Is there a "fill" function for arbitrary shapes in javafx? - java

I need to know in which way I can color the following image (PNG) by using JavaFX. This image is currently included in a ImageView of JavaFX:
I want to color region 1 blue, the second one red, and the last two purple. How can I do this in JavaFX? Isn't there some kind of function as in Windows Paint? (You know, the painting bucket that fills a certain area with a color between borders).

Suggested Approach
You can use a flood fill algorithm.
Sample Code
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Point2D;
import javafx.scene.Scene;
import javafx.scene.image.*;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import java.util.Stack;
public class UnleashTheKraken extends Application {
public static void main(String[] args) {
launch(args);
}
#Override
public void start(final Stage stage) {
Image original = new Image(
"http://s12.postimg.org/wofhjvy2h/image_2.jpg"
);
WritableImage updateable = new WritableImage(
original.getPixelReader(),
(int) original.getWidth(),
(int) original.getHeight()
);
Kraken kraken = new Kraken(updateable, Color.WHITE);
kraken.unleash(new Point2D(40, 40), Color.BLUE);
kraken.unleash(new Point2D(40, 100), Color.RED);
kraken.unleash(new Point2D(100, 100), Color.GREEN);
kraken.unleash(new Point2D(120, 40), Color.YELLOW);
ImageView originalView = new ImageView(original);
ImageView filledView = new ImageView(updateable);
HBox layout = new HBox(10, originalView, filledView);
layout.setPadding(new Insets(10));
stage.setScene(new Scene(layout));
stage.show();
}
class Kraken {
private final WritableImage image;
private final Color colorToFill;
// tolerance for color matching (on a scale of 0 to 1);
private final double E = 0.3;
public Kraken(WritableImage image, Color colorToFill) {
this.image = image;
this.colorToFill = colorToFill;
}
public void unleash(Point2D start, Color color) {
PixelReader reader = image.getPixelReader();
PixelWriter writer = image.getPixelWriter();
Stack<Point2D> stack = new Stack<>();
stack.push(start);
while (!stack.isEmpty()) {
Point2D point = stack.pop();
int x = (int) point.getX();
int y = (int) point.getY();
if (filled(reader, x, y)) {
continue;
}
writer.setColor(x, y, color);
push(stack, x - 1, y - 1);
push(stack, x - 1, y );
push(stack, x - 1, y + 1);
push(stack, x , y + 1);
push(stack, x + 1, y + 1);
push(stack, x + 1, y );
push(stack, x + 1, y - 1);
push(stack, x, y - 1);
}
}
private void push(Stack<Point2D> stack, int x, int y) {
if (x < 0 || x > image.getWidth() ||
y < 0 || y > image.getHeight()) {
return;
}
stack.push(new Point2D(x, y));
}
private boolean filled(PixelReader reader, int x, int y) {
Color color = reader.getColor(x, y);
return !withinTolerance(color, colorToFill, E);
}
private boolean withinTolerance(Color a, Color b, double epsilon) {
return
withinTolerance(a.getRed(), b.getRed(), epsilon) &&
withinTolerance(a.getGreen(), b.getGreen(), epsilon) &&
withinTolerance(a.getBlue(), b.getBlue(), epsilon);
}
private boolean withinTolerance(double a, double b, double epsilon) {
return Math.abs(a - b) < epsilon;
}
}
}
Answers to additional questions
But wouldn't the image be colored pixel by pixel?
Yes, that's the point, you need to shade the pixels. Everything in computer graphics with bitmapped displays eventually comes down to coloring pixels.
Is this an efficient way in coloring?
It's instantaneous (as far as I can tell) on the sample image you provided. Space-wise it takes up some memory, but all such algorithms will use memory. The sample code I provided is not the most efficient flood fill shading algorithm which could be devised (time or space wise). The wikipedia page I linked has alternate more efficient (and more complicated) algorithms you could apply if you needed to.
Alternate Approach
If you have a cut-out stencil shape for each area, you could stack the stencils and apply ColorAdjust effects to them (such as in: How to change color of image in JavaFX). The ColorAdjust is (likely) a hardware accelerated effect. This alternate is not a general approach though as it requires you to know the stencil shapes.

Shape circle = new Circle(x,y,r);
Shape rect = new Rectangle(x,y,w,h);
Shape region1 = Shape.subtract(circle, rect);// to "cut" the rect away from a circle.
// You'll need to do this twice for each piece.
region1 = Shape.subtract(region1,anotherRect);
region1.setFill(Color.BLUE);
// Then simply add your shape to a node and set it's translation.
The way this works is that where the rectangle overlaps the circle, that part of the circle will be removed.

Related

Rotating shape and drawing it at the original position

I'm trying to draw a rotated shape at a given point. To give an example, in the following image, the red rectangle is a non-rotated rectangle drawn at a point and then the blue rectangle is rotated and drawn at the same position. The blue rectangle is the outcome I'm aiming for.
I've been experimenting and trying different methods. Currently, here is what I used for the image:
Point point = new Point(300, 300);
Dimension dim = new Dimension(200, 100);
double radians = Math.toRadians(30);
g.setColor(new java.awt.Color(1f, 0f, 0f, .5f));
g.fillRect(point.x, point.y, dim.width, dim.height);
translate(g, dim, radians);
g.rotate(radians, point.getX(), point.getY());
g.setColor(new java.awt.Color(0f, 0f, 1f, .5f));
g.fillRect(point.x, point.y, dim.width, dim.height);
private static void translate(Graphics2D g, Dimension dim, double radians) {
if (radians > Math.toRadians(360)) {
radians %= Math.toRadians(360);
}
int xOffsetX = 0;
int xOffsetY = 0;
int yOffsetX = 0;
int yOffsetY = 0;
if (radians > 0 && radians <= Math.toRadians(90)) {
xOffsetY -= dim.getHeight();
} else if (radians > Math.toRadians(90) && radians <= Math.toRadians(180)) {
xOffsetX -= dim.getWidth();
xOffsetY -= dim.getHeight();
yOffsetY -= dim.getHeight();
} else if (radians > Math.toRadians(180) && radians <= Math.toRadians(270)) {
xOffsetX -= dim.getWidth();
yOffsetX -= dim.getWidth();
yOffsetY -= dim.getHeight();
} else {
yOffsetX -= dim.getWidth();
}
int x = rotateX(xOffsetX, xOffsetY, radians);
int y = rotateY(yOffsetX, yOffsetY, radians);
g.translate(x, y);
}
private static int rotateX(int x, int y, double radians) {
if (x == 0 && y == 0) {
return 0;
}
return (int) Math.round(x * Math.cos(radians) - y * Math.sin(radians));
}
private static int rotateY(int x, int y, double radians) {
if (x == 0 && y == 0) {
return 0;
}
return (int) Math.round(x * Math.sin(radians) + y * Math.cos(radians));
}
This works for rectangles but doesn't work for other types of shapes. I'm trying to figure out if there is a way to accomplish this for every type of shape. Also note that the code is just for testing purposes and there are a lot of bad practices in it, like calling Math.toRadians so much.
Something like this?
It can be achieved using a rotate transform first, then using the bounds of the rotated shape as a basis, the translate transform can be used to shift it back to meet the top most y and leftmost x values of the original rectangle.
See the getImage() method for one implementation of that.
int a = angleModel.getNumber().intValue();
AffineTransform rotateTransform = AffineTransform.getRotateInstance((a*2*Math.PI)/360d);
// rotate the original shape with no regard to the final bounds
Shape rotatedShape = rotateTransform.createTransformedShape(rectangle);
// get the bounds of the rotated shape
Rectangle2D rotatedRect = rotatedShape.getBounds2D();
// calculate the x,y offset needed to shift it to top/left bounds of original rectangle
double xOff = rectangle.getX()-rotatedRect.getX();
double yOff = rectangle.getY()-rotatedRect.getY();
AffineTransform translateTransform = AffineTransform.getTranslateInstance(xOff, yOff);
// shift the new shape to the top left of original rectangle
Shape rotateAndTranslateShape = translateTransform.createTransformedShape(rotatedShape);
Here is the complete source code:
import java.awt.*;
import java.awt.geom.*;
import java.awt.image.BufferedImage;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.border.EmptyBorder;
public class TransformedShape {
private JComponent ui = null;
JLabel output = new JLabel();
JToolBar tools = new JToolBar("Tools");
ChangeListener changeListener = (ChangeEvent e) -> {
refresh();
};
int pad = 5;
Rectangle2D.Double rectangle = new Rectangle2D.Double(pad,pad,200,100);
SpinnerNumberModel angleModel = new SpinnerNumberModel(30, 0, 90, 1);
public TransformedShape() {
initUI();
}
private BufferedImage getImage() {
int a = angleModel.getNumber().intValue();
AffineTransform rotateTransform = AffineTransform.getRotateInstance((a*2*Math.PI)/360d);
Shape rotatedShape = rotateTransform.createTransformedShape(rectangle);
Rectangle2D rotatedRect = rotatedShape.getBounds2D();
double xOff = rectangle.getX()-rotatedRect.getX();
double yOff = rectangle.getY()-rotatedRect.getY();
AffineTransform translateTransform = AffineTransform.getTranslateInstance(xOff, yOff);
Shape rotateAndTranslateShape = translateTransform.createTransformedShape(rotatedShape);
Area combinedShape = new Area(rotateAndTranslateShape);
combinedShape.add(new Area(rectangle));
Rectangle2D r = combinedShape.getBounds2D();
BufferedImage bi = new BufferedImage((int)(r.getWidth()+(2*pad)), (int)(r.getHeight()+(2*pad)), BufferedImage.TYPE_INT_ARGB);
Graphics2D g = bi.createGraphics();
g.setRenderingHint(RenderingHints.KEY_ALPHA_INTERPOLATION, RenderingHints.VALUE_ALPHA_INTERPOLATION_QUALITY);
g.setRenderingHint(RenderingHints.KEY_COLOR_RENDERING, RenderingHints.VALUE_COLOR_RENDER_QUALITY);
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g.setColor(new Color(255,0,0,127));
g.fill(rectangle);
g.setColor(new Color(0,0,255,127));
g.fill(rotateAndTranslateShape);
g.dispose();
return bi;
}
private void addModelToToolbar(String label, SpinnerNumberModel model) {
tools.add(new JLabel(label));
JSpinner spinner = new JSpinner(model);
spinner.addChangeListener(changeListener);
tools.add(spinner);
}
public final void initUI() {
if (ui!=null) return;
ui = new JPanel(new BorderLayout(4,4));
ui.setBorder(new EmptyBorder(4,4,4,4));
ui.add(output);
ui.add(tools,BorderLayout.PAGE_START);
addModelToToolbar("Angle", angleModel);
refresh();
}
private void refresh() {
output.setIcon(new ImageIcon(getImage()));
}
public JComponent getUI() {
return ui;
}
public static void main(String[] args) {
Runnable r = () -> {
try {
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (Exception ex) {
ex.printStackTrace();
}
TransformedShape o = new TransformedShape();
JFrame f = new JFrame(o.getClass().getSimpleName());
f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
f.setLocationByPlatform(true);
f.setContentPane(o.getUI());
f.pack();
f.setMinimumSize(f.getSize());
f.setVisible(true);
};
SwingUtilities.invokeLater(r);
}
}
You have a shape, any shape.
You have a point (px,py) and you want to rotate the shape around this point and angle ag measured counter-clokwise.
For each point of the shape the proccess has three steps:
Translate to (px,py)
Rotate
Translate back to (0,0)
The translation is fully simple
xNew = xOld - px
yNew = yOld - py
The rotation is a bit less simple
xRot = xNew * cos(ag) - yNew * sin(ag)
yRot = xNew * sin(ag) + yNew * cos(ag)
Finally the translation back:
xDef = xRot + px
yDef = yRot + py
A bit of explanation: Any transformation can be seen in two ways: 1) I move the shape 2) I move the axis-system. If you think about it, you'll find that the trasnsformation is relative: seen from the axis point of view or seen from the shape point of view.
So, you can say "I want coordinates in the translated system", or you can also say "I want the coordinates of the translated shape".
It doesn't matter what point of view you chose, the equations are the same.
I'm explaining this so much, just to achieve you realize which is the positive direction of the angle: clockwise or counter-clockwise.

Image crop, Remove unwanted white portion of Image using Java [duplicate]

This question already has answers here:
Crop/trim a JPG file with empty space with Java
(3 answers)
Closed 3 years ago.
Image crop, Remove unwanted white portion of Image using Java.
How can we Remove unwanted white portion of Image using Java? I am having image which have plan white region, I want to remove that unused white part of Image apart from my useful main image using JAVA Code. you can get clear idea form below shown image. i need to perform this task using Java code.
Click here to view image
This is a (very) simple example of a brute force method. Basically, it walks the image until the color changes from the desired fill color
This is woefully inefficient. I had thought about using a divide and conquer approach, but I really don't have the time to flesh it out.
import java.awt.Color;
import java.awt.Rectangle;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
import javax.swing.ImageIcon;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
public class Test {
public static void main(String[] args) throws IOException {
BufferedImage img = ImageIO.read(new File("/Users/swhitehead/Downloads/47hb1.png"));
Rectangle bounds = getBounds(img, Color.WHITE);
System.out.println(bounds);
BufferedImage trimmed = img.getSubimage(bounds.x, bounds.y, bounds.width, bounds.height);
JOptionPane.showMessageDialog(null, new JLabel(new ImageIcon(trimmed)));
}
public static Rectangle getBounds(BufferedImage img, Color fillColor) {
int top = getYInset(img, 20, 0, 1, fillColor);
int bottom = getYInset(img, 20, img.getHeight() - 1, -1, fillColor);
int left = getXInset(img, 0, top, 1, fillColor);
int right = getXInset(img, img.getWidth() - 1, top, -1, fillColor);
return new Rectangle(left, top, right - left, bottom - top);
}
public static int getYInset(BufferedImage img, int x, int y, int step, Color fillColor) {
while (new Color(img.getRGB(x, y), true).equals(fillColor)) {
y += step;
}
return y;
}
public static int getXInset(BufferedImage img, int x, int y, int step, Color fillColor) {
while (new Color(img.getRGB(x, y), true).equals(fillColor)) {
x += step;
}
return x;
}
}
You can use an image processing framework to make image manipulation more easy.
In the example below I used Marvin. My approach:
Use gray scale thresholding to separate the white pixels from the rest of the image.
Find the bounding-box of the black segment
Crop the original image using segment detected in previous step.
Input:
Output (board_cropped.png):
Source code:
import static marvin.MarvinPluginCollection.*;
import java.awt.Rectangle;
import marvin.image.MarvinImage;
import marvin.io.MarvinImageIO;
public class BoardSegmentation {
public BoardSegmentation() {
MarvinImage imageOriginal = MarvinImageIO.loadImage("./res/board.png");
MarvinImage image = imageOriginal.clone();
thresholding(image, 250);
Rectangle rect = getBoundingBox(image);
crop(imageOriginal, image, rect.x, rect.y, rect.width, rect.height);
MarvinImageIO.saveImage(image, "./res/board_cropped.png");
}
public Rectangle getBoundingBox(MarvinImage image) {
Rectangle r = new Rectangle();
r.x = -1; r.y = -1; r.width = -1; r.height = -1;
for(int y=0; y<image.getHeight(); y++) {
for(int x=0; x<image.getWidth(); x++) {
if(image.getIntColor(x, y) == 0xFF000000) {
if(r.x == -1 || x < r.x) { r.x = x; }
if(r.width == -1 || x > r.x + r.width) { r.width = x - r.x; }
if(r.y == -1 || x < r.y) { r.y = y; }
if(r.height == -1 || y > r.y + r.height) { r.height = y - r.y; }
}
}
}
return r;
}
public static void main(String[] args) {
new BoardSegmentation();
}
}

Drawing fully transparent "white" in Java BufferedImage

This might sound like a bit of strange title, but bear with me, there is a reason:
I am trying to generate a white glow around a text on a gray background.
To generate the glow, I created a new BufferedImage that's bigger than the text, then I drew the text in white onto the canvas of the image and ran a Gaussian Blur over the image via a ConvolveOp, hoping for something like this:
At first I was a bit surprised when the glow turned out darker than the gray background of the text:
But after a bit of thinking, I understood the problem:
The convolution operates on each color channel (R, G, B, and A) independently to calculate the blurred image. The transparent background of the picture has color value 0x00000000, i.e. a fully transparent black! So, when the convolution filter runs over the image, it not only blends the alpha value, but also mixes the black into the RGB values of the white pixels. This is why the glow comes out dark.
To fix this, I need to initialize the image to 0x00FFFFFF, i.e. a fully transparent white instead, but if I just set that color and fill a rectangle with it, it simply does nothing as Java says "well, it's a fully transparent rectangle that you're drawing! That's not going to change the image... Let me optimize that away for you... Done... You're welcome.".
If I instead set the color to 0x01FFFFFF, i.e. an almost fully transparent white, it does draw the rectangle and the glow looks beautiful, except I end up with a very faint white box around it...
Is there a way I can initialize the image to 0x00FFFFFF everywhere?
UPDATE:
I found one way, but it's probably as non-optimal as you can get:
I draw an opaque white rectangle onto the image and then I run a RescaleOp over the image that sets all alpha values to 0. This works, but it's probably a terrible approach as far as performance goes.
Can I do better somehow?
PS: I'm also open to entirely different suggestions for creating such a glow effect
The main reason why the glow appeared darker with your initial approach is most likely that you did not use an image with a premultiplied alpha component. The JavaDoc of ConvolveOp contains some information about how the alpha component is treated during a convolution.
You could work around this with an "almost fully transparent white". But alternatively, you may simply use an image with premultiplied alpha, i.e. one with the type TYPE_INT_ARGB_PRE.
Here is a MCVE that draws a panel with some text, and some pulsing glow around the text (remove the timer and set a fixed radius to remove the pulse - I couldn't resist playing around a little here ...).
import java.awt.AlphaComposite;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.image.BufferedImage;
import java.awt.image.ConvolveOp;
import java.awt.image.Kernel;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;
import javax.swing.Timer;
public class TextGlowTest
{
public static void main(String[] args)
{
SwingUtilities.invokeLater(new Runnable()
{
#Override
public void run()
{
createAndShowGUI();
}
});
}
private static void createAndShowGUI()
{
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.getContentPane().add(new TextGlowPanel());
f.setSize(300,200);
f.setLocationRelativeTo(null);
f.setVisible(true);
}
}
class TextGlowPanel extends JPanel
{
private BufferedImage image;
private int radius = 1;
TextGlowPanel()
{
Timer t = new Timer(50, new ActionListener()
{
long startMillis = -1;
#Override
public void actionPerformed(ActionEvent e)
{
if (startMillis == -1)
{
startMillis = System.currentTimeMillis();
}
long d = System.currentTimeMillis() - startMillis;
double s = d / 1000.0;
radius = (int)(1 + 15 * (Math.sin(s * 3) * 0.5 + 0.5));
repaint();
}
});
t.start();
}
#Override
protected void paintComponent(Graphics gr)
{
super.paintComponent(gr);
gr.setColor(Color.GRAY);
int w = getWidth();
int h = getHeight();
gr.fillRect(0, 0, w, h);
if (image == null || image.getWidth() != w || image.getHeight() != h)
{
// Must be prmultiplied!
image = new BufferedImage(w, h, BufferedImage.TYPE_INT_ARGB_PRE);
}
Graphics2D g = image.createGraphics();
Font font = g.getFont().deriveFont(70.0f).deriveFont(Font.BOLD);
g.setFont(font);
g.setComposite(AlphaComposite.Src);
g.setColor(new Color(255,255,255,0));
g.fillRect(0,0,w,h);
g.setComposite(AlphaComposite.SrcOver);
g.setColor(new Color(255,255,255,0));
g.fillRect(0,0,w,h);
g.setColor(Color.WHITE);
g.drawString("Glow!", 50, 100);
image = getGaussianBlurFilter(radius, true).filter(image, null);
image = getGaussianBlurFilter(radius, false).filter(image, null);
g.dispose();
g = image.createGraphics();
g.setFont(font);
g.setColor(Color.BLUE);
g.drawString("Glow!", 50, 100);
g.dispose();
gr.drawImage(image, 0, 0, null);
}
// From
// http://www.java2s.com/Code/Java/Advanced-Graphics/GaussianBlurDemo.htm
public static ConvolveOp getGaussianBlurFilter(
int radius, boolean horizontal)
{
if (radius < 1)
{
throw new IllegalArgumentException("Radius must be >= 1");
}
int size = radius * 2 + 1;
float[] data = new float[size];
float sigma = radius / 3.0f;
float twoSigmaSquare = 2.0f * sigma * sigma;
float sigmaRoot = (float) Math.sqrt(twoSigmaSquare * Math.PI);
float total = 0.0f;
for (int i = -radius; i <= radius; i++)
{
float distance = i * i;
int index = i + radius;
data[index] =
(float) Math.exp(-distance / twoSigmaSquare) / sigmaRoot;
total += data[index];
}
for (int i = 0; i < data.length; i++)
{
data[i] /= total;
}
Kernel kernel = null;
if (horizontal)
{
kernel = new Kernel(size, 1, data);
}
else
{
kernel = new Kernel(1, size, data);
}
return new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP, null);
}
}
I've found that clearRect should paint a transparent color.
g.setBackground(new Color(0x00FFFFFF, true));
g.clearRect(0, 0, img.getWidth(), img.getHeight());
You should also be able to force the BufferedImage to fill with a transparent color by setting the pixel data directly.
public static void forceFill(BufferedImage img, int rgb) {
for(int x = 0; x < img.getWidth(); x++) {
for(int y = 0; y < img.getHeight(); y++) {
img.setRGB(x, y, rgb);
}
}
}
It is not clearly documented but I tested it and setRGB appears to accept an ARGB value.

Snap to Edge Effect

My final goal is to have a method, lets say:
Rectangle snapRects(Rectangle rec1, Rectangle rec2);
Imagine a Rectangle having info on position, size and angle.
Dragging and dropping the ABDE rectangle close to the BCGF rectangle would call the method with ABDE as first argument and BCGF as second argument, and the resulting rectangle is a rectangle lined up with BCGF's edge.
The vertices do not have to match (and preferrably won't so the snapping isn't so restrictive).
I can only understand easily how to give the same angle, but the position change is quite confusing to me. Also, i believe even if i reached a solution it would be quite badly optimized (excessive resource cost), so I would appreciate guidance on this.
(This has already been asked but no satisfatory answer was given and the question forgotten.)
------------------------------------------------------------------
Edit: It seems my explanation was insufficient so I will try to clarify my wishes:
The following image shows the goal of the method in a nutshell:
Forget about "closest rectangle", imagine there are just two rectangles. The lines inside the rectangles represent the direction they are facing (visual aid for the angle).
There is a static rectangle, which is not to be moved and has an angle (0->360), and a rectangle (also with an angle) which I want to Snap to the closest edge of the static rectangle. By this, i mean, i want the least transformations possible for the "snap to edge" to happen.
This brings many possible cases, depending on the rotation of the rectangles and their position relative to each other.
The next image shows the static rectangle and how the position of the "To Snap" rectangle changes the snapping result:
The final rotations might not be perfect since it was done by eye, but you get the point, it matters the relative position and also both angles.
Now, in my point of view, which may be completely naive, I see this problem solved on two important and distinct steps on transforming the "To Snap" rectangle: Positioning and Rotation
Position: The objective of the new position is to stick to the closest edge, but since we want it to stick paralell to the static rectangle, the angle of the static rectangle matters. The next image shows examples of positioning:
In this case, the static rectangle has no angle, so its easy to determine up, down, left and right. But with angle, there are alot more possibilities:
As for the rotation, the goal is for the "to snap" rectangle to rotate the minimum needed to become paralell with the static rectangle:
As a final note, in regard of implementation input, the goal is to actually drag the "to snap" rectangle to wherever position i wish around the static rectangle and by pressing a keyboard key, the snap happens.
Also, it appears i have exagerated a little when i asked for optimization, to be honest i do not need or require optimization, I do prefer an easy to read, step by step clear code (if its the case), rather than any optimization at all.
I hope i was clear this time, sorry for the lack of clarity in the first place, if you have any more doubts please do ask.
The problem is obviously underspecified: What does "line up" for the edges mean? A common start point (but not necessarily a common end point)? A common center point for both edges? (That's what I assumed now). Should ALL edges match? What is the criterion for deciding WHICH edge of the first rectangle should be "matched" with WHICH edge of the second rectangle? That is, imagine one square consists exactly of the center points of the edges of the other square - how should it be aligned then?
(Secondary question: In how far is optimization (or "low resource cost") important?)
However, I wrote a few first lines, maybe this can be used to point out more clearly what the intended behavior should be - namely by saying in how far the intended behavior differs from the actual behavior:
EDIT: Old code omitted, update based on the clarification:
The conditions for the "snapping" are still not unambiguous. For example, it is not clear whether the change in position or the change in the angle should be preferred. But admittedly, I did not figure out in detail all possible cases where this question could arise. In any case, based on the updated question, this might be closer to what you are looking for.
NOTE: This code is neither "clean" nor particularly elegant or efficient. The goal until now was to find a method that delivers "satisfactory" results. Optimizations and beautifications are possible.
The basic idea:
Given are the static rectangle r1, and the rectangle to be snapped, r0
Compute the edges that should be snapped together. This is divided in two steps:
The method computeCandidateEdgeIndices1 computes the "candidate edges" (resp. their indices) of the static rectangle that the moving rectangle may be snapped to. This is based on the folowing criterion: It checks how many vertices (corners) of the moving rectangle are right of the particular edge. For example, if all 4 vertices of the moving rectangle are right of edge 2, then edge 2 will be a candidate for snapping the rectangle to.
Since there may be multiple edges for which the same number of vertices may be "right", the method computeBestEdgeIndices computes the candidate edge whose center has the least distance to the center of any edge of the moving rectangle. The indices of the respective edges are returned
Given the indices of the edges to be snapped, the angle between these edges is computed. The resulting rectangle will be the original rectangle, rotated by this angle.
The rotated rectangle will be moved so that the centers of the snapped edges are at the same point
I tested this with several configurations, and the results at least seem "feasible" for me. Of course, this does not mean that it works satisfactory in all cases, but maybe it can serve as a starting point.
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.event.MouseEvent;
import java.awt.event.MouseMotionListener;
import java.awt.geom.AffineTransform;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.util.ArrayList;
import java.util.List;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;
public class RectangleSnap
{
public static void main(String[] args)
{
SwingUtilities.invokeLater(new Runnable()
{
#Override
public void run()
{
createAndShowGUI();
}
});
}
private static void createAndShowGUI()
{
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
RectangleSnapPanel panel = new RectangleSnapPanel();
f.getContentPane().add(panel);
f.setSize(1000,1000);
f.setLocationRelativeTo(null);
f.setVisible(true);
}
}
class SnapRectangle
{
private Point2D position;
private double sizeX;
private double sizeY;
private double angleRad;
private AffineTransform at;
SnapRectangle(
double x, double y,
double sizeX, double sizeY, double angleRad)
{
this.position = new Point2D.Double(x,y);
this.sizeX = sizeX;
this.sizeY = sizeY;
this.angleRad = angleRad;
at = AffineTransform.getRotateInstance(
angleRad, position.getX(), position.getY());
}
double getAngleRad()
{
return angleRad;
}
double getSizeX()
{
return sizeX;
}
double getSizeY()
{
return sizeY;
}
Point2D getPosition()
{
return position;
}
void draw(Graphics2D g)
{
Color oldColor = g.getColor();
Rectangle2D r = new Rectangle2D.Double(
position.getX(), position.getY(), sizeX, sizeY);
AffineTransform at = AffineTransform.getRotateInstance(
angleRad, position.getX(), position.getY());
g.draw(at.createTransformedShape(r));
g.setColor(Color.RED);
for (int i=0; i<4; i++)
{
Point2D c = getCorner(i);
Ellipse2D e = new Ellipse2D.Double(c.getX()-3, c.getY()-3, 6, 6);
g.fill(e);
g.drawString(""+i, (int)c.getX(), (int)c.getY()+15);
}
g.setColor(Color.GREEN);
for (int i=0; i<4; i++)
{
Point2D c = getEdgeCenter(i);
Ellipse2D e = new Ellipse2D.Double(c.getX()-3, c.getY()-3, 6, 6);
g.fill(e);
g.drawString(""+i, (int)c.getX(), (int)c.getY()+15);
}
g.setColor(oldColor);
}
Point2D getCorner(int i)
{
switch (i)
{
case 0:
return new Point2D.Double(position.getX(), position.getY());
case 1:
{
Point2D.Double result = new Point2D.Double(
position.getX(), position.getY()+sizeY);
return at.transform(result, null);
}
case 2:
{
Point2D.Double result = new Point2D.Double
(position.getX()+sizeX, position.getY()+sizeY);
return at.transform(result, null);
}
case 3:
{
Point2D.Double result = new Point2D.Double(
position.getX()+sizeX, position.getY());
return at.transform(result, null);
}
}
return null;
}
Line2D getEdge(int i)
{
Point2D p0 = getCorner(i);
Point2D p1 = getCorner((i+1)%4);
return new Line2D.Double(p0, p1);
}
Point2D getEdgeCenter(int i)
{
Point2D p0 = getCorner(i);
Point2D p1 = getCorner((i+1)%4);
Point2D c = new Point2D.Double(
p0.getX() + 0.5 * (p1.getX() - p0.getX()),
p0.getY() + 0.5 * (p1.getY() - p0.getY()));
return c;
}
void setPosition(double x, double y)
{
this.position.setLocation(x, y);
at = AffineTransform.getRotateInstance(
angleRad, position.getX(), position.getY());
}
}
class RectangleSnapPanel extends JPanel implements MouseMotionListener
{
private final SnapRectangle rectangle0;
private final SnapRectangle rectangle1;
private SnapRectangle snappedRectangle0;
RectangleSnapPanel()
{
this.rectangle0 = new SnapRectangle(
200, 300, 250, 200, Math.toRadians(-21));
this.rectangle1 = new SnapRectangle(
500, 300, 200, 150, Math.toRadians(36));
addMouseMotionListener(this);
}
#Override
protected void paintComponent(Graphics gr)
{
super.paintComponent(gr);
Graphics2D g = (Graphics2D)gr;
g.setColor(Color.BLACK);
rectangle0.draw(g);
rectangle1.draw(g);
if (snappedRectangle0 != null)
{
g.setColor(Color.BLUE);
snappedRectangle0.draw(g);
}
}
#Override
public void mouseDragged(MouseEvent e)
{
rectangle0.setPosition(e.getX(), e.getY());
snappedRectangle0 = snapRects(rectangle0, rectangle1);
repaint();
}
#Override
public void mouseMoved(MouseEvent e)
{
}
private static SnapRectangle snapRects(
SnapRectangle r0, SnapRectangle r1)
{
List<Integer> candidateEdgeIndices1 =
computeCandidateEdgeIndices1(r0, r1);
int bestEdgeIndices[] = computeBestEdgeIndices(
r0, r1, candidateEdgeIndices1);
int bestEdgeIndex0 = bestEdgeIndices[0];
int bestEdgeIndex1 = bestEdgeIndices[1];
System.out.println("Best to snap "+bestEdgeIndex0+" to "+bestEdgeIndex1);
Line2D bestEdge0 = r0.getEdge(bestEdgeIndex0);
Line2D bestEdge1 = r1.getEdge(bestEdgeIndex1);
double edgeAngle = angleRad(bestEdge0, bestEdge1);
double rotationAngle = edgeAngle;
if (rotationAngle <= Math.PI)
{
rotationAngle = Math.PI + rotationAngle;
}
else if (rotationAngle <= -Math.PI / 2)
{
rotationAngle = Math.PI + rotationAngle;
}
else if (rotationAngle >= Math.PI)
{
rotationAngle = -Math.PI + rotationAngle;
}
SnapRectangle result = new SnapRectangle(
r0.getPosition().getX(), r0.getPosition().getY(),
r0.getSizeX(), r0.getSizeY(), r0.getAngleRad()-rotationAngle);
Point2D edgeCenter0 = result.getEdgeCenter(bestEdgeIndex0);
Point2D edgeCenter1 = r1.getEdgeCenter(bestEdgeIndex1);
double dx = edgeCenter1.getX() - edgeCenter0.getX();
double dy = edgeCenter1.getY() - edgeCenter0.getY();
result.setPosition(
r0.getPosition().getX()+dx,
r0.getPosition().getY()+dy);
return result;
}
// Compute for the edge indices for r1 in the given list
// the one that has the smallest distance to any edge
// of r0, and return this pair of indices
private static int[] computeBestEdgeIndices(
SnapRectangle r0, SnapRectangle r1,
List<Integer> candidateEdgeIndices1)
{
int bestEdgeIndex0 = -1;
int bestEdgeIndex1 = -1;
double minCenterDistance = Double.MAX_VALUE;
for (int i=0; i<candidateEdgeIndices1.size(); i++)
{
int edgeIndex1 = candidateEdgeIndices1.get(i);
for (int edgeIndex0=0; edgeIndex0<4; edgeIndex0++)
{
Point2D p0 = r0.getEdgeCenter(edgeIndex0);
Point2D p1 = r1.getEdgeCenter(edgeIndex1);
double distance = p0.distance(p1);
if (distance < minCenterDistance)
{
minCenterDistance = distance;
bestEdgeIndex0 = edgeIndex0;
bestEdgeIndex1 = edgeIndex1;
}
}
}
return new int[]{ bestEdgeIndex0, bestEdgeIndex1 };
}
// Compute the angle, in radians, between the given lines,
// in the range (-2*PI, 2*PI)
private static double angleRad(Line2D line0, Line2D line1)
{
double dx0 = line0.getX2() - line0.getX1();
double dy0 = line0.getY2() - line0.getY1();
double dx1 = line1.getX2() - line1.getX1();
double dy1 = line1.getY2() - line1.getY1();
double a0 = Math.atan2(dy0, dx0);
double a1 = Math.atan2(dy1, dx1);
return (a0 - a1) % (2 * Math.PI);
}
// In these methods, "right" refers to screen coordinates, which
// unfortunately are upside down in Swing. Mathematically,
// these relation is "left"
// Compute the "candidate" edges of r1 to which r0 may
// be snapped. These are the edges to which the maximum
// number of corners of r0 are right of
private static List<Integer> computeCandidateEdgeIndices1(
SnapRectangle r0, SnapRectangle r1)
{
List<Integer> bestEdgeIndices = new ArrayList<Integer>();
int maxRight = 0;
for (int i=0; i<4; i++)
{
Line2D e1 = r1.getEdge(i);
int right = countRightOf(e1, r0);
if (right > maxRight)
{
maxRight = right;
bestEdgeIndices.clear();
bestEdgeIndices.add(i);
}
else if (right == maxRight)
{
bestEdgeIndices.add(i);
}
}
//System.out.println("Candidate edges "+bestEdgeIndices);
return bestEdgeIndices;
}
// Count the number of corners of the given rectangle
// that are right of the given line
private static int countRightOf(Line2D line, SnapRectangle r)
{
int count = 0;
for (int i=0; i<4; i++)
{
if (isRightOf(line, r.getCorner(i)))
{
count++;
}
}
return count;
}
// Returns whether the given point is right of the given line
// (referring to the actual line *direction* - not in terms
// of coordinates in 2D!)
private static boolean isRightOf(Line2D line, Point2D point)
{
double d00 = line.getX1() - point.getX();
double d01 = line.getY1() - point.getY();
double d10 = line.getX2() - point.getX();
double d11 = line.getY2() - point.getY();
return d00 * d11 - d10 * d01 > 0;
}
}

How do I flip an image upside-down?

I was wondering if I could find some help on this problem. I was asked to use an image ("corn.jpg"), and flip it entirely upside down. I know I need to write a program which will switch pixels from the top left corner with the bottom left, and so on, but I wasn't able to get my program to work properly before time ran out. Could anyone provide a few tips or suggestions to solve this problem? I'd like to be able to write my code out myself, so suggestions only please. Please note that my knowledge of APImage and Pixel is very limited. I am programming in Java.
Here is what I managed to get done.
import images.APImage;
import images.Pixel;
public class Test2
{
public static void main(String [] args)
{
APImage image = new APImage("corn.jpg");
int width = image.getImageWidth();
int height = image.getImageHeight();
int middle = height / 2;
//need to switch pixels in bottom half with the pixels in the top half
//top half of image
for(int y = 0; y < middle; y++)
{
for (int x = 0; x < width; x++)
{
//bottom half of image
for (int h = height; h > middle; h++)
{
for(int w = 0; w < width; w++)
{
Pixel bottomHalf = image.getPixel(h, w);
Pixel topHalf = image.getPixel(x, y);
//set bottom half pixels to corresponding top ones?
bottomHalf.setRed(topHalf.getRed());
bottomHalf.setGreen(topHalf.getGreen());
bottomHalf.setBlue(topHalf.getBlue());
//set top half pixels to corresponding bottom ones?
topHalf.setRed(bottomHalf.getRed());
topHalf.setGreen(bottomHalf.getGreen());
topHalf.setBlue(bottomHalf.getBlue());
}
}
}
}
image.draw();
}
}
Thank you for your help!
See Transforming Shapes, Text, and Images.
import java.awt.*;
import java.awt.geom.AffineTransform;
import java.awt.image.BufferedImage;
import javax.swing.*;
public class FlipVertical {
public static BufferedImage getFlippedImage(BufferedImage bi) {
BufferedImage flipped = new BufferedImage(
bi.getWidth(),
bi.getHeight(),
bi.getType());
AffineTransform tran = AffineTransform.getTranslateInstance(0, bi.getHeight());
AffineTransform flip = AffineTransform.getScaleInstance(1d, -1d);
tran.concatenate(flip);
Graphics2D g = flipped.createGraphics();
g.setTransform(tran);
g.drawImage(bi, 0, 0, null);
g.dispose();
return flipped;
}
FlipVertical(BufferedImage bi) {
JPanel gui = new JPanel(new GridLayout(1,2,2,2));
gui.add(new JLabel(new ImageIcon(bi)));
gui.add(new JLabel(new ImageIcon(getFlippedImage(bi))));
JOptionPane.showMessageDialog(null, gui);
}
public static void main(String[] args) throws AWTException {
final Robot robot = new Robot();
Runnable r = new Runnable() {
#Override
public void run() {
final BufferedImage bi = robot.createScreenCapture(
new Rectangle(0, 660, 200, 100));
new FlipVertical(bi);
}
};
SwingUtilities.invokeLater(r);
}
}
Whenever you're swapping variables, if your language doesn't allow for simultaneous assignment (and Java doesn't), you need to use a temporary variable.
Consider this:
a = 1;
b = 2;
a = b; // a is now 2, just like b
b = a; // b now uselessly becomes 2 again
Rather than that, do this:
t = a; // t is now 1
a = b; // a is now 2
b = t; // b is now 1
EDIT: And also what #vandale says in comments :P
If you are able to use the Graphics class, the following may be of use:
http://www.javaworld.com/javatips/jw-javatip32.html
And the Graphics class documentation:
http://docs.oracle.com/javase/7/docs/api/java/awt/Graphics.html
Instead of using
Pixel bottomHalf = image.getPixel(h, w);
Pixel topHalf = image.getPixel(x, y);
//set bottom half pixels to corresponding top ones?
bottomHalf.setRed(topHalf.getRed());
bottomHalf.setGreen(topHalf.getGreen());
bottomHalf.setBlue(topHalf.getBlue());
//set top half pixels to corresponding bottom ones?
topHalf.setRed(bottomHalf.getRed());
topHalf.setGreen(bottomHalf.getGreen());
topHalf.setBlue(bottomHalf.getBlue());
You should have stored the bottomHalf's RGB into a temporary Pixel and used that to set topHalf after replacing bottomHalf's values (if you follow). You could have also really used something like this.... assuming your pixel operates on integer rgb values (which would have improved your main method).
private static final Pixel updateRGB(Pixel in, int red, int green, int blue) {
in.setRed(red); in.setGreen(green); in.setBlue(blue);
}
You want to flip the image upside down, not swap the top and bottom half.
The loop could look like this.
int topRow = 0;
int bottomRow = height-1;
while(topRow < bottomRow) {
for(int x = 0; x < width; x++) {
Pixel t = image.getPixel(x, topRow);
image.setPixel(x, topRow, image.getPixel(x, bottomRow));
image.setPixel(x, bottomRow, t);
}
topRow++;
bottomRow--;
}

Categories