SessionScoped not working GAE+Jersey+Guice - java

I have a Java project where I use Jersey (1.17) and Guice (3.0). SessionScoped beans work in local dev, but don't work when deployed on GAE. The problem is that they don't keep session state.
Sessions are enabled in web.xml: <sessions-enabled>true</sessions-enabled>
My Session bean (SessionService) is:
#SessionScoped
public class SessionService implements Serializable {
#Inject transient Logger log;
private Locale locale = Locale.US;
public synchronized Locale getLocale() { return locale; }
public synchronized void setLocale(Locale locale) { this.locale = locale; }
}
and it's bound to Session scope in ServletModule bind(SessionService.class).in(ServletScopes.SESSION);
Controller where I use it is:
#Path("/settings")
public class SettingsController {
#Inject SessionService sessionService;
#GET
#Path("/setLocale")
public Object setLocale(#QueryParam("languageTag") String languageTag) {
sessionService.setLocale(Locale.forLanguageTag(languageTag));
return "OK";
}
#GET
#Path("/getLocale")
public Object getLocale() { return sessionService.getLocale().getLanguage(); }
}
With local dev server it works fine. When deployed on GAE (1.9.5) it sets the locale the first time and then it stays the same forever even though I call setLocale again and again. Why does it not work ?
Strangely enough, I found an obscure way to make it work, but I don't know why it makes it work. To have it running, it's necessary to touch HttpSession before setting locale. Like request.getSession(true).setAttribute("whatever", "bar"). As if server needed to be recalled that SessionService wants to do something with Session. Why is that?

I've found a way how to get desired SessionScoped-like functionality. Don't use #SessionScoped as it apparently does not work on GAE, but instead use Provider<HttpSession>.
So your code will be like
public class SessionService {
#Inject Provider<HttpSession> httpSessionProvider;
public void saveSecurityInfo(Object securityInfo) {
httpSessionProvider.get().setAttribute('sec_info', securityInfo);
}
public Object loadSecurityInfo() {
return httpSessionProvider.get().getAttribute('sec_info');
}
}
In controller you'd insert it as #Inject SessionService sessionService;
I've tested this approach on GAE and it works (keeps information in browser session).

Related

Why is caching not working on wrapped reactive Methods [duplicate]

Spring cache is not working when calling cached method from another method of the same bean.
Here is an example to explain my problem in clear way.
Configuration:
<cache:annotation-driven cache-manager="myCacheManager" />
<bean id="myCacheManager" class="org.springframework.cache.ehcache.EhCacheCacheManager">
<property name="cacheManager" ref="myCache" />
</bean>
<!-- Ehcache library setup -->
<bean id="myCache"
class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean" p:shared="true">
<property name="configLocation" value="classpath:ehcache.xml"></property>
</bean>
<cache name="employeeData" maxElementsInMemory="100"/>
Cached service :
#Named("aService")
public class AService {
#Cacheable("employeeData")
public List<EmployeeData> getEmployeeData(Date date){
..println("Cache is not being used");
...
}
public List<EmployeeEnrichedData> getEmployeeEnrichedData(Date date){
List<EmployeeData> employeeData = getEmployeeData(date);
...
}
}
Result :
aService.getEmployeeData(someDate);
output: Cache is not being used
aService.getEmployeeData(someDate);
output:
aService.getEmployeeEnrichedData(someDate);
output: Cache is not being used
The getEmployeeData method call uses cache employeeData in the second call as expected. But when the getEmployeeData method is called within the AService class (in getEmployeeEnrichedData), Cache is not being used.
Is this how spring cache works or am i missing something ?
I believe this is how it works. From what I remember reading, there is a proxy class generated that intercepts all requests and responds with the cached value, but 'internal' calls within the same class will not get the cached value.
From https://code.google.com/p/ehcache-spring-annotations/wiki/UsingCacheable
Only external method calls coming in through the proxy are
intercepted. This means that self-invocation, in effect, a method
within the target object calling another method of the target object,
will not lead to an actual cache interception at runtime even if the
invoked method is marked with #Cacheable.
Since Spring 4.3 the problem could be solved using self-autowiring over #Resource annotation:
#Component
#CacheConfig(cacheNames = "SphereClientFactoryCache")
public class CacheableSphereClientFactoryImpl implements SphereClientFactory {
/**
* 1. Self-autowired reference to proxified bean of this class.
*/
#Resource
private SphereClientFactory self;
#Override
#Cacheable(sync = true)
public SphereClient createSphereClient(#Nonnull TenantConfig tenantConfig) {
// 2. call cached method using self-bean
return self.createSphereClient(tenantConfig.getSphereClientConfig());
}
#Override
#Cacheable(sync = true)
public SphereClient createSphereClient(#Nonnull SphereClientConfig clientConfig) {
return CtpClientConfigurationUtils.createSphereClient(clientConfig);
}
}
The example below is what I use to hit the proxy from within the same bean, it is similar to #mario-eis' solution, but I find it a bit more readable (maybe it's not:-). Anyway, I like to keep the #Cacheable annotations at the service level:
#Service
#Transactional(readOnly=true)
public class SettingServiceImpl implements SettingService {
#Inject
private SettingRepository settingRepository;
#Inject
private ApplicationContext applicationContext;
#Override
#Cacheable("settingsCache")
public String findValue(String name) {
Setting setting = settingRepository.findOne(name);
if(setting == null){
return null;
}
return setting.getValue();
}
#Override
public Boolean findBoolean(String name) {
String value = getSpringProxy().findValue(name);
if (value == null) {
return null;
}
return Boolean.valueOf(value);
}
/**
* Use proxy to hit cache
*/
private SettingService getSpringProxy() {
return applicationContext.getBean(SettingService.class);
}
...
See also Starting new transaction in Spring bean
Here is what I do for small projects with only marginal usage of method calls within the same class. In-code documentation is strongly advidsed, as it may look strage to colleagues. But its easy to test, simple, quick to achieve and spares me the full blown AspectJ instrumentation. However, for more heavy usage I'd advice the AspectJ solution.
#Service
#Scope(proxyMode = ScopedProxyMode.TARGET_CLASS)
class AService {
private final AService _aService;
#Autowired
public AService(AService aService) {
_aService = aService;
}
#Cacheable("employeeData")
public List<EmployeeData> getEmployeeData(Date date){
..println("Cache is not being used");
...
}
public List<EmployeeEnrichedData> getEmployeeEnrichedData(Date date){
List<EmployeeData> employeeData = _aService.getEmployeeData(date);
...
}
}
If you call a cached method from same bean it will be treated as a private method and annotations will be ignored
Yes, the caching will not happen because of the reasons that were already mentioned in the other posts. However I would solve the problem by putting that method to its own class (service in this case). With that your code will be easier to maintain/test and understand.
#Service // or #Named("aService")
public class AService {
#Autowired //or how you inject your dependencies
private EmployeeService employeeService;
public List<EmployeeData> getEmployeeData(Date date){
employeeService.getEmployeeData(date);
}
public List<EmployeeEnrichedData> getEmployeeEnrichedData(Date date){
List<EmployeeData> employeeData = getEmployeeData(date);
...
}
}
#Service // or #Named("employeeService")
public class EmployeeService {
#Cacheable("employeeData")
public List<EmployeeData> getEmployeeData(Date date){
println("This will be called only once for same date");
...
}
}
In my Case I add variable :
#Autowired
private AService aService;
So I call the getEmployeeData method by using the aService
#Named("aService")
public class AService {
#Cacheable("employeeData")
public List<EmployeeData> getEmployeeData(Date date){
..println("Cache is not being used");
...
}
public List<EmployeeEnrichedData> getEmployeeEnrichedData(Date date){
List<EmployeeData> employeeData = aService.getEmployeeData(date);
...
}
}
It will use the cache in this case.
Better approach should be creating another service like ACachingService and call ACachingService.cachingMethod() instead of self Autowiring ( or any other approach trying to self inject). This way you do not fall into Circular dependency, which may be resulted in warning/error when upgrade to newer Spring ( Spring 2.6.6 in my case ) :
ERROR o.s.boot.SpringApplication - Application run failed
org.springframework.beans.factory.BeanCurrentlyInCreationException:
Error creating bean with name 'webSecurityConfig':
Requested bean is currently in creation: Is there an unresolvable circular reference?
We looked at all the solutions here and decided to use a separate class for the cached methods because Spring 5 doesn't like circular dependencies.
Use static weaving to create proxy around your bean. In this case even 'internal' methods would work correctly
I use internal inner bean (FactoryInternalCache) with real cache for this purpose:
#Component
public class CacheableClientFactoryImpl implements ClientFactory {
private final FactoryInternalCache factoryInternalCache;
#Autowired
public CacheableClientFactoryImpl(#Nonnull FactoryInternalCache factoryInternalCache) {
this.factoryInternalCache = factoryInternalCache;
}
/**
* Returns cached client instance from cache.
*/
#Override
public Client createClient(#Nonnull AggregatedConfig aggregateConfig) {
return factoryInternalCache.createClient(aggregateConfig.getClientConfig());
}
/**
* Returns cached client instance from cache.
*/
#Override
public Client createClient(#Nonnull ClientConfig clientConfig) {
return factoryInternalCache.createClient(clientConfig);
}
/**
* Spring caching feature works over AOP proxies, thus internal calls to cached methods don't work. That's why
* this internal bean is created: it "proxifies" overloaded {#code #createClient(...)} methods
* to real AOP proxified cacheable bean method {#link #createClient}.
*
* #see Spring Cache #Cacheable - not working while calling from another method of the same bean
* #see Spring cache #Cacheable method ignored when called from within the same class
*/
#EnableCaching
#CacheConfig(cacheNames = "ClientFactoryCache")
static class FactoryInternalCache {
#Cacheable(sync = true)
public Client createClient(#Nonnull ClientConfig clientConfig) {
return ClientCreationUtils.createClient(clientConfig);
}
}
}
I would like to share what I think is the easiest approach:
Autowire the controller and use to call the method it instead of using the class context this.
The updated code would look like:
#Controller
public class TestController {
#Autowired TestController self;
#RequestMapping("/test")
public String testView(){
self.expensiveMethod();
return "test";
}
#Cacheable("ones")
public void expensiveMethod(){
System.out.println("Cache is not being used");
}
}
The default advice mode for processing caching annotation is “proxy”. At the startup of an application, all the caching annotations like #Caching, #Cacheable, #CacheEvict etc. are scanned and a target proxy class is generated for all of these classes. The proxy allows for intercepting the calls to these cacheable methods, which adds the caching advice/behavior.
So when we invoke the cacheable methods from the same class, as shown below, calls from the clients don’t get intercepted in a way that allows for caching advice to be added to them. Hence, every single time there is an unexpected cache miss.
Solution: Invoke the Cacheable methods from a different bean to use proxy class with caching advice.

Spring use different property files depending on request params

Background:
I am working on a java Spring REST microservice that needs to work with multiple identical back-end systems and multiple identical databases depending on the request parameters.
Basically I have 3 "brands". For each brand there is a set of downstream services and a database. I have no control over those.
My spring service will receive brand as a part of request and will need to call the right downstream services and use the correct database.
Previously I would deal with this by having a separate instance of the spring service for each of the brands. There would be a single property file for each brand and spring would use it to wire up beans. I would have separate URL's for each brand and there was no problem.
Some of my beans need to know about "brand" during creation as they are wrappers around connections downstream services. I.e. once the bean is created there won't be a way to switch it to be a "different brand".
Problem:
I would like to change this so that a single instance of my service can handle requests for any brand.
Requirements:
I was thinking about the following solution:
Have a general property file for non-branded stuff. Spring would wire any non-branded beans and keep them as singleton beans.
Have a property file with brand specific urls etc for each of the brands
Spring would create set of singleton beans for each of the brand using appropriate property file.
Next when the request comes in spring would read the request params and use bean specific for that brand.
Performance is important to me so I would like to reuse the beans as much as possible.
I would like to make this thing as transparent as possible so that people creating new beans don't have to worry about doing anything outside standard configuration/context class.
Does anyone know what would be the best solution to achieve this?
I think you can solve the problem injecting the service in every request with the right set of configurations and beans; possibly already existing in your Application Context.
Given:
$ curl http://localhost:8080/greetings/rodo && echo
Hi from brand1, rodo
$ curl -H "x-brand-name: brand1" http://localhost:8080/greetings/rodo
Hi from brand1, rodo
$ curl -H "x-brand-name: brand2" http://localhost:8080/greetings/rodo && echo
Hi from brand2, rodo
The following code would work:
-- application.yml --
brand1:
greetingPrefix: Hi from brand1,
brand2:
greetingPrefix: Hi from brand2,
-- DemoApplication.java --
#SpringBootApplication
public class DemoApplication {
public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);
}
#Configuration
class ServiceConfig {
#Bean
public GreetingService greetingServiceBrand1(Brand1Config config) {
return new GreetingService(config);
}
#Bean
public GreetingService greetingServiceBrand2(Brand2Config config) {
return new GreetingService(config);
}
}
#Configuration
class WebConfig implements WebMvcConfigurer {
#Autowired
private ApplicationContext applicationContext;
#Override
public void addArgumentResolvers(List<HandlerMethodArgumentResolver> resolvers) {
resolvers.add(greetingServiceResolver());
}
private GreetingServiceResolver greetingServiceResolver() {
GreetingService greetingServiceBrand1 = applicationContext.getBean("greetingServiceBrand1", GreetingService.class);
GreetingService greetingServiceBrand2 = applicationContext.getBean("greetingServiceBrand2", GreetingService.class);
return new GreetingServiceResolver(greetingServiceBrand1, greetingServiceBrand2);
}
}
}
#RestController
#RequestMapping("/greetings")
class GreetingController {
#GetMapping("/{name}")
public String get(GreetingService greetingService, #PathVariable String name) {
return greetingService.sayHi(name);
}
}
class GreetingServiceResolver implements HandlerMethodArgumentResolver {
private final GreetingService greetingServiceBrand1;
private final GreetingService greetingServiceBrand2;
public GreetingServiceResolver(GreetingService greetingServiceBrand1, GreetingService greetingServiceBrand2) {
this.greetingServiceBrand1 = greetingServiceBrand1;
this.greetingServiceBrand2 = greetingServiceBrand2;
}
#Override
public boolean supportsParameter(MethodParameter parameter) {
return parameter.getParameterType().equals(GreetingService.class);
}
#Override
public Object resolveArgument(
MethodParameter methodParameter,
ModelAndViewContainer modelAndViewContainer,
NativeWebRequest nativeWebRequest,
WebDataBinderFactory webDataBinderFactory
) throws Exception {
String brand = nativeWebRequest.getHeader("x-brand-name");
return resolveGreetingService(brand);
}
private GreetingService resolveGreetingService(String brand) {
if ("brand2".equals(brand)) {
return greetingServiceBrand2;
}
return greetingServiceBrand1; // default
}
}
class GreetingService {
private BaseConfig config;
public GreetingService(BaseConfig config) {
this.config = config;
}
public String sayHi(String name) {
return config.getGreetingPrefix() + " " + name;
}
}
abstract class BaseConfig {
private String greetingPrefix;
public String getGreetingPrefix() {
return greetingPrefix;
}
public void setGreetingPrefix(String greetingPrefix) {
this.greetingPrefix = greetingPrefix;
}
}
#Configuration
#ConfigurationProperties("brand1")
class Brand1Config extends BaseConfig {
}
#Configuration
#ConfigurationProperties("brand2")
class Brand2Config extends BaseConfig {
}
As you can see, it's fundamental to pass the service to each controller method, write a resolver and inject the right set of dependencies depending on a parameter passed to the request, in this case via header.
Since your property files need to be declared statically anyway, you can just write all your different brand stuff in the same property file, like in a key-value format, that Spring can pick up as a list of configurations.
brandConfigs:
- brand: foo
property: foos
- brand2: bar
porperty: bars
Load all your connection beans to your downstream services on startup and just route to them according to your request param. Imo this seems to be the most straight forward and performant way. If some of these downstreams are used very rarely you can lazy load the beans on-demand, but probably this wouldn't make a sense unless you have thousands of different downstream routes.

DeltaSpike custom ConfigSource with CDI

I am trying to define a custom DeltaSpike ConfigSource. The custom config source will have the highest priority and check the database for the config parameter.
I have a ConfigParameter entity, that simply has a key and a value.
#Entity
#Cacheable
public class ConfigParameter ... {
private String key;
private String value;
}
I have a #Dependent DAO that finds all config parameters.
What I am trying to do now, is define a custom ConfigSource, that is able to get the config parameter from the database. Therefore, I want to inject my DAO in the ConfigSource. So basically something like
#ApplicationScoped
public class DatabaseConfigSource implements ConfigSource {
#Inject
private ConfigParameterDao configParameterDao;
....
}
However, when registering the ConfigSource via META-INF/services/org.apache.deltaspike.core.spi.config.ConfigSource, the class will be instantiated and CDI will not work.
Is there any way to get CDI working in this case?
Thanks in advance, if you need any further information, please let me know.
The main problem is, that the ConfigSource gets instantiated very early on when the BeanManager is not available yet. Even the JNDI lookup does not work at that point in time. Thus, I need to delay the injection/lookup.
What I did now, is add a static boolean to my config source, that I set manually. We have a InitializerService that makes sure that the system is setup properly. At the end of the initialization process, I call allowInitialization() in order to tell the config source, that the bean is injectable now. Next time the ConfigSource is asked, it will be able to inject the bean using BeanProvider.injectFields.
public class DatabaseConfigSource implements ConfigSource {
private static boolean allowInit;
#Inject
private ConfigParameterProvider configParameterProvider;
#Override
public int getOrdinal() {
return 500;
}
#Override
public String getPropertyValue(String key) {
initIfNecessary();
if (configParameterProvider == null) {
return null;
}
return configParameterProvider.getProperty(key);
}
public static void allowInitialization() {
allowInit = true;
}
private void initIfNecessary() {
if (allowInit) {
BeanProvider.injectFields(this);
}
}
}
I have a request-scoped bean that holds all my config variables for type-safe access.
#RequestScoped
public class Configuration {
#Inject
#ConfigProperty(name = "myProperty")
private String myProperty;
#Inject
#ConfigProperty(name = "myProperty2")
private String myProperty2;
....
}
When injecting the Configuration class in a different bean, each ConfigProperty will be resolved. Since my custom DatabaseConfigSource has the highest ordinal (500), it will be used for property resolution first. If the property is not found, it will delegate the resolution to the next ConfigSource.
For each ConfigProperty the getPropertyValue function from the DatabaseConfigSource is called. Since I do not want to retreive the parameters from the database for each config property, I moved the config property resolution to a request-scoped bean.
#RequestScoped
public class ConfigParameterProvider {
#Inject
private ConfigParameterDao configParameterDao;
private Map<String, String> configParameters = new HashMap<>();
#PostConstruct
public void init() {
List<ConfigParameter> configParams = configParameterDao.findAll();
configParameters = configParams.stream()
.collect(toMap(ConfigParameter::getId, ConfigParameter::getValue));
}
public String getProperty(String key) {
return configParameters.get(key);
}
}
I could sure change the request-scoped ConfigParameterProvider to ApplicationScoped. However, we have a multi-tenant setup and the parameters need to be resolved per request.
As you can see, this is a bit hacky, because we need to explicitly tell the ConfigSource, when it is allowed to be instantiated properly (inject the bean).
I would prefer a standarized solution from DeltaSpike for using CDI in a ConfigSource. If you have any idea on how to properly realise this, please let me know.
Even though this post has been answered already I'd like to suggest another possible solution for this problem.
I managed to load properties from my db service by creating an #Signleton #Startup EJB which extends the org.apache.deltaspike.core.impl.config.BaseConfigSource and injects my DAO as delegate which I then registered into the org.apache.deltaspike.core.api.config.ConfigResolver.
#Startup
#Singleton
public class DatabaseConfigSourceBean extends BaseConfigSource {
private static final Logger logger = LoggerFactory.getLogger(DatabaseConfigSourceBean.class);
private #Inject PropertyService delegateService;
#PostConstruct
public void onStartup() {
ConfigResolver.addConfigSources(Collections.singletonList(this));
logger.info("Registered the DatabaseConfigSourceBean in the ConfigSourceProvider ...");
}
#Override
public Map<String, String> getProperties() {
return delegateService.getProperties();
}
#Override
public String getPropertyValue(String key) {
return delegateService.getPropertyValue(key);
}
#Override
public String getConfigName() {
return DatabaseConfigSourceBean.class.getSimpleName();
}
#Override
public boolean isScannable() {
return true;
}
}
I know that creating an EJB for this purpose basically produces a way too big overhead, but I think it's a bit of a cleaner solution instead of handling this problem by some marker booleans with static accessors ...
DS is using the java se spi mechanism for this which is not CD'Injectable'. One solution would be to use the BeanProvider to get hold of your DatabaseConfigSource and delegate operations to it.

EJB3 injection is Null in Wicket AuthenticateWebSession

I'm using Wicket + EJB3 in an application and I face a problem but I can't find any topic related, so here it is:
I'm using Wicket authentication, and need to use methods from an EJB in the overrided methods authenticate(...).
I can use this EJB in any wicket page, but when it comes to the WebSession, it stays Null, the injection is not working somehow.
My WicketSession class looks something like this:
public class WicketSession extends AuthenticatedWebSession {
#EJB(name = "UserService")
private UserService userService;
private User user = null;
public WicketSession(Request request) {
super(request);
}
#Override
public boolean authenticate(final String login, final String password) {
user = userService.findByLoginPwd(login, password);
return user != null;;
}
public User getUser() {
return user;
}
public void setUser(User user) {
this.user = user;
}
}
And my EJB3:
#Remote
public interface UserService {
public User findByLoginPwd(final String login, final String pwd);
}
#Stateless
public class UserServiceImpl implements UserService {
public User findByLoginPwd(final String login, final String pwd) {
[...]
}
}
The Web part with Wicket is packaged in a war, the business part with EJBs is packaged in a jar, and then I make a ear to deploy it on a JOnAS server.
Any help would be highly appreciated =)
Nicolas
I'm pretty sure the injection works with an IComponentInstantiationListener (at least that's how the Spring version works). Update: it does, see this document.
However, Sessions are not components, so a different mechanism is needed. Perhaps there is a way to wire your Session in the Application.newSession() method? You will have to take a look at the implementation of JavaEEComponentInjector and copy what it does when creating your session.
As Sean Patrick Floyd noted, Sessions are not components, so the automatic injection supplied for Wicket components doesn't apply.
A common idiom for injecting stuff in a non-component is to add the line
InjectorHolder.getInjector().inject(this);
to the constructor.
I haven't used this for a WicketSession extension, but I don't know of a reason it won't work.
In JavaEEComponentInjector, the inject method is almost certainly doing a JNDI lookup, and you could do a JNDI lookup yourself to get the object, but this is reusing the existing injection, and if you decide to change injectors (say by extending JavaEEComponentInjector), it ensures that you'll continue to use the same injection.

how to reattach singleton Spring beans upon deserialization

I want to reinject singleton-scoped dependencies into prototype Spring beans, after they have been deserialized.
Say I've got a Process bean, which depends on a Repository bean. The Repository bean is a scoped as a singleton, but the Process bean is prototype-scoped. Periodically I serialize the Process, and then later deserialize it.
class Process {
private Repository repository;
// getters, setters, etc.
}
I don't want to serialize and deserialize the Repository. Nor do I want to put "transient" on the member variable that holds a reference to it in Process, nor a reference to some kind of proxy, or anything other than a plain old member variable declared as a Repository.
What I think I want is for the Process to have its dependency filled with a serializable proxy that points (with a transient reference) to the Repository, and, upon deserialization, can find the Repository again. How could I customize Spring to do that?
I figure I could use a proxy to hold the dependency references, much like . I wish I could use that exact technique. But the proxy I've seen Spring generate isn't serializable, and the docs say that if I use it with a singleton bean, I'll get an exception.
I could use a custom scope, perhaps, on the singleton beans, that would always supply a proxy when asked for a custom-scoped bean. Is that a good idea? Other ideas?
I used this instead, without any proxy:
public class Process implements HttpSessionActivationListener {
...
#Override
public void sessionDidActivate(HttpSessionEvent e) {
ServletContext sc = e.getSession().getServletContext();
WebApplicationContext newContext = WebApplicationContextUtils
.getRequiredWebApplicationContext(sc);
newContext.getAutowireCapableBeanFactory().configureBean(this, beanName);
}
}
The example is for a web environment when the application server serializes the session, but it should work for any ApplicationContext.
Spring provides a solution for this problem.
Take a look at the spring documentation http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/aop.html#aop-atconfigurable.
7.8.1 Using AspectJ to dependency inject domain objects with Spring
...
The support is intended to be used for objects created outside
of the control of any container. Domain objects often fall into
this category because they are often created programmatically
using the new operator, or by an ORM tool as a result of a database query.
The trick is to use load time weaving. Just start the jvm with -javaagent:path/to/org.springframework.instrument-{version}.jar. This agent will recognize every object that is instantiated and if it is annotated with #Configurable it will configure (inject #Autowired or #Resource dependencies) that object.
Just change the Process class to
#Configurable
class Process {
#Autowired
private transient Repository repository;
// getters, setters, etc.
}
Whenever you create a new instance
Process process = new Process();
spring will automatically inject the dependencies.
This also works if the Process object is deserialized.
How about added using aspects to add an injection step when you deserialize the object?
You would need AspectJ or similar for this. It would work very similarly to the #Configurable function in Spring.
e.g. add some advice around the a "private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException" method
This article may also help: http://java.sun.com/developer/technicalArticles/Programming/serialization/
I think the idea of serializing a bean and then forcing a reinjection of dependencies is not the best architecture.
How about having some sort of ProcessWrapper bean instead which could be a singleton. It would be injected with the Repository and either manages the deserialization of the Process or has a setter for it. When a new Process is set in the wrapper, it would call setRepository() on the Process. The beans that use the Process could either be set with the new one by the wrapper or call the ProcessWrapper which would delegate to the Process.
class ProcessWrapper {
private Repository repository;
private Process process;
// getters, setters, etc.
public void do() {
process.do();
}
public void setProcess(Process process) {
this.process = process;
this.process.setRepository(repository);
}
}
Answering my own question: how I've solved the problem so far is to create a base class which serializes and deserializes using a cheap little proxy. The proxy contains only the name of the bean.
You'll note that it uses a global to access the Spring context; a more elegant solution might store the context in a thread-local variable, something like that.
public abstract class CheaplySerializableBase
implements Serializable, BeanNameAware {
private String name;
private static class SerializationProxy implements Serializable {
private final String name;
public SerializationProxy(CheaplySerializableBase target) {
this.name = target.name;
}
Object readResolve() throws ObjectStreamException {
return ContextLoader.globalEvilSpringContext.getBean(name);
}
}
#Override
public void setBeanName(String name) {
this.name = name;
}
protected Object writeReplace() throws ObjectStreamException {
if (name != null) {
return new SerializationProxy(this);
}
return this;
}
}
The resulting serialized object is 150 bytes or so (if I remember correctly).
The method applicationContext.getAutowireCapableBeanFactory().autowireBean(detachedBean); can be used to reconfigure a Spring-managed bean that was serialized and then de-serialized (whose #Autowired fields become null). See example below. The serialization details are omitted for simplicity.
public class DefaultFooService implements FooService {
#Autowired
private ApplicationContext ctx;
#Override
public SerializableBean bar() {
SerializableBean detachedBean = performAction();
ctx.getAutowireCapableBeanFactory().autowireBean(detachedBean);
return detachedBean;
}
private SerializableBean performAction() {
SerializableBean outcome = ... // Obtains a deserialized instance, whose #Autowired fields are detached.
return outcome;
}
}
public class SerializableBean {
#Autowired
private transient BarService barService;
private int value;
public void doSomething() {
barService.doBar(value);
}
}

Categories