs
}
if(i == 3){
stillLoop = false;
this.barrier.awaitAdvance(0);
this.isFinished=true;
}
//System.out.println("i = "+i+" Size is: "+size+"\r");
i++;
}
} catch (Exception e1) {
e1.printStackTrace();
}
}
public boolean getIsFinished(){
return this.isFinished;
}
}
class Reader implements Callable {
private Phaser barrier;
private ExecutorService executorService = Executors.newFixedThreadPool(1);
public Reader(Phaser phase) {
phase.register();
this.barrier = phase;
}
#Override
public Object call() throws Exception {
System.out.println("Reading...");
Thread.sleep(2000);
executorService.submit(new Writer(this.barrier));
this.barrier.arrive();
return 1000;
}
}
class Writer implements Callable {
private Phaser barrier;
public Writer(Phaser phase) {
phase.register();
this.barrier = phase;
}
#Override
public Void call() throws Exception {
Thread.sleep(4000);
System.out.println("Wrote");
this.barrier.arrive();
return null;
}
}
From what I can see you aren't waiting for the Writer to finish in the Reader. Is that the problem you are seeing?
You are also accessing isFinished from more than one thread without synchronization (which however, merely may delay the termination of the loop in this situation).
I don't see CyclicBarrier doing anything.
Not sure what you are trying to do, but I'd think about how simpler I can make it. For example, can Reader and Writer be combined into one task? Then, waiting for them to finish would merely be:
executorService.invokeAll(tasks);
System.out.println("Print metrics");
where tasks is a collection of tasks (see also this javadoc)
I have a parent thread that sends messages to MQ and it manages a ThreadPoolExecutor for worker threads which listen to MQ and writes message to output file. I manage a threadpool of size 5. So when I run my program, I have 5 files with messages. Everything works fine until here. I now need to merge these 5 files in my parent thread.
How do I know ThreadPoolExecutor finished processing so I can start merging files.
public class ParentThread {
private MessageSender messageSender;
private MessageReciever messageReciever;
private Queue jmsQueue;
private Queue jmsReplyQueue;
ExecutorService exec = Executors.newFixedThreadPool(5);
public void sendMessages() {
System.out.println("Sending");
File xmlFile = new File("c:/filename.txt");
List<String> lines = null;
try {
lines = FileUtils.readLines(xmlFile, null);
} catch (IOException e) {
e.printStackTrace();
}
for (String line : lines){
messageSender.sendMessage(line, this.jmsQueue, this.jmsReplyQueue);
}
int count = 0;
while (count < 5) {
messageSender.sendMessage("STOP", this.jmsQueue, this.jmsReplyQueue);
count++;
}
}
public void listenMessages() {
long finishDate = new Date().getTime();
for (int i = 0; i < 5; i++) {
Worker worker = new Worker(i, this.messageReciever, this.jmsReplyQueue);
exec.execute(worker);
}
exec.shutdown();
if(exec.isTerminated()){ //PROBLEM is HERE. Control Never gets here.
long currenttime = new Date().getTime() - finishDate;
System.out.println("time taken: "+currenttime);
mergeFiles();
}
}
}
This is my worker class
public class Worker implements Runnable {
private boolean stop = false;
private MessageReciever messageReciever;
private Queue jmsReplyQueue;
private int processId;
private int count = 0;
private String message;
private File outputFile;
private FileWriter outputFileWriter;
public Worker(int processId, MessageReciever messageReciever,
Queue jmsReplyQueue) {
this.processId = processId;
this.messageReciever = messageReciever;
this.jmsReplyQueue = jmsReplyQueue;
}
public void run() {
openOutputFile();
listenMessages();
}
private void listenMessages() {
while (!stop) {
String message = messageReciever.receiveMessage(null,this.jmsReplyQueue);
count++;
String s = "message: " + message + " Recieved by: "
+ processId + " Total recieved: " + count;
System.out.println(s);
writeOutputFile(s);
if (StringUtils.isNotEmpty(message) && message.equals("STOP")) {
stop = true;
}
}
}
private void openOutputFile() {
try {
outputFile = new File("C:/mahi/Test", "file." + processId);
outputFileWriter = new FileWriter(outputFile);
} catch (IOException e) {
System.out.println("Exception while opening file");
stop = true;
}
}
private void writeOutputFile(String message) {
try {
outputFileWriter.write(message);
outputFileWriter.flush();
} catch (IOException e) {
System.out.println("Exception while writing to file");
stop = true;
}
}
}
How will I know when the ThreadPool has finished processing so I can do my other clean up work?
Thanks
If you Worker class implements Callable instead of Runnable, then you'd be able to see when your threads complete by using a Future object to see if the Thread has returned some result (e.g. boolean which would tell you whether it has finished execution or not).
Take a look in section "8. Futures and Callables" # website below, it has exactly what you need imo:
http://www.vogella.com/articles/JavaConcurrency/article.html
Edit: So after all of the Futures indicate that their respective Callable's execution is complete, its safe to assume your executor has finished execution and can be shutdown/terminated manually.
Something like this:
exec.shutdown();
// waiting for executors to finish their jobs
while (!exec.awaitTermination(50, TimeUnit.MILLISECONDS));
// perform clean up work
You can use a thread for monitoring ThreadPoolExecutor like that
import java.util.concurrent.ThreadPoolExecutor;
public class MyMonitorThread implements Runnable {
private ThreadPoolExecutor executor;
private int seconds;
private boolean run=true;
public MyMonitorThread(ThreadPoolExecutor executor, int delay)
{
this.executor = executor;
this.seconds=delay;
}
public void shutdown(){
this.run=false;
}
#Override
public void run()
{
while(run){
System.out.println(
String.format("[monitor] [%d/%d] Active: %d, Completed: %d, Task: %d, isShutdown: %s, isTerminated: %s",
this.executor.getPoolSize(),
this.executor.getCorePoolSize(),
this.executor.getActiveCount(),
this.executor.getCompletedTaskCount(),
this.executor.getTaskCount(),
this.executor.isShutdown(),
this.executor.isTerminated()));
try {
Thread.sleep(seconds*1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
And add
MyMonitorThread monitor = new MyMonitorThread(executorPool, 3);
Thread monitorThread = new Thread(monitor);
monitorThread.start();
to your class where ThreadPoolExecutor is located.
It will show your threadpoolexecutors states in every 3 seconds.