I am working on a project where i have to create a Tone Listener such that i can record a tone using AudioRecord class of Android. This tone listener will listen to the tone and then will give out the frequency of the tone. I am using FFT for getting the frequency but am stuck as it does not give me the exact frequency. Is there any way that can work?
I am in search of FFT and audio record class of android.
The snippet of the code is as follows:
while (isListening) {
for (int t = 0; t <= 5; t++) {
// System.out.println("Inside for loop");
int numberOfShortsRead = audioRecord
.read(audioData,
audioSize,
(kRecorderNumberOfSamples - audioSize));
// System.out.println("Read"+numberOfShortsRead);
if (numberOfShortsRead > 0) {
System.out.println("inside read>0");
System.out.println("Number of read"
+ numberOfShortsRead);
audioSize += numberOfShortsRead;
System.out
.println("Final audio data size"
+ audioSize);
System.out.println("Number Of Samples"
+ kRecorderNumberOfSamples);
if (kRecorderNumberOfSamples == audioSize) {
for (int i = 0; i < audioSize; i++) {
x[i] = audioData[i]; // real
y[i] = 0; // imaginary
}
System.out.println("Inside FFT"
+ "x" + x + "y" + y);
int i, j, k, n1, n2, a;
double c, s, t1, t2;
// Bit-reverse
j = 0;
n2 = n / 2;
for (i = 1; i < n - 1; i++) {
n1 = n2;
while (j >= n1) {
j = j - n1;
n1 = n1 / 2;
}
j = j + n1;
if (i < j) {
t1 = x[i];
x[i] = x[j];
x[j] = t1;
t1 = y[i];
y[i] = y[j];
y[j] = t1;
}
}
// FFT
n1 = 0;
n2 = 1;
for (i = 0; i < m; i++) {
n1 = n2;
n2 = n2 + n2;
a = 0;
for (j = 0; j < n1; j++) {
c = cos[a];
s = sin[a];
a += 1 << (m - i - 1);
for (k = j; k < n; k = k
+ n2) {
t1 = c * x[k + n1] - s
* y[k + n1];
t2 = s * x[k + n1] + c
* y[k + n1];
x[k + n1] = x[k] - t1;
y[k + n1] = y[k] - t2;
x[k] = x[k] + t1;
y[k] = y[k] + t2;
}
}
}
Frequency estimation methods, such as parabolic interpolation of windowed FFT magnitude peaks (or Sinc interpolation of the complex FFT results) might provide a closer estimate of an exact frequency, as will using more data with a longer FFT, which provides more closely spaced FFT frequency result bins. You may have to buffer up more recorded samples until you have enough use that longer FFT. Zero-padding before a longer FFT is also another method of interpolation for frequency estimation, but the result will be noisier and thus less accurate than using more data.
Assuming your FFT algorithm works, to get the most prominent frequency in your audio data you have to find the frequency where the magnitude is greatest.So in other words find the FFT data point(s) that have the highest magnitude.If you want a more precise values of frequencies you will need to use a higher N to get more resolution.
Hope that helped
Related
I use Java implemented Held-KarpTSP algorithm algo to solve a 25 cities TSP problem.
The program passes with 4 cities.
When it runs with 25 cities it won't stop for several hours. I use jVisualVM to see what's the hotspot, after some optimization now it shows
98% of time is in real computing instead in Map.contains or Map.get.
So I'd like to have your advice, and here is the code:
private void solve() throws Exception {
long beginTime = System.currentTimeMillis();
int counter = 0;
List<BitSetEndPointID> previousCosts;
List<BitSetEndPointID> currentCosts;
//maximum number of elements is c(n,[n/2])
//To calculate m-set's costs just need to keep (m-1)set's costs
List<BitSetEndPointID> lastKeys = new ArrayList<BitSetEndPointID>();
int m;
if (totalNodes < 10) {
//for test data, generate them on the fly
SetUtil3.generateMSet(totalNodes);
}
//m=1
BitSet beginSet = new BitSet();
beginSet.set(0);
previousCosts = new ArrayList<BitSetEndPointID>(1);
BitSetEndPointID beginner = new BitSetEndPointID(beginSet, 0);
beginner.setCost(0f);
previousCosts.add(beginner);
//for m=2 to totalNodes
for (m = 2; m <= totalNodes; m++) {// sum(m=2..n 's C(n,m)*(m-1)(m-1)) ==> O(n^2 * 2^n)
//pick m elements from total nodes, the element id is the index of nodeCoordinates
// the first node is always present
BitSet[] msets;
if (totalNodes < 10) {
msets = SetUtil3.msets[m - 1];
} else {
//for real data set, will read from serialized file
msets = SetUtil3.getMsets(totalNodes, m-1);
}
currentCosts = new ArrayList<BitSetEndPointID>(msets.length);
//System.out.println(m + " sets' size: " + msets.size());
for (BitSet mset : msets) { //C(n,m) mset
int[] candidates = allSetBits(mset, m);
//mset is a BitSet which makes sure begin point 0 comes first
//so end point candidate begins with 1. candidate[0] is always begin point 0
for (int i = 1; i < candidates.length; i++) { // m-1 bits are set
//set the new last point as j, j must not be the same as begin point 0
int j = candidates[i];
//middleNodes = mset -{j}
BitSet middleNodes = (BitSet) mset.clone();
middleNodes.clear(j);
//loop through all possible points which are second to the last
//and get min(A[S-{j},k] + k->j), k!=j
float min = Float.MAX_VALUE;
int k;
for (int ki = 0; ki < candidates.length; ki++) {// m-1 calculation
k = candidates[ki];
if (k == j) continue;
float middleCost = 0;
BitSetEndPointID key = new BitSetEndPointID(middleNodes, k);
int index = previousCosts.indexOf(key);
if (index != -1) {
//System.out.println("get value from map in m " + m + " y key " + middleNodes);
middleCost = previousCosts.get(index).getCost();
} else if (k == 0 && !middleNodes.equals(beginSet)) {
continue;
} else {
System.out.println("middleCost not found!");
continue;
// System.exit(-1);
}
float lastCost = distances[k][j];
float cost = middleCost + lastCost;
if (cost < min) {
min = cost;
}
counter++;
if (counter % 500000 == 0) {
try {
Thread.currentThread().sleep(100);
} catch (InterruptedException iex) {
System.out.println("Who dares interrupt my precious sleep?!");
}
}
}
//set the costs for chosen mset and last point j
BitSetEndPointID key = new BitSetEndPointID(mset, j);
key.setCost(min);
currentCosts.add(key);
// System.out.println("===========================================>mset " + mset + " and end at " +
// j + " 's min cost: " + min);
// if (m == totalNodes) {
// lastKeys.add(key);
// }
}
}
previousCosts = currentCosts;
System.out.println("...");
}
calcLastStop(lastKeys, previousCosts);
System.out.println(" cost " + (System.currentTimeMillis() - beginTime) / 60000 + " minutes.");
}
private void calcLastStop(List<BitSetEndPointID> lastKeys, List<BitSetEndPointID> costs) {
//last step, calculate the min(A[S={1..n},k] +k->1)
float finalMinimum = Float.MAX_VALUE;
for (BitSetEndPointID key : costs) {
float middleCost = key.getCost();
Integer endPoint = key.lastPointID;
float lastCost = distances[endPoint][0];
float cost = middleCost + lastCost;
if (cost < finalMinimum) {
finalMinimum = cost;
}
}
System.out.println("final result: " + finalMinimum);
}
You can speed up your code by using arrays of primitives (it's likely to have to better memory layout than a list of objects) and operating on bitmasks directly (without bitsets or other objects). Here is some code (it generates a random graph but you can easily change it so that it reads your graph):
import java.io.*;
import java.util.*;
class Main {
final static float INF = 1e10f;
public static void main(String[] args) {
final int n = 25;
float[][] dist = new float[n][n];
Random random = new Random();
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
dist[i][j] = dist[j][i] = random.nextFloat();
float[][] dp = new float[n][1 << n];
for (int i = 0; i < dp.length; i++)
Arrays.fill(dp[i], INF);
dp[0][1] = 0.0f;
for (int mask = 1; mask < (1 << n); mask++) {
for (int lastNode = 0; lastNode < n; lastNode++) {
if ((mask & (1 << lastNode)) == 0)
continue;
for (int nextNode = 0; nextNode < n; nextNode++) {
if ((mask & (1 << nextNode)) != 0)
continue;
dp[nextNode][mask | (1 << nextNode)] = Math.min(
dp[nextNode][mask | (1 << nextNode)],
dp[lastNode][mask] + dist[lastNode][nextNode]);
}
}
}
double res = INF;
for (int lastNode = 0; lastNode < n; lastNode++)
res = Math.min(res, dist[lastNode][0] + dp[lastNode][(1 << n) - 1]);
System.out.println(res);
}
}
It takes only a couple of minutes to complete on my computer:
time java Main
...
real 2m5.546s
user 2m2.264s
sys 0m1.572s
I want to get the largest palindrome number of 3-digit numbers. This is my code:
for (int start = 100; start < 1000; start++) {
for (int start2 = 100; start2 < 1000; start2++) {
int temp = start * start2;
int biggest = 1;
String strTemp = temp + "";
if (strTemp.equals(new StringBuilder(strTemp).reverse().toString())) {
if (temp > biggest) {
biggest = temp;
System.out.println("Original: " + strTemp);
System.out.println("Reverse: " + new StringBuilder(strTemp).reverse().toString());
System.out.println("Siffra: " + start);
System.out.println("Siffra2: " + start2);
}
}
}
In the end, I get 995 x 583 and not 993 x 913, which is the largest one. Why? I have it so the int biggest always chooses the biggest number.
You need to move int biggest = 1; out of both for loops.
If you don't do that at every inner loop you restart the value of biggest.
int biggest = 1;
for (int start = 100; start < 1000; start++) {
for (int start2 = 100; start2 < 1000; start2++) {
int temp = start * start2;
String strTemp = temp + "";
if (strTemp.equals(new StringBuilder(strTemp).reverse().toString())) {
if (temp > biggest) {
biggest = temp;
System.out.println("Original: " + strTemp);
System.out.println("Reverse: " + new StringBuilder(strTemp).reverse().toString());
System.out.println("Siffra: " + start);
System.out.println("Siffra2: " + start2);
}
}
}
With java 8 you can rewrite this code as follow:
// Define what it means palindrome
IntPredicate isPalindrome = n -> new StringBuffer(String.valueOf(n)).reverse().toString().equals(String.valueOf(n));
OptionalInt max =
// Define a stream from 100 to 1000
IntStream.range(100, 1000)
// Map the original stream to a new stream
// Basically for each x of the first stream
// creates a new stream 100-1000 and map each element
// x of the first stream and y of the second stream
// to x * y
.flatMap(x -> IntStream.range(100, 1000).map(y -> x * y))
// Take only palyndrome of x * y
.filter(isPalindrome)
// take the max
.max();
A functional approach is more readable in most cases where you have to loop over n elements and is easier to filter and extract elements without
doing errors.
Move your declaration of biggest outside the loops:
int biggest = 1;
for (int start = 100; start < 1000; start++) {
for (int start2 = 100; start2 < 1000; start2++) {
int temp = start * start2;
String strTemp = temp + "";
if (strTemp.equals(new StringBuilder(strTemp).reverse().toString())) {
if (temp > biggest) {
biggest = temp;
System.out.println("Original: " + strTemp);
System.out.println("Reverse: " + new StringBuilder(strTemp).reverse().toString());
System.out.println("Siffra: " + start);
System.out.println("Siffra2: " + start2);
}
}
}
Output:
....
Original: 906609
Reverse: 906609
Siffra: 913
Siffra2: 993
int biggest = 1;
for (int start = 100; start < 1000; start++) {
for (int start2 = 100; start2 < 1000; start2++) {
int temp = start * start2;
in above you are initializing biggest=1 always. so you not getting proper result. Keep it outside of for loop.
Problem: Interactively enter a level of precision, e.g., .001, and then report how many terms are necessary for each of these estimates to come within the specified precision of the value of pi.
My Solution So Far:
Current result does not terminate. The PIEstimator class driver is given. The problem lies inside the PIEstimates class. Some specific questions that I have:
How do you calculate Wallis PI and Leibniz PI in code? The ways for calculating each arithmetically for Wallis is:
pi/4 = (2/3)(4/3)(4/5)(6/5)(6/7)(8/7)(8/9)*...
and for Leibniz:
pi/4 = (1 - 1/3 + 1/5 - 1/7 + 1/9 ...)
Is the current logic of doing this code correct so far? Using a while loop to check if the respective PI calculation is within the limits, with a for loop inside continuing to run until the while requirements are met. Then there is a count that returns the number of times the loop repeated.
For .001, for example, how many terms does it take for each of these formulas to reach a value between 3.14059.. and 3.14259...
import java.util.Scanner;
public class PiEstimator {
public static void main(String[] args) {
System.out.println("Wallis vs Leibnitz:");
System.out.println("Terms needed to estimate pi");
System.out.println("Enter precision sought");
Scanner scan = new Scanner(System.in);
double tolerance = scan.nextDouble();
PiEstimates e = new PiEstimates(tolerance);
System.out.println("Wallis: " + e.wallisEstimate());
System.out.println("Leibnitz: " + e.leibnitzEstimate());
}
}
public class PiEstimates {
double n = 0.0;
double upperLim = 0;
double lowerLim = 0;
public PiEstimates(double tolerance) {
n = tolerance;
upperLim = Math.PI+n;
lowerLim = Math.PI-n;
}
public double wallisEstimate() {
double wallisPi = 4;
int count = 0;
while(wallisPi > upperLim || wallisPi < lowerLim) {
for (int i = 3; i <= n + 2; i += 2) {
wallisPi = wallisPi * ((i - 1) / i) * ((i + 1) / i);
}
count++;
}
return count;
}
public double leibnitzEstimate() {
int b = 1;
double leibnizPi = 0;
int count = 0;
while(leibnizPi > upperLim || leibnizPi < lowerLim) {
for (int i = 1; i < 1000; i += 2) {
leibnizPi += (4/i - 4/i+2);
}
b = -b;
count++;
}
return count;
}
}
At least one mistake in wallisEstimate
for (int i = 3; i <= n + 2; i += 2) {
should be count instead of n:
for (int i = 3; i <= count + 2; i += 2) {
... but still then the algorithm is wrong. This would be better:
public double wallisEstimate() {
double wallisPi = 4;
int count = 0;
int i = 3;
while(wallisPi > upperLim || wallisPi < lowerLim) {
wallisPi = wallisPi * ((i - 1) / i) * ((i + 1) / i);
count++;
i += 2;
}
return count;
}
Similarly, for the Leibniz function:
public double leibnitzEstimate() {
double leibnizPi = 0;
int count = 0;
int i = 1;
while(leibnizPi > upperLim || leibnizPi < lowerLim) {
leibnizPi += (4/i - 4/i+2);
count++;
i += 4;
}
return count;
}
For Leibnitz, I think the inner loop should only run count number of times:
for (int i = 1; i < count; i += 2) {
leibnizPi += (4/i - 4/i+2);
}
If it runs 1000 times every time you can't know when pi was in range.
If the while loops don't terminate, then they don't approach PI.
Wallis: pi/4 = (2/3)(4/3)(4/5)(6/5)(6/7)(8/7)(8/9)*...
The while loop would restart the for loop at i = 3 which would keep adding the same sequence of terms, rather than progressing along with the pattern.
Here's a draft of an alternative solution (no pun intended) based on the pattern of terms.
As you see, the numerators repeat, except for the 2. The divisors repeat aswell, but offset from the numerators: they increment in an alternating fashion.
This way you can actually count each individual terms, instead of pairs of them.
public double wallisEstimate() {
double wallisPi = 1;
int count = 0;
double numerator = 2;
double divisor = 3;
while(wallisPi > upperLim || wallisPi < lowerLim) {
wallisPi *= numerator / divisor;
if ( count++ & 1 == 0 )
numerator+=2;
else
divisor+=2;
}
return count;
}
There is one more change to make, and that is in the initialisation of upperLim and lowerLim. The algorithm approaches PI/2, so:
upperLim = (Math.PI + tolerance)/2;
lowerLim = (Math.PI - tolerance)/2;
Leibniz: pi/4 = (1 - 1/3 + 1/5 - 1/7 + 1/9 ...)
Here the for loop is also unwanted: at best, you will be counting increments of 2000 terms at a time.
The pattern becomes obvious if you write it like this:
1/1 - 1/3 + 1/5 - 1/7 ...
The divisor increments by 2 for every next term.
public double leibnitzEstimate() {
double leibnizPi = 0;
int divisor = 1;
int count = 0;
while(leibnizPi > upperLim || leibnizPi < lowerLim) {
leibnizPi += 1.0 / divisor;
divisor = -( divisor + 2 );
count++;
}
return count;
}
The update of leibnizPi can also be written like this:
leibnizPi += sign * 1.0 / divisor;
divisor += 2;
sign = -sign;
which is more clear, takes one more variable and one more instruction.
An update to the upperLim and lowerLim must be made here aswell: the algorithm approaches PI/4 (different from Leibniz!), so:
upperLim = (Math.PI + tolerance)/4;
lowerLim = (Math.PI - tolerance)/4;
I have been trying to get the sound frequency(number) in real time using fft and i am having run time errors. can any one help?
package com.example.recordsound;
import edu.emory.mathcs.jtransforms.fft.DoubleFFT_1D;
import ca.uol.aig.fftpack.RealDoubleFFT;
public class MainActivity extends Activity implements OnClickListener{
int audioSource = MediaRecorder.AudioSource.MIC; // Audio source is the device MIC
int channelConfig = AudioFormat.CHANNEL_IN_MONO; // Recording in mono
int audioEncoding = AudioFormat.ENCODING_PCM_16BIT; // Records in 16bit
private DoubleFFT_1D fft; // The fft double array
private RealDoubleFFT transformer;
int blockSize = 256; // deal with this many samples at a time
int sampleRate = 8000; // Sample rate in Hz
public double frequency = 0.0; // the frequency given
RecordAudio recordTask; // Creates a Record Audio command
TextView tv; // Creates a text view for the frequency
boolean started = false;
Button startStopButton;
#Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
tv = (TextView)findViewById(R.id.textView1);
startStopButton= (Button)findViewById(R.id.button1);
}
#Override
public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menu);
return true;
}
private class RecordAudio extends AsyncTask<Void, Double, Void>{
#Override
protected Void doInBackground(Void... params){
/*Calculates the fft and frequency of the input*/
//try{
int bufferSize = AudioRecord.getMinBufferSize(sampleRate, channelConfig, audioEncoding); // Gets the minimum buffer needed
AudioRecord audioRecord = new AudioRecord(audioSource, sampleRate, channelConfig, audioEncoding, bufferSize); // The RAW PCM sample recording
short[] buffer = new short[blockSize]; // Save the raw PCM samples as short bytes
// double[] audioDataDoubles = new double[(blockSize*2)]; // Same values as above, as doubles
// -----------------------------------------------
double[] re = new double[blockSize];
double[] im = new double[blockSize];
double[] magnitude = new double[blockSize];
// ----------------------------------------------------
double[] toTransform = new double[blockSize];
tv.setText("Hello");
// fft = new DoubleFFT_1D(blockSize);
try{
audioRecord.startRecording(); //Start
}catch(Throwable t){
Log.e("AudioRecord", "Recording Failed");
}
while(started){
/* Reads the data from the microphone. it takes in data
* to the size of the window "blockSize". The data is then
* given in to audioRecord. The int returned is the number
* of bytes that were read*/
int bufferReadResult = audioRecord.read(buffer, 0, blockSize);
// Read in the data from the mic to the array
for(int i = 0; i < blockSize && i < bufferReadResult; i++) {
/* dividing the short by 32768.0 gives us the
* result in a range -1.0 to 1.0.
* Data for the compextForward is given back
* as two numbers in sequence. Therefore audioDataDoubles
* needs to be twice as large*/
// audioDataDoubles[2*i] = (double) buffer[i]/32768.0; // signed 16 bit
//audioDataDoubles[(2*i)+1] = 0.0;
toTransform[i] = (double) buffer[i] / 32768.0; // signed 16 bit
}
//audiodataDoubles now holds data to work with
// fft.complexForward(audioDataDoubles);
transformer.ft(toTransform);
//------------------------------------------------------------------------------------------
// Calculate the Real and imaginary and Magnitude.
for(int i = 0; i < blockSize; i++){
// real is stored in first part of array
re[i] = toTransform[i*2];
// imaginary is stored in the sequential part
im[i] = toTransform[(i*2)+1];
// magnitude is calculated by the square root of (imaginary^2 + real^2)
magnitude[i] = Math.sqrt((re[i] * re[i]) + (im[i]*im[i]));
}
double peak = -1.0;
// Get the largest magnitude peak
for(int i = 0; i < blockSize; i++){
if(peak < magnitude[i])
peak = magnitude[i];
}
// calculated the frequency
frequency = (sampleRate * peak)/blockSize;
//----------------------------------------------------------------------------------------------
/* calls onProgressUpdate
* publishes the frequency
*/
publishProgress(frequency);
try{
audioRecord.stop();
}
catch(IllegalStateException e){
Log.e("Stop failed", e.toString());
}
}
// }
return null;
}
protected void onProgressUpdate(Double... frequencies){
//print the frequency
String info = Double.toString(frequencies[0]);
tv.setText(info);
}
}
#Override
public void onClick(View v) {
// TODO Auto-generated method stub
if(started){
started = false;
startStopButton.setText("Start");
recordTask.cancel(true);
} else {
started = true;
startStopButton.setText("Stop");
recordTask = new RecordAudio();
recordTask.execute();
}
}
}
AS SOON AS I run the program with the OnClick it crashes
I tried two libraries for fft but ran one at a time to see if the library works or not
As soon as it reaches the line where I assign the the block size to the FFT object it crashes
can any one help
Try this FFT:
public class FFT {
int n, m;
// Lookup tables. Only need to recompute when size of FFT changes.
double[] cos;
double[] sin;
public FFT(int n) {
this.n = n;
this.m = (int) (Math.log(n) / Math.log(2));
// Make sure n is a power of 2
if (n != (1 << m))
throw new RuntimeException("FFT length must be power of 2");
// precompute tables
cos = new double[n / 2];
sin = new double[n / 2];
for (int i = 0; i < n / 2; i++) {
cos[i] = Math.cos(-2 * Math.PI * i / n);
sin[i] = Math.sin(-2 * Math.PI * i / n);
}
}
public void fft(double[] x, double[] y) {
int i, j, k, n1, n2, a;
double c, s, t1, t2;
// Bit-reverse
j = 0;
n2 = n / 2;
for (i = 1; i < n - 1; i++) {
n1 = n2;
while (j >= n1) {
j = j - n1;
n1 = n1 / 2;
}
j = j + n1;
if (i < j) {
t1 = x[i];
x[i] = x[j];
x[j] = t1;
t1 = y[i];
y[i] = y[j];
y[j] = t1;
}
}
// FFT
n1 = 0;
n2 = 1;
for (i = 0; i < m; i++) {
n1 = n2;
n2 = n2 + n2;
a = 0;
for (j = 0; j < n1; j++) {
c = cos[a];
s = sin[a];
a += 1 << (m - i - 1);
for (k = j; k < n; k = k + n2) {
t1 = c * x[k + n1] - s * y[k + n1];
t2 = s * x[k + n1] + c * y[k + n1];
x[k + n1] = x[k] - t1;
y[k + n1] = y[k] - t2;
x[k] = x[k] + t1;
y[k] = y[k] + t2;
}
}
}
}
}
It should address what you have in mind. If you decided to re-use it, give the proper credit to the author.
Source/Author: EricLarch
If you really want to perform a real-time audio analysis, a Java-based approach won't do. I had a similar task in Q4 2013 for my company, and we decided to use Kiss FFT (perhaps the most simple FFT library with a BSD license), compiled for Android using the NDK.
A native C/C++ approach is tons of times faster than its Java counterpart. With the former, we have been able to perform real-time audio decoding and audio features analysis on nearly every mid to high end device, something that was obviously impossible with the latter.
I strongly suggest you to consider the native approach as your best option to do this task. Kiss FFT is a really simple library (literally stands for Keep It Simple FFT), and you won't find much troubles in compiling and using it on Android. You won't be disappointed by the performance results.
Did you solved the problem? The crush is occurred because of the ArrayIndexOutOfBoundsException.
So, modify your code to :
double[] re = new double[blockSize];
double[] im = new double[blockSize];
double[] magnitude = new double[blockSize];
// Calculate the Real and imaginary and Magnitude.
for(int i = 0; i < blockSize+1; i++){
try {
// real is stored in first part of array
re[i] = toTransform[i * 2];
// imaginary is stored in the sequential part
im[i] = toTransform[(i * 2) + 1];
// magnitude is calculated by the square root of (imaginary^2 + real^2)
magnitude[i] = Math.sqrt((re[i] * re[i]) + (im[i] * im[i]));
}catch (ArrayIndexOutOfBoundsException e){
Log.e("test", "NULL");
}
}
double peak = -1.0;
// Get the largest magnitude peak
for(int i = 0; i < blockSize; i++){
if(peak < magnitude[i])
peak = magnitude[i];
}
// calculated the frequency
frequency = Double.toString((sampleRate * peak)/blockSize);
I tried to solve problems from Project Euler. I know my method would work logically (it returns answers to the small scale problem almost instantly). However, it scales horribly. I already attempted changing the .ini file, but to no avail.
Here's my code:
public class Number28 {
static int SIZE = 101; //this should be an odd number, i accidentally posted 100
/**
* #param args
*/
public static void main(String[] args) {
double start = System.currentTimeMillis();
long spiral[][]= spiral(SIZE);
long sum = 0;
for(int i = 0; i < SIZE; i++)
{
sum += spiral[i][i];
sum += spiral[i][SIZE - 1 - i];
}
System.out.println(sum - 1);
double time = System.currentTimeMillis() - start;
System.out.println(time);
}
public static long[][] spiral(int size){
long spiral[][]= new long[size][size];
if(size == 1){
spiral[0][0] = 1;
return spiral;
}
else{
long subspiral[][]= new long[size - 2][size - 2];
subspiral = spiral(size - 2);
for(int r = 0; r < size - 2; r++){
for(int c = 0; c < size - 2; c++){
spiral[r + 1][c + 1] = subspiral[r][c];
}
}
long counter = subspiral[0][size - 3];
for(int r = 1; r < size ; r++){
counter++;
spiral[r][size - 1] = counter;
}
for(int c = size - 2; c >= 0; c--){
counter++;
spiral[size - 1][c] = counter;
}
for(int r = size - 2 ; r >= 0 ; r--){
counter++;
spiral[r][0] = counter;
}
for(int c = 1; c < size ; c++){
counter++;
spiral[0][c] = counter;
}
return spiral;
}
}
}
Here's the edited code, worked like a gem:
public class Number28 {
static int SIZE = 1001;
static long spiral[][]= new long[SIZE][SIZE];
/**
* #param args
*/
public static void main(String[] args) {
double start = System.currentTimeMillis();
long spiral[][]= spiral(SIZE);
long sum = 0;
for(int i = 0; i < SIZE; i++)
{
sum += spiral[i][i];
sum += spiral[i][SIZE - 1 - i];
}
System.out.println(sum - 1);
double time = System.currentTimeMillis() - start;
System.out.println(time);
}
public static long[][] spiral(int size){
if(size == 1){
spiral[SIZE / 2][SIZE / 2] = 1;
return spiral;
}
else{
long subspiral[][]= spiral(size - 2);
int edge = (SIZE - size) / 2;
long counter = subspiral[edge + 1][edge + size - 2];
for(int r = 1; r < size ; r++){
counter++;
spiral[edge + r][edge + size - 1] = counter;
}
for(int c = size - 2; c >= 0; c--){
counter++;
spiral[edge + size - 1][edge + c] = counter;
}
for(int r = size - 2 ; r >= 0 ; r--){
counter++;
spiral[edge + r][edge] = counter;
}
for(int c = 1; c < size ; c++){
counter++;
spiral[edge][edge + c] = counter;
}
return spiral;
}
}
}
As a general piece of Project Euler advice, if your solution doesn't scale, there's almost certainly a better way to solve it. If you've used the same type of solution on an earlier problem you can go through the posts from other users on the earlier question to get ideas for solving the problem in different ways.
Not familiar with the Euler problems, but the horror appears to be your continual allocation and re-allocation of what are basically throwaway intermediate spirals, as you call down recursively to the base case.
Restructure so that you allocate your full spiral up front. Then call your recursive function, passing your full spiral in as a parameter by reference, along with a "level" parameter, which will change with each recursive call. E.g., initial call is with 100x100 spiral and level 100; next (recursive) call is with same spiral, by reference, and level 98. Operations within the function will all be done on the one-and-only-allocated spiral.
In a nutshell: allocate your data structure once, even if you operate on that data structure recursively.
The first problem I saw was a NegativeArraySizeException when running your program with SIZE = 100. I guess this has something to do with how each recursive call is decreasing the size by 2.
I believe that Steven's comment is right on the money. You are allocating the size of the array, them making a recursive call. This causes (SIZE - 1) number of arrays to be allocating, eating up all of your memory. Removing that one line should prevent any memory from being allocated until necessary.
Here is a simplified solution that doesn't store a matrix:
public class P28 {
private final static int N = 1001;
public static void main(String[] args) {
int limit = (N + 1) / 2;
int sum = -3;
int first = 4;
int r = 20;
for (int i = 1; i <= limit; i++) {
sum += first;
first += r;
r += 32;
}
System.out.println(sum);
}
}
Explanation:
Starting from 1 you can see 4 sums:
1 + 3 + 13 + 31 + 57 + ...
1 + 5 + 17 + 37 + 65 + ...
1 + 7 + 21 + 43 + 73 + ...
1 + 9 + 25 + 49 + 81 + ...
1 is added 4 times, this is why the default value for sum is -3.
Let's gather those sums:
4 + 24 + 76 + 160 + 276 + ...
(this is why first is 4 and r is 20 = 24 - 4)
You can observe that r increases by 32 per step ( 24 - 4 = 32 + 76 - 24 = 32 + 32 + 160 - 76 = ... ) and the actual number (first) increases by r.