I have a program with this general structure:
init
create CyclicBarrier
initialise all threads, attaching to barrier
*start all threads*
wait for join
display stats
*start all threads*
perform calculation
await barrier
My problem is I need the threads' run() method to keep looping until a certain condition is met, but pausing after every iteration to let all threads synchronise.
I've already tried attaching a Runnable method to the barrier, but this ends up requiring the recreation and restarting of each thread, which isn't a very good solution.
I've also tried using the CyclicBarrier's reset() method, but this just seems to cause errors on the existing threads, even when executed after all threads have completed.
My question is:
-Is it possible to 'reset' a barrier and have all the barrier's threads follow the same conditions as they did before the first invocations of await()?
-Or is there another method I should be using to achieve this?
Thanks in advance
The barrier.wait() will suspend the threads. The barrier is already in the main thread, it does not need another. In your algorithm above you show the threads being restarted after displaying stats. You should not need to do this. If the recently awakened threads are in a loop they will go back into the barrier.wait() again.
Following #Totoro's answer, below is a little bit of example code which also incorporates the requirement "I need the threads' run() method to keep looping until a certain condition is met, pausing after every iteration to let all threads synchronise". That makes it complex pretty quick, but hopefully the program output will clarify the example code (or I should just make better examples).
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;
public class BarrierCalc implements Runnable {
public static final int CALC_THREADS = 3;
private static final AtomicBoolean runCondition = new AtomicBoolean();
private static final AtomicBoolean stopRunning = new AtomicBoolean();
public static void main(String[] args) {
CyclicBarrier barrier = new CyclicBarrier(CALC_THREADS + 1);
for (int i = 0; i < CALC_THREADS; i++) {
new Thread(new BarrierCalc(barrier)).start();
}
try {
runCondition.set(true);
barrier.await();
showln(0, "STATS!");
barrier.await();
showln(0, "start looping 1");
Thread.sleep(200);
runCondition.set(false);
showln(0, "stop looping 1");
barrier.await();
runCondition.set(true);
barrier.await();
showln(0, "start looping 2");
Thread.sleep(100);
runCondition.set(false);
showln(0, "stop looping 2");
barrier.await();
stopRunning.set(true);
showln(0, "finishing");
barrier.await();
} catch (Exception e) {
e.printStackTrace();
}
}
private static final AtomicInteger calcId = new AtomicInteger();
private CyclicBarrier barrier;
private int id;
public BarrierCalc(CyclicBarrier barrier) {
this.barrier = barrier;
id = calcId.incrementAndGet();
}
public void run() {
showln(id, "waiting for start");
try {
barrier.await(); // display stats
barrier.await(); // start running
int loopNumber = 0;
while (!stopRunning.get()) {
showln(id, "looping " + (++loopNumber));
while (runCondition.get()) {
Thread.sleep(10); // simulate looping
}
showln(id, "synchronizing " + loopNumber);
barrier.await();
showln(id, "synchronized " + loopNumber);
// give main thread a chance to set stopCondition and runCondition
barrier.await();
}
showln(id, "finished");
} catch (Exception e) {
e.printStackTrace();
}
}
private static final long START_TIME = System.currentTimeMillis();
public static void showln(int id, String msg) {
System.out.println((System.currentTimeMillis() - START_TIME) + "\t ID " + id + ": " + msg);
}
}
Keep in mind that program output might not be in the order expected: threads that are writing at the same time to one synchronized output (System.out) are given write-access in random order.
You can take a look at my example where I played with CyclicBarrier.Here each worker makes some calculation and at the barrier the condition is checked. If it meets the condition than all workers stop calculations, otherwise they continue:
class Solver {
private static final int REQUIRED_AMOUNT = 100;
private static final int NUMBER_OF_THREADS = 4;
AtomicInteger atomicInteger = new AtomicInteger();
AtomicBoolean continueCalculation = new AtomicBoolean(true);
final CyclicBarrier barrier;
public static void main(String[] args) {
new Solver();
}
class Worker implements Runnable {
int workerId;
Worker(int workerId) {
this.workerId = workerId;
}
public void run() {
try {
while(continueCalculation.get()) {
calculate(workerId);
barrier.await();
}
} catch (Exception ex) {
System.out.println("Finishing " + workerId);
}
}
}
public Solver() {
Runnable barrierAction = () -> {
if (done()) {
continueCalculation.set(false);
}
};
barrier = new CyclicBarrier(NUMBER_OF_THREADS, barrierAction);
List<Thread> threads = new ArrayList(NUMBER_OF_THREADS);
for (int i = 0; i < NUMBER_OF_THREADS; i++) {
Thread thread = new Thread(new Worker(i));
threads.add(thread);
thread.start();
}
}
private void calculate(int workerId) throws InterruptedException {
// Some long-running calculation
Thread.sleep(2000L);
int r = new Random().nextInt(12);
System.out.println("Worker #" + workerId + " added " + r +" = " + atomicInteger.addAndGet(r));
}
private boolean done() {
int currentResult = atomicInteger.get();
boolean collected = currentResult >= REQUIRED_AMOUNT;
System.out.println("=======================================================");
System.out.println("Checking state at the barrier: " + currentResult);
if (collected) {
System.out.println("Required result is reached");
}
System.out.println("=======================================================");
return collected;
}
}
Related
I have a bunch of threads that spawn somewhat arbitrarily. When they are racing each other, only the one that spawned last is relevant. The other threads can be thrown away or stopped. But I am not sure how to do that, so I have implemented a very basic counter that checks whether the thread is the latest spawned thread.
edit: I would like to be able to kill threads that are taking too long (as they are no longer necessary); probably not from within the threads themselves as they are busy doing something else.
This code works, it seems. But it doesn't feel robust. Can someone give me a hint toward a proper way to do this?
class Main {
private static volatile int latestThread = 0;
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
spawnThread();
}
}
private static void spawnThread() {
latestThread++;
int thisThread = latestThread;
new Thread(() -> {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
if (latestThread == thisThread) {
// only the latest "active" thread is relevant
System.out.println("I am the latest thread! " + thisThread);
}
}).start();
}
}
output:
I am the latest thread! 10
code in replit.com
ThreadPoolExecutor is almost what I need, specifically DiscardOldestPolicy. You can set the queue size to 1, so one thread is running and one thread is in the queue, and the oldest in the queue just gets shunted. Clean!
But it finishes two threads (not only the latest), which is not 100% what I was looking for. Although arguably good enough:
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
public class DiscardOldest {
private static int threadCounter = 1;
public static void main(String[] args) throws InterruptedException {
int poolSize = 0;
int maxPoolSize = 1;
int queueSize = 1;
long aliveTime = 1000;
ArrayBlockingQueue<Runnable> queue = new ArrayBlockingQueue<>(queueSize);
ThreadPoolExecutor executor = new ThreadPoolExecutor(poolSize, maxPoolSize, aliveTime, TimeUnit.MILLISECONDS, queue, new ThreadPoolExecutor.DiscardOldestPolicy());
for (int i = 0; i < 4; i++) {
spawnThread(executor);
}
}
private static void spawnThread(ThreadPoolExecutor executor) {
final int thisThread = threadCounter++;
System.out.println(thisThread + " spawning");
executor.execute(() -> {
try {
Thread.sleep(100);
System.out.println(thisThread + " finished!");
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
}
Ouput:
1 spawning
2 spawning
3 spawning
4 spawning
1 finished!
4 finished!
Rather than relaying on an index, a born time could be set. If there's a younger thread (was born later) the thread should terminate its execution.
public class Last {
private static volatile long latestThread = 0L;
/**
* #param args
*/
public static void main(String[] args) {
for (int i = 0; i < 3; i++) {
spawnThread(System.nanoTime(), i);
}
}
private static void spawnThread(long startTime, int index) {
new Thread(() -> {
latestThread = startTime;
long thisThread = startTime;
boolean die = false;
try {
while (!die) {
Thread.sleep(1);
if (thisThread < latestThread) {
System.out.println(
index + ": I am not the latest thread :-(\n\t" + thisThread + "\n\t" + latestThread);
die = true;
} else if (thisThread == latestThread) {
System.out.println(
index + ": Yes! This is the latest thread!\n\t" + thisThread + "\n\t" + latestThread);
Thread.sleep(1);
System.out.println("Bye!");
die = true;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
}
}
Result:
0: I am not the latest thread :-(
39667589567880
39667602317461
2: Yes! This is the latest thread!
39667602317461
39667602317461
1: I am not the latest thread :-(
39667602257160
39667602317461
Bye!
I did a little research based on comments from everybody (thanks!) and ThreadPoolExecutor is almost what I need, but I want a pool with the total size of 1 (no queue) that kills the active thread once a new thread comes along, which is not allowed in a thread pool and not in line with what a ThreadPool is for. So instead, I came up with a reference to the active thread, and when a new thread comes a long it kills the old one, which seems to do what I want:
import java.util.concurrent.atomic.AtomicInteger;
public class Interrupt {
private static final AtomicInteger CURRENT_THREAD = new AtomicInteger(0);
private static Thread activeThread = new Thread(() -> {});
public static void main(String[] args) throws InterruptedException {
for (int i = 0; i < 4; i++) {
spawnThread();
Thread.sleep(3);
}
}
private static void spawnThread() {
if (activeThread.isAlive()) {
activeThread.interrupt();
}
activeThread = new Thread(() -> {
int thisThread = CURRENT_THREAD.incrementAndGet();
System.out.println(thisThread + " working");
try {
Thread.sleep(1000);
System.out.println(thisThread + " finished!");
} catch (InterruptedException ignored) {}
});
activeThread.start();
}
}
Output:
3 working
2 working
1 working
4 working
4 finished!
The code below randomly freezing.
The queue is pre-filled at the start and only taken from after the threads start taking items from it.
I think I'm not using the queue properly. Despite the isEmpty() check, the queue might be empty when one thread tries to take one item, making it to wait indefinitely.
#Override
public void run() {
long milisecs;
try {
while ( ! queue.isEmpty()) { // !!!
milisecs = queue.take(); // !!!
worker(milisecs);
}
} catch (InterruptedException ex) {}
}
For example, it would hang is this scenario happens:
threadA checks if queue.isEmpty(), gets a false and tries to proceed.
threadB take() the last item from the queue
threadA tries to take() an item from an empty queue, making it to hang.
The process "take if queue not empty" should be synched so that the queue doesn't change in between.
What is the proper way to do that?
Full code below. Should take about 1s per run.
package multithreadperformance;
import java.util.ArrayList;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadLocalRandom;
public class MultithreadPerformance implements Runnable {
static int numThreads = 50;
static int numJobs = 5000;
final BlockingQueue<Long> queue = new LinkedBlockingQueue<>();;
static ArrayList<Thread> threads;
public static void main(String[] args) {
MultithreadPerformance bench = new MultithreadPerformance();
bench.go();
}
public void go() {
System.out.print("Go... ");
long t0 = System.nanoTime();
// Fill up the queue of jobs with a random number of miliseconds.
long milisecs, milisecsMax = 20; // ms
//
try {
for (int i = 0; i < numJobs; i++) {
milisecs = ThreadLocalRandom.current().nextLong(milisecsMax);
queue.put(milisecs);
}
} catch (InterruptedException ex) {
System.out.println(ex.toString());
}
// Create all threads
threads = new ArrayList<>();
for(int i = 0; i < numThreads; i++) {
Thread thread = new Thread(this);
thread.setName("Thread" + i);
threads.add(thread);
}
// Start all threads
threads.forEach((thread) -> {thread.start();});
// Join all threads
threads.forEach((thread) -> {try {
thread.join();
} catch (InterruptedException ex) {
System.out.println(ex.toString());
}
});
long et = System.nanoTime() - t0;
System.out.println(String.format("done. Elapsed time %.3f s.", et/1e9));
}
// Worker function
// Sleep a number of miliseconds.
public void worker(long milisecs) throws InterruptedException {
Thread.sleep(milisecs);
}
#Override
public void run() {
long milisecs;
try {
while ( ! queue.isEmpty()) {
milisecs = queue.take();
worker(milisecs);
}
} catch (InterruptedException ex) {
System.out.println(ex.toString());
}
}
}
You could call poll() which will atomically remove the head of the queue or return null if the queue was empty.
Long millisecs;
while ( (millisecs = queue.poll()) != null) {
worker(millisecs);
}
Just have the worker threads block on the queue. When you're done, put n End-Of-Queue messages in the queue with n the number of worker threads and have the worker threads exit their loop when they see an End-Of-Queue message.
I have the following work queue implementation, which I use to limit the number of threads in use. It works by me initially adding a number of Runnable objects to the queue, and when I am ready to begin, I run "begin()". At this point I do not add any more to the queue.
public class WorkQueue {
private final int nThreads;
private final PoolWorker[] threads;
private final LinkedList queue;
Integer runCounter;
boolean hasBegun;
public WorkQueue(int nThreads) {
runCounter = 0;
this.nThreads = nThreads;
queue = new LinkedList();
threads = new PoolWorker[nThreads];
hasBegun = false;
for (int i = 0; i < nThreads; i++) {
threads[i] = new PoolWorker();
threads[i].start();
}
}
public boolean isQueueEmpty() {
synchronized (queue) {
if (queue.isEmpty() && runCounter == 0) {
return true;
} else {
return false;
}
}
}
public void begin() {
hasBegun = true;
synchronized (queue) {
queue.notify();
}
}
public void add(Runnable r) {
if (!hasBegun) {
synchronized (queue) {
queue.addLast(r);
runCounter++;
}
} else {
System.out.println("has begun executing. Cannot add more jobs ");
}
}
private class PoolWorker extends Thread {
public void run() {
Runnable r;
while (true) {
synchronized (queue) {
while (queue.isEmpty()) {
try {
queue.wait();
} catch (InterruptedException ignored) {
}
}
r = (Runnable) queue.removeFirst();
}
// If we don't catch RuntimeException,
// the pool could leak threads
try {
r.run();
synchronized (runCounter) {
runCounter--;
}
} catch (RuntimeException e) {
// You might want to log something here
}
}
}
}
}
This is a runnable I use to keep track of when all the jobs on the work queue have finished:
public class QueueWatcher implements Runnable {
private Thread t;
private String threadName;
private WorkQueue wq;
public QueueWatcher(WorkQueue wq) {
this.threadName = "QueueWatcher";
this.wq = wq;
}
#Override
public void run() {
while (true) {
if (wq.isQueueEmpty()) {
java.util.Date date = new java.util.Date();
System.out.println("Finishing and quiting at:" + date.toString());
System.exit(0);
break;
} else {
try {
Thread.sleep(1000);
} catch (InterruptedException ex) {
Logger.getLogger(PlaneGenerator.class.getName()).log(Level.SEVERE, null, ex);
}
}
}
}
public void start() {
wq.begin();
System.out.println("Starting " + threadName);
if (t == null) {
t = new Thread(this, threadName);
t.setDaemon(false);
t.start();
}
}
}
This is how I use them:
Workqueue wq = new WorkQueue(9); //Get same results regardless of 1,2,3,8,9
QueueWatcher qw = new QueueWatcher(wq);
SomeRunnable1 sm1 = new SomeRunnable1();
SomeRunnable2 sm2 = new SomeRunnable2();
SomeRunnable3 sm3 = new SomeRunnable3();
SomeRunnable4 sm4 = new SomeRunnable4();
SomeRunnable5 sm5 = new SomeRunnable5();
wq.add(sm1);
wq.add(sm2);
wq.add(sm3);
wq.add(sm4);
wq.add(sm5);
qw.start();
But regardless of how many threads I use, the result is always the same - it always takes about 1m 10seconds to complete. This is about the same as when I just did a single threaded version (when everything ran in main()).
If I set wq to (1,2,3--9) threads it is always between 1m8s-1m10s. What is the problem ? The jobs (someRunnable) have nothing to do with each other and cannot block each other.
EDIT: Each of the runnables just read some image files from the filesystems and create new files in a separate directory. The new directory eventually contains about 400 output files.
EDIT: It seems that only one thread is always doing work. I made the following changes:
I let the Woolworker store an Id
PoolWorker(int id){
this.threadId = id;
}
Before running I print the id of the worker.
System.out.println(this.threadId + " got new task");
r.run();
In WorkQueue constructor when creating the poolworkers I do:
for (int i = 0; i < nThreads; i++) {
threads[i] = new PoolWorker(i);
threads[i].start();
}
But it seems that that only thread 0 does any work, as the output is always:
0 got new task
Use queue.notifyAll() to start processing.
Currently you're using queue.notify(), which will only wake a single thread. (The big clue that pointed me to this was when you mentioned only a single thread was running.)
Also, synchronizing on Integer runCounter isn't doing what you think it's doing - runCounter++ is actually assigning a new value to the Integer each time, so you're synchronizing on a lot of different Integer objects.
On a side note, using raw threads and wait/notify paradigms is complicated and error-prone even for the best programmers - it's why Java introduced the java.util.concurrent package, which provide threadsafe BlockingQueue implementations and Executors for easily managing multithreaded apps.
Problem: While trying to retrieve values inside a recursive block in a phased manner, the execution gets hung.
Description: CountDownLatch & Object.wait are used to achieve the phased manner access of value inside the recursive block. But, the program hangs with following output:
2 < 16
3 < 16
4 < 16
5 < 16
Current total: 5
Inside of wait
Inside of wait
Program:
import java.util.concurrent.*;
public class RecursiveTotalFinder {
private static CountDownLatch latch1;
private static CountDownLatch latch2;
private static CountDownLatch latch3;
public static void main(String... args) {
latch1 = new CountDownLatch(1);
latch2 = new CountDownLatch(1);
latch3 = new CountDownLatch(1);
//Create object
TotalFinder tf = new TotalFinder(latch1,latch2,latch3);
//Start the thread
tf.start();
//Wait for results from TotalFinder
try {
latch1.await();
} catch(InterruptedException ie) {
ie.printStackTrace();
}
//Print the result after 5th iteration
System.out.println("Current total: "+tf.getCurrentTotal());
tf.releaseWaitLock();
tf.resetWaitLock();
//Wait for results again
try {
latch2.await();
} catch(InterruptedException ie) {
ie.printStackTrace();
}
//Print the result after 10th iteration
System.out.println("Current total: "+tf.getCurrentTotal());
tf.releaseWaitLock();
tf.resetWaitLock();
//Wait for results again
try {
latch3.await();
} catch(InterruptedException ie) {
ie.printStackTrace();
}
//Print the result after 15th iteration
System.out.println("Current total: "+tf.getCurrentTotal());
tf.releaseWaitLock();
tf.resetWaitLock();
}
}
class TotalFinder extends Thread{
CountDownLatch tfLatch1;
CountDownLatch tfLatch2;
CountDownLatch tfLatch3;
private static int count = 1;
private static final class Lock { }
private final Object lock = new Lock();
private boolean gotSignalFromMaster = false;
public TotalFinder(CountDownLatch latch1, CountDownLatch latch2,
CountDownLatch latch3) {
tfLatch1 = latch1;
tfLatch2 = latch2;
tfLatch3 = latch3;
}
public void run() {
findTotal(16);
}
//Find total
synchronized void findTotal(int cnt) {
if(count%5==0) {
if(count==5)
tfLatch1.countDown();
if(count==10)
tfLatch2.countDown();
if(count==15)
tfLatch3.countDown();
//Sleep for sometime
try {
Thread.sleep(3000);
} catch(InterruptedException ie) {
ie.printStackTrace();
}
//Wait till current total is printed
synchronized(lock) {
while(gotSignalFromMaster==false) {
try {
System.out.println(" Inside of wait");
lock.wait();
} catch(InterruptedException ie) {
ie.printStackTrace();
}
}
System.out.println("Came outside of wait");
}
}
count +=1;
if(count < cnt) {
System.out.println(count +" < "+cnt);
findTotal(cnt);
}
}
//Return the count value
public int getCurrentTotal() {
return count;
}
//Release lock
public void releaseWaitLock() {
//Sleep for sometime
try {
Thread.sleep(5000);
} catch(InterruptedException ie) {
ie.printStackTrace();
}
synchronized(lock) {
gotSignalFromMaster=true;
lock.notifyAll();
}
}
//Reset wait lock
public void resetWaitLock() {
gotSignalFromMaster = false;
}
}
Analysis:
In my initial analysis it looks like the wait is happening recursively eventhough notifyAll is invoked from the main program.
Help:
Why free lock using notfiyAll after a CountDownLatch didn't take effect? Need someone's help in understanding what exactly is happening in this program.
The main message about wait and notify that I got from JCIP was that I'd probably use them wrongly, so better to avoid using them directly unless strictly necessary. As such, I think that you should reconsider the use of these methods.
In this case, I think that you can do it more elegantly using SynchronousQueue. Perhaps something like this might work:
import java.util.concurrent.*;
public class RecursiveTotalFinder {
public static void main(String... args) throws InterruptedException {
SynchronousQueue<Integer> syncQueue = new SynchronousQueue<>();
//Create object
TotalFinder tf = new TotalFinder(syncQueue, 5);
//Start the thread
tf.start();
for (int i = 0; i < 3; ++i) {
System.out.println("Current total: " + syncQueue.take());
}
}
}
class TotalFinder extends Thread{
private final SynchronousQueue<Integer> syncQueue;
private final int syncEvery;
private int count;
public TotalFinder(SynchronousQueue<Integer> syncQueue,
int syncEvery) {
this.syncQueue = syncQueue;
this.syncEvery = syncEvery;
}
public void run() {
try {
findTotal(16);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new RuntimeException(e);
}
}
//Find total
void findTotal(int cnt) throws InterruptedException {
if((count > 0) && (count%syncEvery==0)) {
syncQueue.put(count);
}
count +=1;
if(count < cnt) {
System.out.println(count +" < "+cnt);
findTotal(cnt);
}
}
}
As to why your original approach doesn't work, it's because the main thread sets gotSignalFromMaster to true and then immediately back to false, and this happens before the other thread is able to check its value. If you stick a bit of a sleep into the resetWaitLock, it proceeds beyond the point where it currently hangs; however, it then hangs at the end instead of terminating.
Note that having to use Thread.sleep to wait for another thread to change some state is a poor approach - not least because it makes your program really slow. Using synchronization utilities leads to faster and much easier-to-reason-about program.
I want to write program using multithreading wait and notify methods in Java.
This program has a stack (max-length = 5). Producer generate number forever and put it in the stack, and consumer pick it from stack.
When stack is full producer must wait and when stack is empty consumers must wait.
The problem is that it runs just once, I mean once it produce 5 number it stops but i put run methods in while(true) block to run nonstop able but it doesn't.
Here is what i tried so far.
Producer class:
package trail;
import java.util.Random;
import java.util.Stack;
public class Thread1 implements Runnable {
int result;
Random rand = new Random();
Stack<Integer> A = new Stack<>();
public Thread1(Stack<Integer> A) {
this.A = A;
}
public synchronized void produce()
{
while (A.size() >= 5) {
System.out.println("List is Full");
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
result = rand.nextInt(10);
System.out.println(result + " produced ");
A.push(result);
System.out.println(A);
this.notify();
}
#Override
public void run() {
System.out.println("Producer get started");
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
while (true) {
produce();
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
And the consumer:
package trail;
import java.util.Stack;
public class Thread2 implements Runnable {
Stack<Integer> A = new Stack<>();
public Thread2(Stack<Integer> A) {
this.A = A;
}
public synchronized void consume() {
while (A.isEmpty()) {
System.err.println("List is empty" + A + A.size());
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.err.println(A.pop() + " Consumed " + A);
this.notify();
}
#Override
public void run() {
System.out.println("New consumer get started");
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
while (true) {
consume();
}
}
}
and here is the main method:
public static void main(String[] args) {
Stack<Integer> stack = new Stack<>();
Thread1 thread1 = new Thread1(stack);// p
Thread2 thread2 = new Thread2(stack);// c
Thread A = new Thread(thread1);
Thread B = new Thread(thread2);
Thread C = new Thread(thread2);
A.start();
B.start();
C.start();
}
I think it will be better for understanding and dealing with synchronisation in general if you try to separate three things which are currently mixed:
Task which is going to do the actual job. Names for classes Thread1 & Thread2 are misleading. They are not Thread objects, but they are actually jobs or tasks implementing Runnable interface you are giving to Thread objects.
Thread object itself which you are creating in main
Shared object which encapsulates synchronised operations/logic on a queue, a stack etc. This object will be shared between tasks. And inside this shared object you will take care of add/remove operations (either with synchronized blocks or synchronized methods). Currently (as it was pointed out already), synchronization is done on a task itself (i.e. each task waits and notifies on its own lock and nothing happens). When you separate concerns, i.e. let one class do one thing properly it will eventually become clear where is the problem.
Your consumer and you producer are synchronized on different objects and do not block each other. If this works, I daresay it's accidental.
Read up on java.util.concurrent.BlockingQueue and java.util.concurrent.ArrayBlockingQueue. These provide you with more modern and easier way to implement this pattern.
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingQueue.html
You should synchronize on the stack instead of putting it at the method level try this code.
Also don't initalize the stack in your thread classes anyways you are passing them in the constructor from the main class, so no need of that.
Always try to avoid mark any method with synchronized keyword instead of that try to put critical section of code in the synchronized block because the more size of your synchronized area more it will impact on performance.
So, always put only that code into synchronized block that need thread safety.
Producer Code :
public void produce() {
synchronized (A) {
while (A.size() >= 5) {
System.out.println("List is Full");
try {
A.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
result = rand.nextInt(10);
System.out.println(result + " produced ");
A.push(result);
System.out.println("stack ---"+A);
A.notifyAll();
}
}
Consumer Code :
public void consume() {
synchronized (A) {
while (A.isEmpty()) {
System.err.println("List is empty" + A + A.size());
try {
System.err.println("wait");
A.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.err.println(A.pop() + " Consumed " + A);
A.notifyAll();
}
}
Try this:
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class CircularArrayQueue<T> {
private volatile Lock rwLock = new ReentrantLock();
private volatile Condition emptyCond = rwLock.newCondition();
private volatile Condition fullCond = rwLock.newCondition();
private final int size;
private final Object[] buffer;
private volatile int front;
private volatile int rare;
/**
* #param size
*/
public CircularArrayQueue(int size) {
this.size = size;
this.buffer = new Object[size];
this.front = -1;
this.rare = -1;
}
public boolean isEmpty(){
return front == -1;
}
public boolean isFull(){
return (front == 0 && rare == size-1) || (front == rare + 1);
}
public void enqueue(T item){
try {
// get a write lock
rwLock.lock();
// if the Q is full, wait the write lock
if(isFull())
fullCond.await();
if(rare == -1){
rare = 0;
front = 0;
} else if(rare == size - 1){
rare = 0;
} else {
rare ++;
}
buffer[rare] = item;
//System.out.println("Added\t: " + item);
// notify the reader
emptyCond.signal();
} catch(InterruptedException e){
e.printStackTrace();
} finally {
// unlock the write lock
rwLock.unlock();
}
}
public T dequeue(){
T item = null;
try{
// get the read lock
rwLock.lock();
// if the Q is empty, wait the read lock
if(isEmpty())
emptyCond.await();
item = (T)buffer[front];
//System.out.println("Deleted\t: " + item);
if(front == rare){
front = rare = -1;
} else if(front == size - 1){
front = 0;
} else {
front ++;
}
// notify the writer
fullCond.signal();
} catch (InterruptedException e){
e.printStackTrace();
} finally{
// unlock read lock
rwLock.unlock();
}
return item;
}
}
You can use Java's awesome java.util.concurrent package and its classes.
You can easily implement the producer consumer problem using the
BlockingQueue. A BlockingQueue already supports operations that wait
for the queue to become non-empty when retrieving an element, and wait
for space to become available in the queue when storing an element.
Without BlockingQueue, every time we put data to queue at the producer
side, we need to check if queue is full, and if full, wait for some
time, check again and continue. Similarly on the consumer side, we
would have to check if queue is empty, and if empty, wait for some
time, check again and continue. However with BlockingQueue we don’t
have to write any extra logic than to just add data from Producer and
poll data from Consumer.
Read more From:
http://javawithswaranga.blogspot.in/2012/05/solving-producer-consumer-problem-in.html
http://www.javajee.com/producer-consumer-problem-in-java-using-blockingqueue
use BlockingQueue,LinkedBlockingQueue this was really simple.
http://developer.android.com/reference/java/util/concurrent/BlockingQueue.html
package javaapplication;
import java.util.Stack;
import java.util.logging.Level;
import java.util.logging.Logger;
public class ProducerConsumer {
public static Object lock = new Object();
public static Stack stack = new Stack();
public static void main(String[] args) {
Thread producer = new Thread(new Runnable() {
int i = 0;
#Override
public void run() {
do {
synchronized (lock) {
while (stack.size() >= 5) {
try {
lock.wait();
} catch (InterruptedException e) {
}
}
stack.push(++i);
if (stack.size() >= 5) {
System.out.println("Released lock by producer");
lock.notify();
}
}
} while (true);
}
});
Thread consumer = new Thread(new Runnable() {
#Override
public void run() {
do {
synchronized (lock) {
while (stack.empty()) {
try {
lock.wait();
} catch (InterruptedException ex) {
Logger.getLogger(ProdCons1.class.getName()).log(Level.SEVERE, null, ex);
}
}
while(!stack.isEmpty()){
System.out.println("stack : " + stack.pop());
}
lock.notifyAll();
}
} while (true);
}
});
producer.start();
consumer.start();
}
}
Have a look at this code example:
import java.util.concurrent.*;
import java.util.Random;
public class ProducerConsumerMulti {
public static void main(String args[]){
BlockingQueue<Integer> sharedQueue = new LinkedBlockingQueue<Integer>();
Thread prodThread = new Thread(new Producer(sharedQueue,1));
Thread consThread1 = new Thread(new Consumer(sharedQueue,1));
Thread consThread2 = new Thread(new Consumer(sharedQueue,2));
prodThread.start();
consThread1.start();
consThread2.start();
}
}
class Producer implements Runnable {
private final BlockingQueue<Integer> sharedQueue;
private int threadNo;
private Random rng;
public Producer(BlockingQueue<Integer> sharedQueue,int threadNo) {
this.threadNo = threadNo;
this.sharedQueue = sharedQueue;
this.rng = new Random();
}
#Override
public void run() {
while(true){
try {
int number = rng.nextInt(100);
System.out.println("Produced:" + number + ":by thread:"+ threadNo);
sharedQueue.put(number);
Thread.sleep(100);
} catch (Exception err) {
err.printStackTrace();
}
}
}
}
class Consumer implements Runnable{
private final BlockingQueue<Integer> sharedQueue;
private int threadNo;
public Consumer (BlockingQueue<Integer> sharedQueue,int threadNo) {
this.sharedQueue = sharedQueue;
this.threadNo = threadNo;
}
#Override
public void run() {
while(true){
try {
int num = sharedQueue.take();
System.out.println("Consumed: "+ num + ":by thread:"+threadNo);
Thread.sleep(100);
} catch (Exception err) {
err.printStackTrace();
}
}
}
}
Notes:
Started one Producer and two Consumers as per your problem statement
Producer will produce random numbers between 0 to 100 in infinite loop
Consumer will consume these numbers in infinite loop
Both Producer and Consumer share lock free and Thread safe LinkedBlockingQueue which is Thread safe. You can remove wait() and notify() methods if you use these advanced concurrent constructs.
Seems like you skipped something about wait(), notify() and synchronized.
See this example, it should help you.