Test Method Called Without Having Argument In Test Class - java

I have a class which takes a message with payload String.
The payload is then split and used to create an Entity which is passed to DAOInterface to persist.
How can you test the call daoInterface.insert(entity) has been made?
To Mock the DAOInterface and then verify the call to DAO requires the entity in the test class i.e.
verify(daoInterface).insert(entity);
Is this bad design i.e. creating the entity at this stage? Should the Sting[] split be passed to the DAOImplementaion and initialized there. Example problem,
public class ServiceClass {
#AutoWire
private DAOInterface daoInterface;
public void serviceMessage(Message<String> message) {
MessageHeaders mh = new MessageHeaders(message.getHeaders());
String[] split = ((String) mh.get("payload")).split("_");
code omitted
...
String type = mh.get("WhatType");
Entity entity = new Entity(split[0], split[1], split[2]);
if (type.equals("one"))
{
daoInterface.insert(entity); //How to test?
}
else
{
if (type.equals("two"))
{
doaInterface.modify(entity); //How to test?
}
}
}
}

You can verify with Mockito Matchers.
If you only care that the method is called with some Entity, you can verify that with
verify(daoInterface).insert(any(Entity.class));
If you care about which Entity, and the Entity class has an equals method, you can make an entity that should be equal to the one created and verify with
verify(daoInterface).insert(eq(expectedEntity);
If it's more complex than either of these cases, you can also write your own argument matchers.

The easiest thing you can do is injecting another collaborator to the service which will transform payload to Entity. This way you can keep control on object creation (Inversion of Control). Something like the example below injected to the ServiceClass should do the job:
interface PayloadTransformer {
public Entity transform(String payload);
}
This way your code will be easy to test and you split responsibilities which is usually a good thing. Have a look on Single Responsibility principle
Pushing transformation logic down to dao is almost never a good idea.
BTW. you can write else if without additional brackets and indentations. It's more readable like:
if (a) {
// do something
} else if (b) {
// do something
} else {
// do something
}
The last advice ServiceClass is really poor name for class. The word class is redundant here. Just name it Service, EntityService, MessageService or something which fits your case well.
I wouldn't name field with suffix *Interface as well. Underneath is some implementation injected, I assume. Better name it entityDao or just dao. It's up to you though :)

If you use a test framework like PowerMock, you can invoke private constructors and private methods in your test. This makes it easy to inject mock objects like a mock DAOInterface so you can retrieve it later and test it's been called.
For example, in PowerMock, to call a private constructor:
public class ServiceClass{
#Autowire
private final DAOInterface dao;
public ServiceClass() {
}
private ServiceClass(DAOInterface dao) {
this.dao = dao;
}
}
You simply do:
PrivateConstructorInstantiationDemo instance = WhiteBox.invokeConstructor(
PrivateConstructorInstantiationDemo.class,
new MockDAOInterface() );
So if you're using a dependency inject framework like above, this dovetails nicely. You don't normally have the dependency injection working during test, since it usually requires booting a large chunk of code with a lot of configuration.
By adding a single private constructor, you avoid breaking encapsulation, but you can still inject your mock object into the code during test with a test framework like PowerMock. This is considered best practice.
You could break encapsulation and add publicly accessible methods or ctors to the SeviceClass, but if you don't need them for your design it's not good practice to add them only for test. That's why people put such effort into bypassing encapsulation in frameworks like Mockito and PowerMock. It's not just a dodge around private code, it's because you want to keep the encapsulation while still being able to test.
EDIT:
If you're not familiar with making mock objects, you should do some Google searches on the subject. It's very common and a good skill to have. With the above code, you could make your own mock object. But making mocks is so common that most test frameworks will do this for you.
For example, in PowerMock, I just looked at their page on making mocks here. You can make a mock like this
DAOInteface myMock = createMock(DAOInterface.class);
You can then ask the mock to verify that methods are called:
expect(myMock.someMethod());
Now the mock 'expects' that method to be called, and if it isn't, it'll generate an error for your test. Pretty sweet actually.
You can also return values from a call:
expect(myMock.insert()).andReturn("Test succeeded");
so your code would then see the value "Test succeeded" when it called that method. I don't see that 'insert' does return a value, that's just an example.

Related

What is the point in unit testing mock returned data?

Consider the scenario where I am mocking certain service and its method.
Employee emp = mock(Employee.class);
when(emp.getName(1)).thenReturn("Jim");
when(emp.getName(2)).thenReturn("Mark");
//assert
assertEquals("Jim", emp.getName(1));
assertEquals("Mark", emp.getName(2));
In the above code when emp.getName(1) is called then mock will return Jim and when emp.getName(2) is called mock will return Mark. My Question is I am declaring the behavior of Mock and checking it assertEquals what is the point in having above(or same kind of) assert statements? These are obviously going to pass. it is simply like checking 3==(1+2) what is the point? When will these tests fail (apart from changing the return type and param type)?
As you noted, these kind of tests are pointless (unless you're writing a unit test for Mockito itself, of course :-)).
The point of mocking is to eliminate external dependencies so you can unit-test your code without depending on other classes' code. For example, let's assume you have a class that uses the Employee class you described:
public class EmployeeExaminer {
public boolean isJim(Employee e, int i) {
return "Jim".equals(e.getName(i));
}
}
And you'd like to write a unit test for it. Of course, you could use the actual Employee class, but then your test won't be a unit-test any more - it would depend on Employee's implementation. Here's where mocking comes in handy - it allows you to replace Employee with a predictable behavior so you could write a stable unit test:
// The object under test
EmployeeExaminer ee = new EmployeeExaminer();
// A mock Employee used for tests:
Employee emp = mock(Employee.class);
when(emp.getName(1)).thenReturn("Jim");
when(emp.getName(2)).thenReturn("Mark");
// Assert EmployeeExaminer's behavior:
assertTrue(ee.isJim(emp, 1));
assertFalse(ee.isJim(emp, 2));
In your case you are testing a getter, I don't know why you are testing it and no clue why would you need to mock it. From the code you are providing this is useless.
There is many scenarios where mocking make sense when you write unit-test you have to be pragmatic, you should test behaviors and mock dependencies.
Here you aren't testing behavior and you are mocking the class under test.
There is no point in that test.
Mocks are only useful for injecting dependencies into classes and testing that a particular behaviour interacts with that dependency correctly, or for allowing you to test some behaviour that requires an interface you don't care about in the test you are writing.
Mocking the class under test means you aren't even really testing that class.
If the emp variable was being injected into another class and then that class was being tested, then I could see some kind of point to it.
Above testcase is trying to test a POJO.
Actually, You can ignore to test POJO's, or in other words, they are automatically tested when testing other basic functionalities. (there are also utilities as mean-beans to test POJO's)
Goal of unit-testing is to test the functionality without connecting to any external systems. If you are connecting to any external system, that is considered integration testing.
Mocking an object helps in creating mock objects that cannot be created during unit-testing, and testing behavior/logic based on what the mocked object (or real object when connecting to external system) data is returned.
Mocks are structures that simulate behaviour of external dependencies that you don't/can't have or which can't operate properly in the context of your test, because they depend on other external systems themselves (e.g. a connection to a server). Therefore a test like you've described is indeed not very helpful, because you basically try to verify the simulated behaviour of your mocks and nothing else.
A better example would be a class EmployeeValidator that depends on another system EmployeeService, which sends a request to an external server. The server might not be available in the current context of your test, so you need to mock the service that makes the request and simulate the behaviour of that.
class EmployeeValidator {
private final EmployeeService service;
public EmployeeValidator(EmployeeService service) {
this.service = service;
}
public List<Employee> employeesWithMaxSalary(int maxSalary) {
List<Employee> allEmployees = service.getAll(); // Possible call to external system via HTTP or so.
List<Employee> filtered = new LinkedList<>();
for(Employee e : allEmployees) {
if(e.getSalary() <= maxSalary) {
filtered.add(e);
}
}
return filtered;
}
}
Then you can write a test which mocks the EmployeeService and simulates the call to the external system. Afterwards, you can verify that everything went as planned.
#Test
public void shouldContainAllEmployeesWithSalaryFiveThousand() {
// Given - Define behaviour
EmployeeService mockService = mock(EmployeeService.class);
when(mockService.getAll()).thenReturn(createEmployeeList());
// When - Operate the system under test
// Inject the mock
EmployeeValidator ev = new EmployeeValidator(mockService);
// System calls EmployeeService#getAll() internally but this is mocked away here
List<Employee> filtered = ev.employeesWithMaxSalary(5000);
// Then - Check correct results
assertThat(filtered.size(), is(3)); // There are only 3 employees with Salary <= 5000
verify(mockService, times(1)).getAll(); // The service method was called exactly one time.
}
private List<Employee> createEmployeeList() {
// Create some dummy Employees
}

Is adding too many stubbed methods a reason for adding special constructor just for tests? (over mocking)

I want to add unit tests for a method in class ClassToBeTested.execute(). ClassToBeTested is a business model class received from REST api. To call that method I have to:
create a class AAAclass (which must have 2 inner class mocked and stub 7 methods to put call the method I want to test)
put that mocked AAAclass in ClassToBeTested; ClassToBeTested depends on AAAclass
The AAAclass looks like:
public class AAAclass {
#SerializedName("BBBclass")
private BBBclass BBBclass;
public class BBBclass {
#SerializedName("CCCclass")
private CCCclass ccc;
public DDDclass getDDD() {
if (ccc != null) {
return ccc.getDDD();
}
return null;
}
}
private class CCCclass {
#SerializedName("DDDclass")
private DDDclass ddd;
public DDDclass getDDD() {
return ddd;
}
}
public class DDDclass {
}
}
I got the feeling that I'm doing sth wrong and it seems to be over mocking:
Don’t mock your model: Easier to read and you will may be add convenient constructor/factory methods to your production or test codebase.
So should I really add a special constructor just to use it in unit testing?
As was already mentioned it is hard to identify what are the objects and what is the context.
But it looks like the classes you'd mentioned are some DTOs but at the same time they have some business logic in their getters.
So first of all I would recommend you to extract the business logic to some other place (for instance some service). It should not be present in dto object.
Second. Why BBBclass, CCCclass and DDDclass are inner classes of AAAclass? Can't you make them static? Or event more can you extract them into separate classes? It is very important to decrease system complexity.
I think if you solve this issues you'll not need to mock such a complex object anymore.
At the same time remember if you're thinking of adding a constructor/method just for testability it is already a bad sign. It means that your system is becoming complex and abstractions don't work well. Try to rethink your abstractions.

Unit Testing and Mocking - Approach and Practice for Deeper Hierarchies - Junit and EasyMock

I have a hierarchical list of converters like the following for example:
#Named
public class NameConverter {
#Inject
private AddressConverter addressConverter;
public package2.Name convert(package1.Name source) {
package2.Name target = new package2.Name();
target.setFirstName(source.getName());
target.setLastName(source.getName());
target.setAddress(addressConverter.convert(source.getAddress()));
}
}
and AddressConverter has ZipCodeConverter and so on ...
In the Unit Testing class,
1) I would create a mock for addressConverter - EasyMock.createNiceMock.
2) Set the expectation -
EasyMock.expect(addressConverter.convert(EasyMock.anyObject(package1.Address.class))).andReturn(addressList); # What this addressList should be?
3) Whitebox.setInternalState for private fields.
Question :
I would assert on first name and last name if they are equal which is straight forward.
But, NameConverter is also responsible for setting the converted Address.There is a possibility for NameConverter to change the values of returned converted Address and other POJOs inside.
So how do I ensure through Asserts or something else, that NameConverter just sets the Address(and the POJOs encapsulated by it) as it is and does not tamper with the values ??
Possible Solution: In the EasyMock.expect return, should I create and set values for all POJOs till the last one in the hierarchy and assert on each of the values?
But that doesn't seem like unit testing !!
Please help as how to unit test this converter.
It is unit testing to set the return value of a mock object and to assert that that return value is put in the right place by your NameConverter.
However, perhaps what you're coming across is a failure of appropriate layering. If you have a set of 'converter' classes which then need to be co-ordinated in some fashion you may want to make each converter independent and to bring the co-ordination responsibility elsewhere. So, your NameConverter should be completely independent of AddressConverter and you perhaps need a third class which is responsible for calling a set of converters, which each just do their job. You could restructure each converter to be given an instance of both their input and output object and their unit tests assert that they only act on known fields within each object. Then the co-ordinator object doesn't need to know anything about what each converter does, it just needs to locate / create instances of the input and output objects and to call each converter in turn. That's very amenable to a unit-testing approach, without resulting in a lot of layering concerns.
Example code:
public interface Converter<S, T> {
convert(S source, T target);
}
public class NameConverter implements Converter<p1.Name, p2.Name> {
#Override
public void convert(p1.Name source, p2.Name target) {
target.setFirstName(source.getName());
target.setLastName(source.getName());
}
}
public class AddressConverter implements Converter<p1.Name, p2.Name> {
#Override
public void convert(p1.Name source, p2.Name target) {
// more stuff.
}
}
public class ConversionService {
private final Set<Converter> converters;
#Inject
public ConversionService(Set<Converter> converters) {
this.converters = converters;
}
public p2.Name convert(p1.Name source) {
p2.Name target = new p2.Name();
converters.forEach((converter) -> converter.convert(source, target);
return target;
}
}
Then your unit test really just need to know that all your lower-level converters were called.
I would suggest three options:
Return a new empty instance of address from your mock and compare that the same exact instance is set to the target. Don't test if the address value is modified. It's Ok not to test every single possibility of things going wrong.
Return a strict mock of address without any expectations set. It will throw if there is an attempt to modify it. And again check for instance equality.
Don't use mocks at all. Test the entire hierarchy as a whole. It does not look like unit testing, but it may be a good option. I think mocks are often overused and should be avoided when possible. Please see more here.
I would recommend the following as a good unit test for NameConverter:
public final class NameConverterTest {
#SUT
NameConverter tested;
#Test
public void convertNameFromPackage1ToNameFromPackage2() {
Address address = new Address();
package1.Name source = new package1.Name("A Name", address);
package2.Name converted = tested.convert(source);
assertEquals(source.getName(), converted.getFirstName());
assertEquals(source.getName(), converted.getLastName());
assertNotNull(converted.getAddress());
}
}
According to Martin Fowler's definition, the above is still a unit test for the NameConverter unit, even if it doesn't isolate it from its dependency on AddressConverter (which would have its own unit test).
(For simplicity, I used an hypothetical #SUT annotation which takes care of instantiating the "system under test" with injected dependencies - and actual testing libraries for this do exist.)

Writing testable code when new object is being constructed using Mockito only

So I am writing a class which I want to follow the best practices and be testable.
I have a new object to be created inside it. So, I am following the factory pattern to achieve it.
public class Apple {
// factory object injected in class
private SeedFactory seedFactory;
// Method to be tested
public void myMethod(String property1, int property2, String depends) {
// Just to set the necessary parameter
seedFactory = new SeedFactory(property1, property2);
// Factory pattern intact. Instance generation depends on only one parameter
SeedFactory result = seedFactory.getInstance(depends);
}
}
EDIT: Adding code for factory as well.
public class SeedFactory{
String property1;
int property2;
SeedFactory(property1,property2){
this.property1 = property1;
this.property2 = property2;
}
SeedFactory getInstance(int depends){
if(depends == 1)
{ // do stuff }
else{ // do stuff and return instance }
Now, before I actually create the new object, I have to make sure that I set two properties for the new instance to be generated, which are needed to be present irrespective of the type of instance generated by the factory. depends is the actual parameter which tells the factory what instance to return.
Now, as far as testability of this code is concerned, I can user PowerMockito to mock the factory object using whenNew but using PowerMockito is not a choice. I have to make it testable without it.
Also, I have tried to encapsulate the new call within a one line function and then use spy. But I want to avoid using spy, since it is not considered a good practice, in context of where this code is being used as a whole.
So my question is, Is there any way, without using PowerMockito, to re-write this class so that it can be unit tested properly?
If the instance to be generated needed only one parameter, then it would have been trivial. However, I don't want to pass more than one parameter to getInstance().
SeedFactory is not Apple's dependancy but your method depends on SeedFactory which has "uses" relationship. So to define proper relation i would suggest you use "USES" relation as below:
public void myMethod(SeedFactory seedFactory, String depends){ // Method to be tested
Now you could mock SeedFactory and can unit test it appropriately.
I think you're doing something wrong.
If SeedFactory isn't an Apple's dependency but an internal concern, hence you don't need to mock a SeedFactory to test Apple. You should test the public API provided by Apple only.
If SeedFactory is an Apple's dependency, so it definitely should be injected.

Can we mock a method in service while testing the service itself?

I am working on a project where I am using MyBatis annotations as persistence framework. Therefore, I have to create an interface for the 'mapper' and compose the mapper in the service like :
class XYZServiceImpl{
public XYZMapper getXYZMapper(){
return SessionUtil.getSqlSession().getMapper(XYZMapper.class)
}
}
Now while unit testing the service with Mockito, I am trying to inject a mock for the mapper. But since I am injecting mock in an instance of XYZService, how can mock a method of the service itself, in this case getXYZMapper() is what I am trying to stub. Although I have got a solution of creating the instance XYZMapper in the service and not call on demand like the above code does something like :
Class XYZServiceImpl{
XYZMapper mapper;
public void useXYZMapper(){
mapper = SessionUtil.getSqlSession().getMapper(XYZMapper.class);
}
}
But that would bring a lot of code changes (ofcourse I can refactor) but is there a way to achieve without having to make code changes?
Also what would be a 'purist' way to have a mapper instance in the class is it the method 1 that is better than method 2 in terms of performance?
EDIT : Here XYZMapper is an interface. Something like :
public interface XYZMapper{
#Select("SELECT * FROM someclass WHERE id = #{id}")
public SomeClass getSomeClass(int id);
}
EDIT : I am facing a similar situation but with a variance that I have a service that I do want to test like XYZServiceImpl. Now it has a method getXYZDetails() which has a lot of business logic handled within the service. Now if getXYZDetails looks like the following :
public XYZDetails getXYZDetails(int id){
XYZDetails details = new XYZDetails();
details.set1Details(fetchSet1Details(id));
//Perform some business logic
details.set2Details(fetchSet2Details(id));
if(details.set2Details() != null){
for(int i = 0; i < details.set2Details().size(); i++){
flushTheseDetails(i);
}
}
.
.
}
Kindly notice that fetchSet1Details(), fetchSet2Details(), flushTheseDetails are public service, public and private service respectively.
I want to know of a method that can mock/stub these methods while testing getXYZDetails() thus enabling me to
There are several options you can use.
Inject dependency
This works only for simple methods like getXYZMapper when method only returns external dependency of you object. This may require to create new XYZServiceImpl instances if for example mapper is bound to connection which is opened per request.
Encapsulate method behavior in object
Another way to achieve similar result is to use a factory or service locator
like this:
public class XYZServiceImpl {
public XYZServiceImpl(XYZMapperFactory mapperFactory) {
this.mapperFactory = mapperFactory;
}
public XYZMapper getXYZMapper() {
return mapperFactory.getMapper();
}
}
This will allow you easily substitute factory in test with implementation which returns mock mapper.
The similar approach can be used for other methods fetchSet1Details, fetchSet2Details, flushTheseDetails that is moving them to other class or classes. If the method contains complex (and may be loosely related) logic it is a good candidate to be moved in separate class. Think about what these methods do. Usually you can move some essential and unrelated part of them to other class or classes and this makes mocking them much easier.
Subclass
This is not recommended but in legacy code sometimes is very helpful as a temporary solution.
In your test subclass you class under test and override methods you need:
#Test
public void someTest() {
XYZServiceImpl sut = new XYZServiceImpl() {
public XYZMapper getXYZMapper() {
return mapperMock;
}
public Whatever fetchSet1Details() {
return whateverYouNeedInTest;
}
}
sut.invokeMethodUnderTest();
}
The only thing you may need to do is to change access modifier of private method to package-private or protected so you can override them.
Spying
This method in also discouraged but you can use mockito spies:
XYZServiceImpl realService = new XYZServiceImpl();
XYZServiceImpl spy = Mockito.spy(realService);
when(spy.fetchSet1Details()).thenReturn(whaeveryouneed);
when(spy.getXYZMapper()).thenReturn(mockMapper);
spy.methodUnderTest();
I would suggest the "purist" way of doing this is to accept an XYZMapper instance in your constructor and store it in a local field.
In production use, you can pass an e.g. SQLXYZMapper, which will interact with your database. In test use, you can pass in a mocked object that you can verify interactions with.

Categories