in below two sql query sql1 not selecting any row, and sql2 selecting only 1 for 111#k2.com
var ids="'111#k2.com','222#k2.com','333#k2.com','444#k2.com','555#k2.com','666#k2.com'"
val sql1 = SQL("SELECT id,point,privacy FROM `pointTable` WHERE state=1 and id in ({users})").on("users" -> ids)
sql1().map { row =>
val point = if (row[Boolean]("privacy")) { row[Double]("point").toString } else { "0" }
println(write(Map("id" -> row[String]("id"), "point" -> point)))
}
val sql2 = SQL("SELECT id,point,privacy FROM `pointTable` WHERE state=1 and id in (" + ids + ")")
sql2().map { row =>
val point = if (row[Boolean]("privacy")) { row[Double]("point").toString } else { "0" }
println(write(Map("id" -> row[String]("id"), "point" -> point)))
}
in phpmyadmin when i run this query manualy it returns 6 rows then why not working perfectly here.
i am using play framework 2.2 with scala 2.1
That's not going to work. Passing users though on is going to escape the entire string, so it's going to appear as one value instead of a list. Anorm in Play 2.3 actually allows you to pass lists as parameters, but here you'll have to work around that.
val ids: List[String] = List("111#k2.com", "222#k2.com", "333#k2.com")
val indexedIds: List[(String, Int)] = ids.zipWithIndex
// Create a bunch of parameter tokens for the IN clause.. {id_0}, {id_1}, ..
val tokens: String = indexedIds.map{ case (id, index) => s"{id_${index}}" }.mkString(", ")
// Create the parameter bindings for the tokens
val parameters = indexedIds.map{ case (id, index) => (s"id_${index}" -> toParameterValue(id)) }
val sql1 = SQL(s"SELECT id,point,privacy FROM `pointTable` WHERE state=1 and id in (${tokens})")
.on(parameters: _ *)
Related
I am trying to add column to the end of a file without changing the contents using SuperCSV and kotlin.
I cannot use CSVWriter due to limitation of resources.
So, my idea is to read from the original file row by row and add that to a string and have the result be used as a byte array.
fun addColumnToCSV(csvData: ByteArray, columnName: String, columnValue: String): ByteArray {
val prefs = CsvPreference.Builder(CsvPreference.STANDARD_PREFERENCE)
.useQuoteMode(NormalQuoteMode()).build()
val mapReader = CsvMapReader(BufferedReader(InputStreamReader(csvData.inputStream())), prefs)
val readHeader = mapReader.getHeader(true)
var row = mapReader.read(*readHeader)
var csv: String = readHeader.joinToString(",", postfix = ",$columnName\n")
while (row != null) {
val rowValue=readHeader.map { header-> row.getOrDefault(header,"\\s") }
csv += rowValue.joinToString(",", postfix = ",$columnValue\n")
row = mapReader.read(*readHeader)
}
csv = csv.trim()
mapReader.close()
return csv.toByteArray()
}
So, I have an example here and written a test for it.
#Test
fun `should add extra column in csv data when there are missing values`() {
val columnName = "ExtraColumn"
val columnValue = "Value"
val expectedCSV = "Name,LastName,$columnName\n" +
"John,Doe,$columnValue\n" +
"Jane,,$columnValue"
val csvData = "Name,LastName\n" + "John,Doe\n" + "Jane,"
val csv = addColumnToCSV(csvData.toByteArray(), columnName, columnValue)
Assertions.assertThat(String(csv)).isEqualTo(expectedCSV)
}
This test fails because the actual of csv data is
Name,LastName,ExtraColumn
John,Doe,Value
Jane,null,Value
I want it to be this, so that I am not changing the existing values that are present in the csv file.
Name,LastName,ExtraColumn
John,Doe,Value
Jane,,Value
I have tried with row.getOrDefault(header,"") its still the same result. How do I achieve this?
The problem seems to be on this line:
val rowValue=readHeader.map { header-> row.getOrDefault(header,"\\s") }
Without testing this, I would say that there's a null in row at index LastName, hence default value in getOrDefault is not applied because map contains the key.
Please try something like this:
val rowValue=readHeader.map { header-> row.getOrDefault(header,"\\s") ?: "" }
I have sqlite database with table 'data' as
uid type name value
1 abc North 10
1 abc South 0
1 abc East 0
1 abc West 0
1 abc Total 10
1 xyz Total 20
1 xyz Open 10
1 xyz Close 10
Using select query I am able to get this table data, now I need to create response object having following structure
DataModel(String type, Arraylist<Data> data)
Data(String name, String value)
expected output json will be
{"data":[{"type":"abc", "values":[{"name":"North", "value":"10"}, {"name":"South", "value":"0"}...]},
{"type":"xyz", "values":[{"name":"total", "value":"20"}, {"name":"open", "value":"10"}...]}]}
for now I tried this kotlin code in android studio & its working well 'result' Arraylist contains above table data
val dataList: ArrayList<DashboardDataModel> = ArrayList()
val typeAyyList: ArrayList<String> = ArrayList()
for(res in result){
typeAyyList.add(res.type)
}
val distinct = typeAyyList.toSet().toList()
for(type in distinct) {
val values: ArrayList<DashboardData> = ArrayList()
for (res in result) {
if (type == res.type) {
val dash=DashboardData()
dash.name=res.name
dash.value=res.value
values.add(dash)
}
}
val data = DashboardDataModel()
data.type=type
data.values=values
dataList.add(data)
}
Is there any better solution available?
Any help/suggestion please?
I have a csv file that holds country names and years they won on the eurovision:
country, year
Israel, 1998
Sweden, 2012
Sweden, 2015
United Kingdom, 1997
and my csv (using tototoshi):
object CountryEurovision {
def countrEurovisionYearFile: File = new File("conf/countryEurovision.csv")
lazy val countrEurovisionYearMap: Map[String, String] = getConvertData
private def getConvertData: Map[String, String] = {
implicit object CodesFormat extends CSVFormat {
val delimiter: Char = ','
val quoteChar: Char = '"'
val escapeChar: Char = '"'
val lineTerminator: String = "\r\n"
val quoting: Quoting = QUOTE_NONNUMERIC
val treatEmptyLineAsNil: Boolean = false
}
val csvDataReader = CSVReader.open(countrEurovisionYearFile, "UTF-8")(CodesFormat)
val linesIterator = csvDataReader.iteratorWithHeaders
val convertedData = linesIterator.map {
row => row("Country") -> row("Year")
}.toMap
csvDataReader.close()
convertedData
}
}
now, since the country and year is not unique, cause a country can have several years when they won, so when I get Sweden:
CountryEurovision.countrEurovisionYearMap.get("Sweden")
I only get option res0: Option[String] = Some(2015)
which I would expect to be the list of years per country... even if it's a country of just one year I will get a list, and in case of Sweden I will get list of 2012 and 2015...
How can I change my setup for that behavior?
When you transform linesIterator.map { row => row("Country") -> row("Year") } into a Map with .toMap, for duplicated keys only the last one will be kept as it will override the previous one.
You can change this by having a unique element per key (country) by grouping values (dates) per key (before applying toMap) and modifying the value of your Map to be a List:
linesIterator
.map { row => row("Country") -> row("Year") } // List(("Sweden", 1997), ("France", 2008), ("Sweden", 2017))
.groupBy(_._1) // Map(France -> List((France,2008)), Sweden -> List((Sweden,1997), (Sweden,2017)))
.mapValues(_.map(_._2)) // Map(France -> List(2008), Sweden -> List(1997, 2017))
.toMap
which produces:
Map(France -> List(2008), Sweden -> List(1997, 2017))
This way, .get("Sweden") will return Some(List(1997, 2017)).
I'm doing a real time pipeline where I connect Spark Streaming with HBase. For the sake of this process, I have to execute a filter in a HBase table, secifically a prefix filter, since I want to match the records where the key starts with a certain string.
The table I'm filtering is called "hm_notificaciones". I can connect successfully to Hbase shell and scan the table from the command line. Running the following command:
scan "hm_notificaciones"
I get the following records:
ROW COLUMN+CELL
46948854-20180307 column=info_oferta:id_oferta, timestamp=1520459448795, value=123456
46948854-20180312170423 column=info_oferta:id_establecimiento, timestamp=1520892403770, value=9999
46948854-20180312170423 column=info_oferta:id_oferta, timestamp=1520892390858, value=123445
46948854-20180312170536 column=info_oferta:id_establecimiento, timestamp=1520892422044, value=9239
46948854-20180312170536 column=info_oferta:id_oferta, timestamp=1520892435173, value=4432
46948854-20180313110824 column=info_oferta:id_establecimiento, timestamp=1520957374921, value=9990
46948854-20180313110824 column=info_oferta:id_oferta, timestamp=1520957362458, value=12313
I've been tying to run a prefix filter using the Hbase API. I'm writing some Scala code to connect to the API and make the filter. The following code compiles and executes, however it returns an empty result:
def scanTable( table_name:String, family: String, search_key: String )= {
val conf: Configuration = HBaseConfiguration.create()
val connection: Connection = ConnectionFactory.createConnection(conf)
// This is a test to verify if I can connect to HBase API.
//This statements work and print all the table names in HBase
val admin = connection.getAdmin
println("Listing all tablenames")
val list_table_names = admin.listTableNames()
list_table_names.foreach(println)
val table: Table = connection.getTable( TableName.valueOf(table_name) )
//val htable = new HTable(conf, tableName)
var colValueMap: Map[String, String] = Map()
var keyColValueMap: Map[String, Map[String, String]] = Map()
val prefix = Bytes.toBytes(search_key)
val scan = new Scan(prefix)
scan.addFamily(Bytes.toBytes(family))
val prefix_filter = new PrefixFilter(prefix)
scan.setFilter(prefix_filter)
val scanner = table.getScanner(scan)
for( row <- scanner){
val content = row.getNoVersionMap
for( entry <- content.entrySet ){
for( sub_entry <- entry.getValue.entrySet){
colValueMap += (Bytes.toString( sub_entry.getKey) -> Bytes.toString(sub_entry.getValue) )
}
keyColValueMap += (Bytes.toString(row.getRow) -> colValueMap )
}
}
//this doesn't execute
for( ( k, v) <- colValueMap) {
printf( "key: %s", "value: %s\n", k, v )
}
//this never executes since scanner is null (or empty)
for (result <- scanner) {
for (cell <- result.rawCells) {
println("Cell: " + cell + ", Value: " + Bytes.toString(cell.getValueArray, cell.getValueOffset, cell.getValueLength))
}
}
scanner.close
table.close
connection.close
}
I've tried two approaches to print/get the data: composing a Map and iterating over the ResultScanner. However, it seems that my filter is not working since it's returning a null/empty set.
Do you know if there is an alternative way to execute a prefix filter on Hbase?
The code I'm using to test the above code is the following:
user_key = "46948854-20181303144609"
scanTable("hm_notificaciones", "info_oferta", user_key)
The second loop, will not enter, because you have already iterated the scanner on previous step.
for (result <- scanner) {
for (cell <- result.rawCells) {
println("Cell: " + cell + ", Value: " + Bytes.toString(cell.getValueArray, cell.getValueOffset, cell.getValueLength))
}
}
And use keyColValueMap to print. It worked for me, check you prefix filter again.
for( ( k, v) <- colValueMap) {
printf( "key: %s", "value: %s\n", k, v )
}
I'm writing a small data access library to help me use Cassandra prepared statements in a Scala program (its not open source but maybe one day). What I'd like to do is automatically generate a Java Array for the bind statement from the case class
com.datastax.driver.core
PreparedStatement...
public BoundStatement bind(Object... values);
So currently I have
case class Entity(foo:String, optionalBar:Option[String])
object Entity {
def toJArray(e:Entity) = { Array(e.foo, e.optionalBar.getOrElse(null)) }
}
val e1 = Entity("fred", Option("bill"))
val e2 = Entity("fred", None)
Entity.toJArray(e1)
res5: Array[String] = Array(fred, bill)
Entity.toJArray(e2)
res6: Array[String] = Array(fred, null)
The toJArray returns an Array I can use in the bind statement. The boiler plate code gets worse if there is a date or double or a java enum
new java.util.Date(createdOn)
scala.Double.box(price)
priceType.name
Is there a way of automatically generating the Array in Scala assuming the bind parameters have the same order as the case class fields?
EDIT Thanks to #srgfed01
Here's what I came up with (not complete) but allows me to do something like
val customer1 = Customer( "email", "name", None, Option(new Date), OrdStatus.New)
session.execute(populate(customer1, insert))
val customer2 = Customer( "email2", "name2", Option(22), Option(new Date), OrdStatus.Rejected)
session.execute(populate(customer2, insert))
using this function
def populate(state:Product, statement:PreparedStatement): BoundStatement = {
def set(bnd:BoundStatement, i:Int, aval:Any): Unit = {
aval match {
case v:Date => bnd.setDate(i, v)
case v:Int => bnd.setInt(i, v)
case v:Long => bnd.setLong(i, v)
case v:Double => bnd.setDouble(i, v)
case v:String => bnd.setString(i, v)
case null => bnd.setToNull(i)
case _ => bnd.setString(i, aval.toString)
}
}
val bnd = statement.bind
for(i <- 0 until state.productArity) {
state.productElement(i) match {
case op: Option[_] => set(bnd, i, op.getOrElse(null))
case v => set(bnd, i, v)
}
}
bnd
}
You can use productIterator call for your case class object:
case class Entity(foo: String, optionalBar: Option[String])
val e1 = Entity("fred", Option("bill"))
val e2 = Entity("fred", None)
def run(e: Entity): Array[Any] = e.productIterator
.map {
case op: Option[_] => op.getOrElse(null)
case v => v
}
.toArray
println(run(e1).mkString(" ")) // fred bill
println(run(e2).mkString(" ")) // fred null