I wish to compare the Read, Write and Read/Write speed for a burst of data on the following caching platforms:
EhCache
Redis
MemCached
GemFire
JCS (Java Caching System)
How can I do so? How can I make use of platforms like Spring and/or Hibernate in doing this?
Short answer: Just implement an example application and compare the speeds.
Long answer: The products you mention are very different. You can use them in different usage scenarios. E.g. I would roughly categorize it as follows:
Inside Java heap: JCS, EhCache
Off Java heap: MemCached
Distributed: Redis
Persistent: Redis
I left out GemFire, since I don't know anything about it.
Also you cannot do a direct comparison since the APIs are very different. For redis and memcache you use a rest interface. Theoretically it should be possible to implement for every product a JSR107 like API, so you can run a single test on the products. But again, that is senseless, since the products serve different purposes. For a real solution, it might be better to combine redis and EhCache. One solution for scaling and persistence, one solution for handling the caching part for Java objects within the Java heap.
I have done some benchmarking of Java caches. However it just covers the inside heap part, and runs only single threaded, so there is need for extension. For an entry look on the cache2k benchmarks page. The benchmark code is on github and runs OOTB. If you want to contribute to it, you're very welcome!
I suggest to use JMeter, where you can create some jobs to test the functionality of you application and create some Benchmarks.
http://jmeter.apache.org/
Related
I am trying to reconstruct a flow of information from multiple parts handled by different Java processes. Please note that i don't generate the flows, i just read some information about them.
I've tried using MySQL (MyISAM/InnoDB tables) with INSERT ON DUPLICATE KEY UPDATE using an id for each flow. I've also tried storing all the pieces of information and running a query at the end to get the full information. Neither of these approaches yielded the performance needed.
I'm looking for a solution that will allow me to have a set of shared objects between multiple Java processes. The objects should be persistent between runs and fast to lookup/update concurrently (>100k lookups/updates per second).
I've thought of a few solutions including:
NoSQL: something like MongoDB, HBase etc.
a caching solution like EhCache, Memcached etc.
The problem is i don't have any experience with any of these solutions. So, what would you recommend that fits the following criteria:
very fast on a single system. Most of the applications i mentioned were built for distributed systems, but it's not the case here.
easy to learn/use (i want to be able to prototype it in a day)
mature technology
free to use even for commercial purposes
preferably open-source
You could try a seperate java process that co-ordinates between the others. This process would hold the information to pass over to the main processes. You could wire them up with RMI.
If you want to do only exchange of objects withing java applications, you could also looki into tuple spaces. There are specific implementations of spaces for java, JavaSpaces, which should be able to do what you need. Not sure if they can keep up with the performance though. Also I’m not sure how widely this technology is still being used, since it only supports Java and isn’t as flexible as NoSQL stores would be these days.
Wikipedia has a more detailed description and list of different implementations, many of which are open source.
The other option is to go with Redis, you have notifications there and it can for sure scale to the requirements you are looking for.
The old (legacy?) solution is JavaSpaces. However, from an software architects point of view I would say distributed caches are the replacements for that nowadays. Especially take a look at hazelcast and infinispan.
From the performance viewpoint I am not happy with the performance of the "big" distributed caching solutions, when only a single in-memory cache is needed, see my writeup on the cache2k benchmarks page (hazelcast needs to be added here).
Anyways, please clarify your problem statement first, because your question falls into the XyProblem category. You are not describing the actual problem, and your question just boils down to "fast reliable distributed objects" solution. What kind of data comes in? What is the rate? Who is it accessed? What consistency guarantees need to be met, considering the fact that writing and reading is in parallel?
By the term "flow of information" it sounds more like a complex event processing problem to me.
I am looking for a Map to share information between two instances of a Java web application running on separate machines. Reads and writes to this map need to be very fast and don't have to be transactional i.e. its ok if one instance has stale data for a while.
Any recommendations?
I need to keep track of the last time a user did something in the application, so its not terribly bad if this information is out of date. Speed and ease of use are important. I don't want writes to the Map to impact response times.
I would try Hazelcast, JGroups or Ehcache. All support a distributed map.
EDIT: Another option is to use RMI top a service running in one or the other JVM. This avoids the need for an additional library.
Additionally, there is Memcached which is very robust and proven over the time.
I consider caching key-value lists stored in database. Right now for rendering of JSF pages, a lot of redundant queries are executed to find the names to be displayed for some keys (O/R-Mapper: Eclipselink).
The values are quasi-static, but can change very seldom by using the application (no change in database except by the application in question).
A simple cache would suffice when only using one application server. However, load balancing with multiple servers should be possible, avoiding returning stale values if data is changed using one server and therefore not reflected by the other server.
One idea would be to use oracle coherence as distributed cache. I'm not sure whether this is overkill because of the fact that the data is only changed very seldomly and the cache itself does not need to be distributed, only the invalidation should be.
What is the overhead of coherence in terms of memory, execution times and network communication? Are there any alternatives that better suit my use case?
I talk about 50.000 key value pairs, mainly short strings.
If the invalidation is that rare, then you can use a local cache and something like a JMS Topic that everyone subscribes to in order to handle the invalidation.
There's also something like EHCache as an alternative, since it's OSS and free to use vs Coherence, if that's important. I like to use EHCaches pull through ability.
Coherence has relatively low overhead, and can easily manage 50,000 (or 50,000,000) objects. However, if your use case is super simple, and you don't mind doing the invalidation work yourself, and don't need the various QoS that Coherence provides, then it probably is overkill.
Also, this simple use case can easily be done using the Coherence Standard Edition, which is far less expensive (licensed per server instead of per processor, and it's a much lower price).
For the sake of full disclosure, I work at Oracle. The opinions and views expressed in this post are my own, and do not necessarily reflect the opinions or views of my employer.
I am new to memcached and caching in general. I have a java web application running on Ubuntu + Tomcat + MySQL on a VPS Server with 1GB of memory.
Does it make sense to add a memcached layer with about 256MB for caching? Will this be too much load on the server? Which is more appropriate caching rendered html pages or database objects?
Please advise.
If you're going to cache pages, don't use memcached, use Varnish. However, there's a good chance that's not a great use of memory. Cacheing pages trades memory for computation and database work, but it does cost quite a lot of memory per page, so it's best for cases where the computation and database work needed to produce a single page amounts to a lot (or the pages are very small!). Also, consider that page cacheing won't be effective, or even possible, if you want to use per-user customisation on your pages (eg showing the number of items in a shopping cart). At least not without getting into some truly hairy shenanigans (edge-side includes, anyone?).
If you're not going to cache pages, and your app is on a single machine, then there's no point using memcached or similar. The point of cache servers like that is to make the memory on one machine work as a cache for another - like how a file server shares a disk, they're essentially memory servers. On a single machine, you might as well give all the memory to Java and cache objects on the heap.
Are you using an object-relational mapper? If so, see if it has any support for a second-level cache. The big three implementations (Hibernate, OpenJPA, and EclipseLink) all support in-memory caches. They're likely to do a much better job than you would if you did the cacheing yourself.
But, if you're not using a mapper, you have no choice but to do the cacheing yourself. There are extension points in LinkedHashMap for building LRU caches, and then of course there's the people's favourite, SoftReference, in combination with a HashMap. Plus, there are probably cache implementations out there you could download and use - i'd be shocked if there wasn't something in the Apache Commons libraries.
memcached won't add any noticeable load on your server, but it will be memory your app can't use. If you only plan to have a single app server for a while, you're better off using an in-JVM cache.
As far what to cache, the answer falls somewhere in the middle of the above. You don't want to cache exactly what's in your database and you certainly don't want to cache the final output. You have a data model representation in your application that isn't exactly what's in the DB (e.g. a User object might be made up of multiple queries from a few different tables). Cache that kind of thing as it's most reusable.
There's lots of info in the memcached site that should help you understand and get going with caching in general and memcached specifically.
It might make sense to do that, why don't try a smaller size like 64 MB and see how that goes. When you use more resources for the memcache, there is less for everything else. You should try it and see what will give you the best performance.
I have a task to build a prototype for a massively scalable distributed shared memory (DSM) app. The prototype would only serve as a proof-of-concept, but I want to spend my time most effectively by picking the components which would be used in the real solution later on.
The aim of this solution is to take data input from an external source, churn it and make the result available for a number of frontends. Those "frontends" would just take the data from the cache and serve it without extra processing. The amount of frontend hits on this data can literally be millions per second.
The data itself is very volatile; it can (and does) change quite rapidly. However the frontends should see "old" data until the newest has been processed and cached. The processing and writing is done by a single (redundant) node while other nodes only read the data. In other words: no read-through behaviour.
I was looking into solutions like memcached however this particular one doesn't fulfil all our requirements which are listed below:
The solution must at least have Java client API which is reasonably well maintained as the rest of app is written in Java and we are seasoned Java developers;
The solution must be totally elastic: it should be possible to add new nodes without restarting other nodes in the cluster;
The solution must be able to handle failover. Yes, I realize this means some overhead, but the overall served data size isn't big (1G max) so this shouldn't be a problem. By "failover" I mean seamless execution without hardcoding/changing server IP address(es) like in memcached clients when a node goes down;
Ideally it should be possible to specify the degree of data overlapping (e.g. how many copies of the same data should be stored in the DSM cluster);
There is no need to permanently store all the data but there might be a need of post-processing of some of the data (e.g. serialization to the DB).
Price. Obviously we prefer free/open source but we're happy to pay a reasonable amount if a solution is worth it. In any way, paid 24hr/day support contract is a must.
The whole thing has to be hosted in our data centers so SaaS offerings like Amazon SimpleDB are out of scope. We would only consider this if no other options would be available.
Ideally the solution would be strictly consistent (as in CAP); however, eventual consistence can be considered as an option.
Thanks in advance for any ideas.
Have a look at Hazelcast. It is pure Java, open source (Apache license) highly scalable in-memory data grid product. It does offer 7X24 support. And it does solve all of your problems I tried to explain each of them below:
It has a native Java Client.
It is 100% dynamic. Add and remove nodes dynamically. No need to change anything.
Again everything is dynamic.
You can configure number of backup nodes.
Hazelcast support persistency.
Everything that Hazelcast offers is free(open source) and it does offer enterprise level support.
Hazelcast is single jar file. super easy to use. Just add jar to your classpath. Have a look at screen cast in main page.
Hazelcast is strictly consistent. You can never read stale data.
I suggest you to use Redisson - Redis based In-memory Data Grid for Java. Implements (BitSet, BloomFilter, Set, SortedSet, Map, ConcurrentMap, List, Queue, Deque, BlockingQueue, BlockingDeque, ReadWriteLock, Semaphore, Lock, AtomicLong, CountDownLatch, Publish / Subscribe, RemoteService, ExecutorService, LiveObjectService, SchedulerService) on top of Redis server! It supports master/slave, sentinel and cluster server modes. Automatic cluster/sentinel servers topology discovery supported also. This lib is free and open-source.
Perfectly works in cloud thanks to AWS Elasticache support
Depending of what you prefer, i would surely follow the others by suggesting Hazelcast if you're towards AP from the CAP Theorem but if you need CP, i would choose Redis
Have a look at Terracotta's JVM clustering, it's OpenSource ;)
It has no API while it works efficent at JVM level, when you store the value in a replicated object it is sent to all other nodes.
Even locking and all those things work transparent and without adding any new code.
You may want to checkout Java-specific solutions like Coherence: http://www.oracle.com/global/ru/products/middleware/coherence/index.html
However, I consider such solutions to be too complex and prefer to use solutions like memcached. Big disadvantage of memcached for your purpose is lack of record lock it seems and there is no built in way to replicate data for failover. That is why I would look into the key-value data stores. Many of them would satisfy your need completely.
Here is a list of key-value data stores that may help you with your task:
http://www.metabrew.com/article/anti-rdbms-a-list-of-distributed-key-value-stores
Just pick one that you fill comfortable with.
I am doing a similar project, but instead targeting the .NET platform. Apart from the already mentioned solutions, I think you should take a look at ScaleOut StateServer and Alachisoft NCache. I am afraid neither of these alternatives are cheap, but they are a safer bet than open source for commercial solutions according to my judgement.
Both provide Java client APIs, even though I have only played around with the .NET APIs.
StateServer features self-discovery of new cache nodes, and NCache has a management console where new cache nodes can be added.
Both should be able to handle failovers seamlessly.
StateServer can have 1 or 2 passive copies of the data. NCache features more caching topologies to choose between.
If you mean write-through/write-behind to a database that is available in both.
I have no idea how many cache servers you plan to use, but here are the full price specs:
ScaleOut StateServer
Alachisoft NCache
Both are installed and configured locally on your server and they both have GUI Management.
I am not sure exactly what strictly consistent involves, so I'll leave that for you to investigate..
Overall, StateServer is the best option if you want to skip configuring every little detail in the cache cluster, while NCache features very many features and caching topologies to choose from.
Depending on the behaviour of data towards the clients (if the data is read many times from the same client) it might be a good idea to mix local caching on the clients with the distributed caching in the cluster (available for both NCache and StateServer), just a thought.
The specified use case seems to fit into Netflix's Hollow. This is a read-only replicated cache with a single producer and multiple consumers.
Have you tought about using a standard messaging solution like rabbitmq ?
RabbitMQ is an open source implementation of the AMQP protocol.
Your application seems more or less like a Publish/subscribe system.
The Publisher node is the one that does the processing and puts messages (processed data) in a queue in the servers.
Subscribers can get messages from the server in various ways. AMQP decouples the producer and the consumer of messages and is very flexible in how you can combine the two sides.