Android Java - Preventing GC_FOR_ALLOC with large quantity of bitmaps - java

I would like to know if there are any optimizations that could be used to improve the speed when using a large quantity of bitmaps drawn on a screen.
I use a canvas which I load all my resources at the initialization and use createBitmap when I need to update the bitmap. I use ~10-15kb files with my Galaxy Note 3 and notice a lag (xxhdpi) when I reach around 20 bitmaps which gets nearly unusable around 35+.
I am using createbitmap constantly because the bitmaps use frame animation and matrix to rotate.
So far the only thing i've tried that i've noticed a difference is inBitmap which gives about 5-10% increase in the GC_FOR_ALLOC freed.
Anyone care to chime in on a good answer for what is better? I've heard flash AIR is a good choice to go with using cacheAsBitmapMatrix, but I would like a different option (just personal pref).
EDIT:
(rectf bounds = bitmap bounds)
matrix.setRotate(rotation, rectf.centerX(), rectf.centerY());
ship1 = Bitmap.createBitmap(ship1, 0, 0, ship1.getWidth(), ship1.getHeight(), matrix, true);
I think I understand my problem, I should be calling
canvas.drawBitmap(ship1, matrix, paint);
But in my onDraw method I am using
canvas.drawBitmap(ship1, srcRectf, dstRectf, paint); //srcRectf = null
I use dstRectf to move my bitmap around, but I suppose this can be replaced with setTranslate. I'll try it out, thanks Mehmet!

Bitmap stores the pixel data in the native heap*, not in the java heap, and takes care of managing it by itself. That would mean GC shouldn't give you any serious headaches.
The problem is probably constantly using createBitmap(), which is usually a really costly operation. This will make a disk IO call at worst, or a relatively big memory allocation at best. You would like to use it as little as possible, i.e. only when initially reading them from the disk.
Instead I advise you to use a Matrix in conjunction with a Canvas. Just change your Matrix and with each step repaint your Bitmaps with it.
EDIT:
*Only correct for Android 2.3.3 <-> Android 3.0

Related

Android Studio : A scaling graph in bitmap

Just started learning graphics in Android Studio and started out by making a growing graph(x^2). It turned out pretty well, but it goes out of the bitmap box quite fast and I was wondering if it is possible to start scaling it while it tries to grow outside the boundaries.
Here is a good example of what I mean. Whenever the graph line starts to exit the boundaries of the box, all the graph starts to scale.
Is that possible to do with bitmap or any other way in Android Studio? And if so, then how?
This is pretty open ended but IMO this all depends on what you're trying to do and how big everything can scale.
Typically what I would say is that your bitmap shouldn't scale up, your graph should scale down. This keeps the memory footprint of the bitmap small which will be important to run on low memory devices. IMO you should use paths and then draw them on your canvas and change the stroke to make them smaller as needed. Then they can scale up and it wont matter if it draws offscreen as it's not actually making the bitmap bigger. To learn how to do that you should check out Google's documentation!
If you want to use a bitmap then You should read the suggestions here as well. Also you'll probably have to get into tiling/region decoding in order to load everything efficiently when zooming in on the image:

Manipulating large images on a Canvas to maintain aspect ratios results in outofmemory issues

I'm trying to load a background image for a game as well as some smaller images, placing them on a Canvas, and letting people interact with the smaller overlayed images (like move, rotate)
In order to maintain aspect ratio (e.g. 5:3) I tried loading in the images as a bitmap and resizing them myself. The idea was to do cropping/letter-boxing for the background according to the canvas's width/height, and maintain the correct ratio of size for the smaller images.
Bitmap originalBitmap = BitmapFactory.decodeResource(getResources(), resourceImg);
Bitmap resizedBitmap = Bitmap.createBitmap(bitmapOrg2, 0, 0, width, height, matrix, true);
In order to cater for tablets/phones i have a background PNG background image at 1600x1000 and 200kb.
However I am now struggling with out of memory issues due to the bitmap being 1600x1000x4byte=6.4 mb of ram and more when it tries to resize.
(I am using the emulator at the moment when these issues occur)
I decided to change it to use canvas.setBackgroundResource
SceneCanvas sceneCanvas = (SceneCanvas) findViewById(R.id.the_canvas);
sceneCanvas.setBackgroundResource(R.drawable.my_scene_1600x900);
This works well, except it fills the screen and does not maintain aspect ratio.
Is there a way to set the background maintaining aspect ratio? Or have I just gone down the wrong route completely and should use ImageViews and render to the canvas somehow to avoid OutOfMemory issues
Given that Java code is only allowed a heap size of around 20MB or so, you’re always going to have trouble with large bitmaps (unless you resort to native code in C/C++/etc).
One option is to use a BitmapFactory to load your image, and in the Options you can specify an inSampleSize to downsample the image as it’s being read in. This should avoid chewing up memory by trying to load the entire original image. There is even an inJustDecodeBounds option, so your code can check the dimensions of the image, instead of having them hard-wired into the code.
It seems that the memory limit on Android is somewhere between 16 - 24 MB memory (depending on device). This is regardless of whether the device has a lot more memory. Also, the memory used by Bitmaps is included in the limit, resulting in lang.OutOfMemoryError: bitmap size exceeds VM budget. After some searching, there are 3 options I could find:
Allocate memory from native code using the NDK (native development kit) and JNI
For images one can also use OpenGL textures, the texture memory is not counted towards the limit.
take advantage of certain bitmap options to reduce size; http://developer.android.com/reference/android/graphics/BitmapFactory.Options.html
To see how much memory your app has allocated one can use, android.os.Debug.getNativeHeapAllocatedSize().

Bitmap size exceeds VM budget when game development

I am developing a game on android.Like tower defense.
I am using surface view.I am using some image as bitmap.(Spritesheets, tilesets, buttons, backgrounds,efects vs.)
Now images are nearly 5-6 mb.And i get this error when i run my game:
Bitmap size exceeds VM budget
19464192-byte external allocation too large for this process.
I call images like that
BitmapFactory.decodeResource(res, id)
and i put it to array.
I can't scale images.I am using all of them.
I tried that
options.inPurgeable=true;
and it work but the image is loading very slowly.I load a spritesheet with that and when it is loading, i get very very low fps.
What can I do?
I've had this problem too; there's really no solution other than to reduce the number/size of bitmaps that you have loaded at once. Some older Android devices only allocate 16MB to the heap for your whole application, and bitmaps are stored in memory uncompressed once you load them, so it's not hard to exceed 16MB with large backgrounds, etc. (An 854x480, 32-bit bitmap is about 1.6MB uncompressed.)
In my game I was able to get around it by only loading bitmaps that I was going to use in the current level (e.g. I have a single Bitmap object for the background that gets reloaded from resources each time it changes, rather than maintaining multiple Bitmaps in memory. I just maintain an int that tracks which resource I have loaded currently.)
Your sprite sheet is huge, so I think you're right that you'll need to reduce the size of your animations. Alternatively, loading from resources is decently fast, so you might be able to get away with doing something like only loading the animation strip for the character's current direction, and have him pause slightly when he turns while you replace it with the new animation strip. That might get complicated though.
Also, I highly recommend testing your app on the emulator with a VM heap set to 16mb, to make sure you've fixed the problem for all devices. (The emulator usually defaults to 24mb, so it's easy for that to go untested and generate some 1-star reviews after release.)
I am not a game dev however I would like to think I know Android enough.
Loading images of the size is almost certain to throw errors. Why are the images that file size?
There is an example at http://p-xr.com/android-tutorial-how-to-paint-animate-loop-and-remove-a-sprite/. If you notice he has an explosion sprite of only ~200Kb. Even a more detailed image would not take much more file space.
OK some suggestions:
Are you loading all your spritesheets onto a single sheet or is
each spritesheet in a seperate file? If they are all on one I would
split them up.
Lower the resolution of the images, an Android device is portable
and some only have a low resolution screen. For example the HTC
Wildfire has a resolution of 240x320 (LDPI device) and is quite a
common device. You have not stated the image dimensions so we can't be sure if this is practical.
Finally; I am not a game programmer but I found this tutorial (part of the same series) quite enlightening - http://p-xr.com/android-tutorial-2d-canvas-graphics/. I wonder if you are applying a pattern that is not appropriate for Android, however without code I cannot say.
Right something a little off topic but worth noting...
People under estimate the power of the View. While there is a certain amount of logic to using a SurfaceView, the standard View will do quite a lot on its own. A SurfaceView more often than not requires an underlying thread to run (that you will have to setup yourself) in order to make it work. A View however calls onDraw(), which can be utilized in a variety of ways including the postinvalidate() method (see What does postInvalidate() do?).
In any case it might be worth checking out this tutorial http://mindtherobot.com/blog/272/android-custom-ui-making-a-vintage-thermometer/. Personally, it was an excellent example of a custom View and what you can do with them. I rewrote a few sections and made a pocket watch app.

Is it good practice to cache parts of a 2D drawing?

I'm making a 2D game in Java and one of the main issues causing low FPS (on my slow laptop) is having to re-draw complex structures to a Graphics instance, such as dials with markings.
The dial and its markings will never change unless the window is resized, so I thought it would be a good idea to draw to a BufferedImage and just re-draw the image rather than re-drawing the details. The position of the needle obviously changes, so this can just be drawn on top.
I've never heard about this being done to improve the FPS of 2D games so I'm wondering if it's actually good practice to store a cache of images or if there's a better way to solve this sort of problem? Are there any issues associated with this that I haven't considered?
Caching images isn't a bad idea: you can rely on raster rendering to be pretty well optimised on most any platform. In my experience (which is admittedly mostly on mobile devices where 2D graphics are concerned) the Graphics.drawXXX() methods are often considerably slower than Graphics.drawImage().
In my experience the vast majority of 2D games out there make use of sprites (i.e. images) for rendering just about everything. Often that's true even when the graphics look like they are rendered using primitives!
Another useful technique to think about is not redrawing regions at all unless you really need to!
EDIT:
As others have mentioned, the major tradeoff is that you're going to be using more memory. You're also going to have to make sure you free up those images once you no longer need them.
Is it good practice to cache parts of a 2D drawing?
You're making a trade-off between drawing speed and storage space. Only you can determine which is more important.
You might consider rendering your dials in advance and saving the images as GIF, JPG, or PNG files. You would have to scale these images to your window size before you draw them.
Are you using double buffering for your Graphics panel?
Yes, that is a good practice, and it's done all the time. Drawing to an image first before displaying it on the screen is called double buffering, and that method can be used in different ways according to the needs of the program.
The downside of double buffering is memory, since it takes more memory to store the second image, but that sounds like a trade-off you'll need to make.

OpenGL Shaders?

I'm writing a game in Java, LJGWL (OpenGL). I'm using a library that handles a lot of messy details for me, but need to find a lot faster way to do this.
Basically I want to set every pixel on the screen to say a random color as fast a possible. The "random colors" is just an Array [][] that gets updated every 2-3 seconds. I've tried drawing rects and using images, both are pretty slow for what I want to do.
I think I want to learn how to write a GPU shader? That is the fastest way to do this? LJGWL exposes OpenGL api to java. Any basic tutorials on how to get started with OpenGL shaders? Or should I dynamically create a texture of some sort and then just throw up the entire texture, would that be faster?
If it were the case that you were statically displaying the same image, than using a texture or display list would suffice. But as you want to frequently update it, shaders really are the best option. Shader code executes on the GPU and modifies data in GRAM, so you have no bottle neck transferring from CPU to GPU. The next best thing would probably be a Pixel or Frame Buffer Object. Buffer Objects let you read/write to GRAM via DMA (without having to go through the CPU) so they can be pretty fast.
I haven't written any shaders yet, so I can't recommend any good resources. But SongHo's OpenGL pages are a good place to learn about Buffer Objects. (His examples are in C++ though)
Textures are the fastest way to draw something on screen, draw a texture mapped quad into the screen, it should be fast enough. When you need to reupload the texture data, use glTexSubimage2D to update it.
No need to use shaders.
I've yet to do any work with shaders in OpenGL, but given the same scenario in multiple occasions, I handled it with a texture I threw up across the screen on top, and it worked quite effectively.
I don't know how you are drawing your pixels exactly, but this limit you hit could be because of the amount of data you transfer (inefficiently?). Updating a screen full of pixels every 2-3 seconds shouldn't be hard at all. Although shaders bring you closer to the graphics card, they will never make inefficient methods fast, so...
Why is your code so slow?
What code? What code exactly did you try? What texture did you use, render to, ...?
Is it slow? How slow? How fast do you expect it to be?
How quickly can one get 1920x1080(?) pixels in video ram, what's your hardware, drivers, OS?
I think you need to edit/repost before we can help you solve your problem. Just because it is slow, is no guarantee at all that shaders will even be one bit faster.

Categories