I am working on a problem to try to find what is called a Snake Sequence in a typical XY graph (aka grid). A Snake sequence is defined as a sequence of numbers where each new number, which can only be located to the right or down of the current number, is either plus or minus one. For example, if you are in the center of the graph, you can either move right (if that number is + or - 1) or move down (if that number is + or - 1). The goal of the problem is to find the longest path (aka Snake Sequence) through the graph (keeping in mind you can only chart a path to a new cell whose value is +- 1 with the current cell).
So, for the following XY graph, the longest snake sequence is: 9, 8, 7, 6, 5, 6, 7
9, 6, 5, 2
8, 7, 6, 5
7, 3, 1, 6
1, 1, 1, 7
Below is my code, which does not seem to work.
Question: How would you solve this problem above? (I offer my code showing what I have thus far, but it does not work)
import java.util.ArrayList;
public class SnakeSequence {
private final int maxX = 3;
private final int maxY = 3;
private final int[][] board = new int[][]{
{1, 2, 3, 4},
{2, 1, -1, 5},
{3, 0, -1, 6},
{6, 2, 1, 7}
};
private ArrayList<Integer> findSequence(int xPos,
int yPos, ArrayList<Integer> currentPath) {
currentPath.add(board[yPos][xPos]);
ArrayList<Integer> pathRight = new ArrayList<Integer>(currentPath);
ArrayList<Integer> pathDown = new ArrayList<Integer>(currentPath);
if (xPos < maxX || yPos < maxY) {
if (yPos < maxY && (board[yPos + 1][xPos] + 1 == board[yPos][xPos] ||
board[yPos + 1][xPos] - 1 == board[yPos][xPos])) {
pathDown = findSequence(xPos, yPos + 1, currentPath);
}
if (xPos < maxX && (board[yPos][xPos + 1] + 1 == board[yPos][xPos] ||
board[yPos][xPos + 1] - 1 == board[yPos][xPos])) {
pathRight = findSequence(xPos + 1, yPos, currentPath);
}
if (pathDown.size() > pathRight.size()) {
return pathDown;
} else {
return pathRight;
}
}
return currentPath;
}
private void getSequence() {
ArrayList<Integer> currentPath = new ArrayList<Integer>();
ArrayList<Integer> result;
result = findSequence(0, 0, currentPath);
for (int i = 0; i < result.size(); i++) {
System.out.println(result.get(i));
}
}
public static void main(String[] args) {
SnakeSequence sequence = new SnakeSequence();
sequence.getSequence();
}
}
You can imagine your table as an oriented graph, then you problem is just to find the longest path.
Fortunatly for you, only moving down and right is allowed, so your graph is acyclic, so you can use algorithms like critical path method.
This is how your graph would look like:
However, you want to find longest path between any two cells. To do that, I would compute for each cell the longest path starting at that cell. It is simmilar to what you do, but you compute same thing more times. Consider this:
6 -> 5
| |
v v
7 -> 6
At both 5 and 7 you compute how long is the path from 6 at down right, and that is useless repeated computation. In worst case scenario, this could lead to exponential time consumption, while the problem can be resolved in linear time!
Moreover, there is no guarantee that the longest path will start at (0,0).
(one possible) Solution:
Compute longest path from each cell, starting from bottom-right to upper-left. At each cel.. remember how long the longest path from that cell is, and witch way from that cell the path leads. (I will measure path length by number of cells on it). So for example, for the only 8 in your grapth, we would remeber [length=8, direction=right].
Why so complicated? Because it is now extramly easy to compute longest path at a cell, if we know the longest path of the cells to the right and down. Example (I made up):
The correct data for 2 now would be [length=4, direction=down] because can't go from 2 to 4.
You can also keep globally longest path and it's start. After the computation is complete, just walk the longest path from that start through the direction and write the numbers, position or whatever you need.
Apologies for my Java (I am primarily a c# programmer) but here is one solution. I separated out the algorithm that discovers the snakes from the algorithm (implementing the interface ISnakeProcessor) that processes each one. That way you could enhance the code to, e.g., collect the snake with the largest sum of values, or collect all the longest snakes, in case there are more than one, by adding more ISnakeProcessor classes.
import java.util.*;
import java.lang.*;
class Rextester
{
public static void main(String args[])
{
SnakeSequence sequence = new SnakeSequence();
sequence.getSequence();
}
}
interface ISnakeProcessor
{
void process(List<Pair<Integer, Integer>> snake);
}
class SnakeSequence {
private final int[][] board;
public SnakeSequence()
{
this(new int[][]{
{1, 2, 3, 4},
{2, 1, -1, 5},
{3, 0, -1, 6},
{6, 2, 1, 7}
});
}
public SnakeSequence(int[][] board)
{
this.board = board;
}
public boolean isValid(int iRow, int iCol)
{
if (iRow < 0 || iRow >= board.length)
return false;
if (iCol < 0 || iCol >= board[iRow].length)
return false;
return true;
}
private boolean continuesInRow(int iRow, int iCol)
{
if (!isValid(iRow, iCol) || !isValid(iRow+1, iCol))
return false;
int myVal = board[iRow][iCol];
if (board[iRow+1][iCol] == myVal - 1 || board[iRow+1][iCol] == myVal + 1)
return true;
return false;
}
private boolean continuesInCol(int iRow, int iCol)
{
if (!isValid(iRow, iCol) || !isValid(iRow, iCol+1))
return false;
int myVal = board[iRow][iCol];
if (board[iRow][iCol+1] == myVal - 1 || board[iRow][iCol+1] == myVal + 1)
return true;
return false;
}
private boolean isHead(int iRow, int iCol)
{
if (!isValid(iRow, iCol))
return false;
if (isValid(iRow-1, iCol) && continuesInRow(iRow-1, iCol))
return false;
if (isValid(iRow, iCol-1) && continuesInRow(iRow, iCol-1))
return false;
return true;
}
private boolean isTail(int iRow, int iCol)
{
if (!isValid(iRow, iCol))
return false;
if (continuesInRow(iRow, iCol))
return false;
if (continuesInCol(iRow, iCol))
return false;
return true;
}
private void testHead()
{
System.out.println("Dumping list of heads");
for (int iRow = 0; iRow < board.length; iRow++)
{
for (int iCol = 0; iCol < board[iRow].length; iCol++)
{
boolean head = isHead(iRow, iCol);
boolean tail = isTail(iRow, iCol);
if (head && tail)
System.out.print(" B");
else if (head)
System.out.print(" H");
else if (tail)
System.out.print(" T");
else
System.out.print(" -");
}
System.out.println("");
}
}
private void walkSnake(ISnakeProcessor processor, int iRow, int iCol, ArrayList<Pair<Integer, Integer>> snake)
{
snake.add(new Pair<Integer, Integer>(iRow, iCol));
boolean isTail = true;
if (continuesInRow(iRow, iCol))
{
walkSnake(processor, iRow+1, iCol, snake);
isTail = false;
}
if (continuesInCol(iRow, iCol))
{
walkSnake(processor, iRow, iCol+1, snake);
isTail = false;
}
if (isTail)
{
processor.process(snake);
}
snake.remove(snake.size() - 1);
}
private void walkSnakes(ISnakeProcessor processor)
{
ArrayList<Pair<Integer, Integer>> snake = new ArrayList<Pair<Integer, Integer>>();
for (int iRow = 0; iRow < board.length; iRow++)
for (int iCol = 0; iCol < board[iRow].length; iCol++)
if (isHead(iRow, iCol))
walkSnake(processor, iRow, iCol, snake);
}
class LongestSnakeFinder implements ISnakeProcessor
{
private final SnakeSequence parent;
ArrayList<Pair<Integer, Integer>> longest = new ArrayList<Pair<Integer, Integer>>();
public LongestSnakeFinder(SnakeSequence parent)
{
this.parent = parent;
}
public void process(List<Pair<Integer, Integer>> snake)
{
if (snake.size() > longest.size())
{
longest.clear();
longest.addAll(snake);
}
}
public void dumpLongest()
{
System.out.format("The first encountered longest snake has length %d:\n", longest.size());
for (int i = 0; i < longest.size(); i++)
{
int iRow = longest.get(i).getFirst();
int iCol = longest.get(i).getSecond();
System.out.format(" (%d,%d): %d\n", iRow, iCol, parent.getValue(iRow, iCol));
}
}
}
public int getNRows() { return board.length; }
public int getNCols(int iRow) { return board[iRow].length; }
public int getValue(int iRow, int iCol) { return board[iRow][iCol]; }
public void getSequence() {
testHead();
LongestSnakeFinder finder = new LongestSnakeFinder(this);
walkSnakes(finder);
finder.dumpLongest();
}
}
class Pair<F, S> {
private F first; //first member of pair
private S second; //second member of pair
public Pair(F first, S second) {
this.first = first;
this.second = second;
}
public F getFirst() {
return first;
}
public S getSecond() {
return second;
}
}
Example run here: http://rextester.com/AKUFNL43897
Update - cleaned code a little. New sample run here: http://rextester.com/AVOAIY11573
And, the output:
Dumping list of heads
H - - -
- - B -
T - T -
B H T T
The first encountered longest snake has length 7:
(0,0): 1
(0,1): 2
(0,2): 3
(0,3): 4
(1,3): 5
(2,3): 6
(3,3): 7
Is this what you want?
Here is one simple way to correct your solution and avoid copying of path on every step
import java.util.ArrayList;
import java.util.Collections;
public class SnakeSequence {
private final int maxX = 3;
private final int maxY = 3;
private final int[][] board = new int[][]{
{1, 2, 3, 4},
{2, 1, -1, 5},
{3, 0, -1, 6},
{6, 2, 1, 7}
};
private ArrayList<Integer> findSequence(int xPos,
int yPos) {
ArrayList<Integer> pathRight = new ArrayList<Integer>();
ArrayList<Integer> pathDown = new ArrayList<Integer>();
if (yPos < maxY && (board[yPos + 1][xPos] + 1 == board[yPos][xPos] ||
board[yPos + 1][xPos] - 1 == board[yPos][xPos])) {
pathDown = findSequence(xPos, yPos + 1);
}
if (xPos < maxX && (board[yPos][xPos + 1] + 1 == board[yPos][xPos] ||
board[yPos][xPos + 1] - 1 == board[yPos][xPos])) {
pathRight = findSequence(xPos + 1, yPos);
}
ArrayList<Integer> ans;
if (pathDown.size() > pathRight.size()) {
ans = pathDown;
} else {
ans = pathRight;
}
ans.add(board[yPos][xPos]);
return ans;
}
private void getSequence() {
ArrayList<Integer> result;
result = findSequence(0, 0);
Collections.reverse(result);
for (int i = 0; i < result.size(); i++) {
System.out.println(result.get(i));
}
}
public static void main(String[] args) {
SnakeSequence sequence = new SnakeSequence();
sequence.getSequence();
}
}
But this way it can work much faster for big arrays due to no recalculating the longest path every time you visiting the same number during recursion. Actually, in this version each number is visited at most twice. It's achieved through saving best solution for every node. Separate storage of path and it length allows not to copy path when it's not needed.
import java.util.ArrayList;
import java.util.Collections;
public class SnakeSequence {
private final int maxX = 3;
private final int maxY = 3;
private final int[][] board = new int[][]{
{1, 2, 3, 4},
{2, 3, -1, 5},
{3, 2, -1, 6},
{6, 1, 2, 3}
};
int[][] pathLength;
ArrayList<ArrayList<ArrayList<Integer>>> paths;
private ArrayList<Integer> findSequence(int xPos,
int yPos) {
if(pathLength[yPos][xPos] >= 0)
{
ArrayList<Integer> ans = new ArrayList<Integer>();
int length = pathLength[yPos][xPos];
ArrayList<Integer> path = paths.get(yPos).get(xPos);
for(int i = 0; i < length; i++)
ans.add(path.get(i));
return ans;
}
ArrayList<Integer> pathRight = new ArrayList<Integer>();
ArrayList<Integer> pathDown = new ArrayList<Integer>();
if (yPos < maxY && (board[yPos + 1][xPos] + 1 == board[yPos][xPos] ||
board[yPos + 1][xPos] - 1 == board[yPos][xPos])) {
pathDown = findSequence(xPos, yPos + 1);
}
if (xPos < maxX && (board[yPos][xPos + 1] + 1 == board[yPos][xPos] ||
board[yPos][xPos + 1] - 1 == board[yPos][xPos])) {
pathRight = findSequence(xPos + 1, yPos);
}
ArrayList<Integer> ans;
if (pathDown.size() > pathRight.size()) {
ans = pathDown;
} else {
ans = pathRight;
}
ans.add(board[yPos][xPos]);
paths.get(yPos).set(xPos,ans);
pathLength[yPos][xPos] = ans.size();
return ans;
}
private void getSequence() {
ArrayList<Integer> result;
pathLength = new int[maxX + 1][maxY + 1];
paths = new ArrayList<ArrayList<ArrayList<Integer>>>();
for(int y = 0; y <= maxY; y++)
{
ArrayList<ArrayList<Integer>> line = new ArrayList<ArrayList<Integer>>();
for(int x = 0; x <= maxX; x++)
{
line.add(null);
pathLength[y][x] = -1;
}
paths.add(line);
}
result = findSequence(0, 0);
Collections.reverse(result);
for (int i = 0; i < result.size(); i++) {
System.out.println(result.get(i));
}
}
public static void main(String[] args) {
SnakeSequence sequence = new SnakeSequence();
sequence.getSequence();
}
}
Simple Recursive solution :
import java.util.ArrayList;
import java.util.List;
public class MaximumLengthSnakeSequence {
static int max = -1;
static List<Integer> maxListTemp = new ArrayList<>();
public static void main(String args[]) {
int count = 0;
int n = 4;
int m = 4;
int mat[][] = { { 9, 6, 5, 2 }, { 8, 7, 6, 5 }, { 7, 3, 1, 6 }, { 1, 1, 1, 7 }, };
List<Integer> maxList = new ArrayList<>();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
List<Integer> list = new ArrayList<>();
list.add(mat[i][j]);
List<Integer> testList = recur(i, j, count, mat, n, m, list);
if (maxList.size() < testList.size()) {
maxList = new ArrayList<>(testList);
}
maxListTemp.clear();
}
}
System.out.println("max is " + maxList);
}
static List<Integer> recur(int i, int j, int count, int mat[][], int n, int m, List<Integer> list) {
int curData = mat[i][j];
int rightData = 0;
int downData = 0;
if (j + 1 < n && i < m) {
rightData = mat[i][j + 1];
if (Math.abs(curData - rightData) == 1) {
list.add(rightData);
recur(i, j + 1, count + 1, mat, n, m, list);
list.remove(list.size() - 1);
}
}
if (count > max) {
max = count;
}
if (maxListTemp.size() < list.size()) {
maxListTemp = new ArrayList<>(list);
}
if (i + 1 < m && j < n) {
downData = mat[i + 1][j];
if (Math.abs(curData - downData) == 1) {
list.add(downData);
recur(i + 1, j, count + 1, mat, n, m, list);
list.remove(list.size() - 1);
}
}
return maxListTemp;
}
}
Related
The method is given NxN matrix always powers of 2 and a number,it will return true if the num is found example for 4x4 size:
this is what i wrote:
public class Search {
public static boolean Search (int [][] matrix, int num)
{
int value = matrix.length / 2;
int first_quarter_pivot = matrix[value-1][0]; // represents highest number in first quarter
int second_quarter_pivot = matrix[value-1][value]; // represents highest number in second quarter
int third_quarter_pivot = matrix[matrix.length-1][value]; // represents highest number in third quarter
int fourth_quarter_pivot = matrix[matrix.length-1][0]; // represents highest number in fourth quarter
boolean isBoolean = false;
int i=0;
int j;
// if the num is not in the range of biggest smallest number it means he can`t be there.
if(!(num >= first_quarter_pivot) && (num <= fourth_quarter_pivot)) {
return false;
}
// if num is one of the pivots return true;
if((num == first_quarter_pivot || (num ==second_quarter_pivot))
|| (num == third_quarter_pivot) || (num == fourth_quarter_pivot ))
return true;
// if num is smaller than first pivot it means num is the first quarter,we limit the search to first quarter.
// if not smaller move to the next quarter pivot
if(num < first_quarter_pivot){{
j =0;
do
if(matrix[i][j] == num) {
isBoolean = true;
break;
}
else if((j == value)) {
j = 0;
i++;
}
else if(matrix[i][j] != num){
j++;
}
while(isBoolean != true) ;
}
return isBoolean;
}
// if num is smaller than second pivot it means num is the second quarter,we limit the search to second quarter.
// if not smaller move to the next quarter pivot
if(num < second_quarter_pivot){{
j = value;// start (0,value) j++ till j=value
do
if(matrix[i][j] == num) {
isBoolean = true;
break;
}
else if((j == matrix.length-1)) {
j = value;
i++;
}
else if(matrix[i][j] != num){
j++;
}
while(isBoolean != true) ;
}
return isBoolean;
}
// if num is smaller than third pivot it means num is the third quarter,we limit the search to third quarter.
// if not smaller move to the next quarter pivot
if(num < third_quarter_pivot){{
i = value;
j = value;// start (0,value) j++ till j=value
do
if(matrix[i][j] == num) {
isBoolean = true;
break;
}
else if((j == matrix.length-1)) {
j = value;
i++;
}
else if(matrix[i][j] != num){
j++;
}
while(isBoolean != true) ;
}
return isBoolean;
}
// if num is smaller than fourth pivot it means num is the fourth quarter,we limit the search to fourth quarter.
// number must be here because we verfied his existence in the start.
if(num < fourth_quarter_pivot){
i = value;
j = 0;// start (0,value) j++ till j=value
do
if(matrix[i][j] == num) {
isBoolean = true;
break;
}
else if((j == value)) {
j = 0;
i++;
}
else if(matrix[i][j] != num){
j++;
}
while(isBoolean != true) ;
}
return isBoolean;
}
}
What i tried to do:
find in which quarter the wanted number is in,after that check
the same quarter by moving j++ until it hits the limit,than i++
until found
with the limits changing for each quarter,i cant understand if run time complexity is O(n^2) or lower? and will it be better do create one dimensional array and and move on the quarter this way: move right until limit,one down,move left until limit and il have a sorted array and just binear search
If you can map an array to a matrix, you can use a normal binary search.
You can define the translation table to achieve that like this:
X = [0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, ...]
Y = [0, 1, 1, 0, 2, 3, 3, 2, 2, 3, 3, 2, 0, 1, 1, 0, ...]
The final program looks like this.
static final int MAX_N = 64;
static final int MAX_NN = MAX_N * MAX_N;
static final int[] DX = {0, 0, 1, 1};
static final int[] DY = {0, 1, 1, 0};
static final int[] X = new int[MAX_NN];
static final int[] Y = new int[MAX_NN];
static { // initialize X and Y
for (int i = 0; i < MAX_NN; ++i) {
int x = 0, y = 0;
for (int t = i, f = 0; t > 0; ++f) {
int mod = t & 3;
x += DX[mod] << f; y += DY[mod] << f;
t >>= 2;
}
X[i] = x; Y[i] = y;
}
}
public static boolean Search(int [][] matrix, int num) {
int n = matrix.length, nn = n * n;
int lower = 0;
int upper = nn - 1;
while (lower <= upper) {
int mid = (lower + upper) / 2;
int value = matrix[X[mid]][Y[mid]];
if (value == num)
return true;
else if (value < num)
lower = mid + 1;
else
upper = mid - 1;
}
return false;
}
and
public static void main(String[] args) {
int[][] matrix = {
{1, 3, 7, 9},
{6, 4, 15, 11},
{36, 50, 21, 22},
{60, 55, 30, 26},
};
// case: exists
System.out.println(Search(matrix, 1));
System.out.println(Search(matrix, 60));
System.out.println(Search(matrix, 11));
// case: not exists
System.out.println(Search(matrix, 0));
System.out.println(Search(matrix, 70));
System.out.println(Search(matrix, 20));
}
output:
true
true
true
false
false
false
This is all about the famous NQueens problem. My program works fine (backtrack approach). It finds all the solutions for a given board size.
Code is shown below.
I'm trying to modify the code so that I can find all the solutions for a given column of the first queen. I don't want to change the position of first queen. For an example it will provide me with the solution of
[2, 0, 3, 1, 4] and [2, 4, 1, 3, 0]
when I set the first queen at 2, board size 5 (third column, index starts from zero).
I tried this by setting different values for k (and board[k] as well) but doesn't quite reach the goal.
Any hints will be appreciated.
Here is my code. Removed details about place method since it shouldn't be changed to achieve my new goal.
public class NQueensAllSolutions
{
// Board size
static int size = 8;
// One dimensional array to store the column number for all queens.
static int[] board = new int[size];
// This method will check the validity for a new queen. works fine.
static boolean place(int k)
{
.
.
}
public static void main(String[] args)
{
int k;
long t=0; // for counting total found solutions
k = 0;
board[k] = -1;
while(k >= 0) {
board[k]++;
while(board[k] < size && !(place(k))) board[k]++;
if(board[k] < size) {
if(k == size-1) { // a solution is found.
t++;
//System.out.println("\n\nTotal: "+t+" --> "+Arrays.toString(board));
}
else {
k++; board[k] = -1;
}
}
else {
k--; // backtrack.
}
}
System.out.println("\n\nTotal: "+t);
}
}
Just keep k greater than 0 in the while loop:
import java.util.Arrays;
public class Queens
{
static int size = 5;
static int[] board = new int[size];
static boolean isValid(int k)
{
int c1 = board[k];
int c2 = board[k];
for(int r=k-1;r>=0;r--)
{
c1--;
c2++;
if(board[r] == board[k] || board[r] == c1 || board[r] == c2)
return false;
}
return true;
}
public static void main(String[] args)
{
int t = 0;
// Set the first queen position
board[0] = 2;
int k = 1;
board[k] = -1;
// k must stay greater than 0
while(k >= 1) {
board[k]++;
while(board[k] < size && !isValid(k))
board[k]++;
if(board[k] < size) {
if(k == size-1) {
t++;
System.out.println("Solution "+t+" --> "+Arrays.toString(board));
}
else {
k++;
board[k] = -1;
}
}
else {
k--;
}
}
}
}
Output:
Solution 1 --> [2, 0, 3, 1, 4]
Solution 2 --> [2, 4, 1, 3, 0]
UPDATE
Here is a generalized version that can force a queen at position (fixedRow, fixedCol).
The key change is the new getNextCol() method, which is used to get the next possible column for a queen. On row fixedRow, the only possible column is fixedCol. On the other rows, all columns are possible.
import java.util.Arrays;
public class Queens
{
static int size = 5;
static int fixedRow = 2;
static int fixedCol = 0;
static int[] board = new int[size];
static boolean isValid(int k)
{
int c1 = board[k];
int c2 = board[k];
for(int r=k-1;r>=0;r--)
{
c1--;
c2++;
if(board[r] == board[k] || board[r] == c1 || board[r] == c2)
return false;
}
return true;
}
static int getNextCol(int k, int col)
{
if(k == fixedRow) {
// Only one possible move on this row
return col == -1 ? fixedCol : size;
}
else {
// Try the next column
return col+1;
}
}
public static void main(String[] args)
{
int t = 0;
int k = 0;
board[k] = -1;
while(k >= 0) {
board[k] = getNextCol(k, board[k]);
while(board[k] < size && !isValid(k))
board[k] = getNextCol(k, board[k]);
if(board[k] < size) {
if(k == size-1) {
t++;
System.out.println("Solution "+t+" --> "+Arrays.toString(board));
}
else {
k++;
board[k] = -1;
}
}
else {
k--;
}
}
}
}
Output:
Solution 1 --> [1, 3, 0, 2, 4]
Solution 2 --> [4, 2, 0, 3, 1]
I'm studying the 3 Sum to implement it on my own, and came across the following implementation with the rules:
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note: Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
And implementation (sorts the array, iterates through the list, and uses another two pointers to approach the target):
import java.util.*;
public class ThreeSum {
List<List<Integer>> threeSum(int[] num) {
Arrays.sort(num);
List<List<Integer>> res = new LinkedList<>();
for (int i=0; i<num.length-2; i++) {
if (i==0 || (i>0 && num[i] != num[i-1])) { //HERE
int lo = i+1;
int hi = num.length-1;
int sum = 0 - num[i];
while (lo < hi) {
if (num[lo] + num[hi] == sum) {
res.add(Arrays.asList(num[i], num[lo], num[hi]));
while (lo < hi && num[lo] == num[lo+1]) lo++; //HERE
while (lo < hi && num[hi] == num[hi-1]) hi--; //HERE
lo++; hi--;
} else if (num[lo] + num[hi] < sum) lo++;
else hi--;
}
}
}
return res;
}
//Driver
public static void main(String args[]) {
ThreeSum ts = new ThreeSum();
int[] sum = {-1, 0, 1, 2, -1, -4};
System.out.println(ts.threeSum(sum));
}
}
And my question is (located where commented: //HERE), what's the reason for checking num[i] != num[i-1], num[lo] == num[lo+1], and num[hi] == num[hi-1]? Supposedly they are supposed to skip the same result, but what does that mean? Examples would really help.
Thank you in advance and will accept answer/up vote.
Imagine you have {-1,-1,0,1,2,4} and considering triplet num[0], num[2], num[3] (-1,0,1).
lo=0 here. To exclude triplet num[1], num[2], num[3] with the same values, we should increment lo and pass over duplicate
This will prevent the list to have duplicate triplet.
For example, with you test :
int[] sum = {-1, 0, 1, 2, -1, -4};
will be sorted like :
sum = {-4, -1, -1, 0, 1, 2};
You see that you have -1 twice. Without these test, you would test twice if -1 = 0 + 1. This is not usefull so the algo simply search the next different value.
You could remove duplicate in the sorted List to prevent these test.
Thanks to MBo, we can't remove duplicate since we can have triplet with same value (but with different index)
All the three sentences is used to avoid the duplicate output.
Consider a sorted list {-2, -2 , 1, 1}
If there is no checking for num[i] != num[i-1], the output of the program would be(-2, 1, 1)and(-2, 1, 1), which are two duplicate triplets.
The checking for num[lo] != num[lo + 1]and num[hi] != num[hi - 1] are for the same reason.
Consider a sorted list
{-2,-1,-1,0,3}
If there is no checking for num[lo], you will get (-2,-1,3) and (-2,-1,3) as the output.
Still, I want to recommend a better solution for this problem. You can numerate the sum of two numbers in the list and find the 3rd number by hash or binary search. It will helps you to gain a O(n^2logn) time complexity rather than O(n^3). (I was wrong, the time complexity of this algorithm is O(n^2), sorry for that.)
Following program finds pairs of three integer with O(N*2)
Sort the input Array
and iterate each element in for loop and check for sum in program which is developed for Two sum.
Two sum in linear time after sorting ->
https://stackoverflow.com/a/49650614/4723446
public class ThreeSum {
private static int countThreeSum(int[] numbers) {
int count = 0;
for (int i = 0; i < numbers.length; i++) {
int front = 0, rear = numbers.length - 1;
while (front < rear) {
if (numbers[front] + numbers[rear] + numbers[i] == 0) {
System.out.printf(String.format("Front : {%d} Rear : {%d} I : {%d} \n", numbers[front],
numbers[rear], numbers[i]));
front++;
rear--;
count++;
} else {
if (Math.abs(numbers[front]) > Math.abs(numbers[rear])) {
front++;
} else {
rear--;
}
}
}
}
return count;
}
public static void main(String[] args) {
int[] numbers = { 1, 3, 5, 7, 12, 16, 19, 15, 11, 8, -1, -3, -7, -8, -11, -17, -15 };
Arrays.sort(numbers);
System.out.println(countThreeSum(numbers));
}
}
It's worked with any NSum (3Sum, 4Sum, 5Sum, ...) and quite fast.
public class ThreeSum {
private static final int RANDOM_RANGE = 20;
private Integer array[];
private Integer arrayIndex[];
private int result[];
private int bagLength;
private int resultIndex = 0;
private void generateData(int size) {
array = new Integer[size];
Random random = new Random();
for (int i = 0; i < size; i++) {
array[i] = random.nextInt(RANDOM_RANGE) - (RANDOM_RANGE/2);
}
}
private void markArrayIndex(int size) {
arrayIndex = new Integer[size];
for (int i = 0; i < size; i++) {
arrayIndex[i] = i;
}
}
private void prepareBeforeCalculate(int size, int sumExpected, int bagLength) {
this.bagLength = bagLength;
result = new int[bagLength];
generateData(size);
markArrayIndex(size);
}
void calculate(int size, int sumExpected, int bagLength) {
prepareBeforeCalculate(size, sumExpected, bagLength);
Arrays.sort(arrayIndex, (l, r) -> array[l].compareTo(array[r]));
System.out.println(Arrays.toString(array));
long startAt = System.currentTimeMillis();
if (sumExpected > 0) findLeft(sumExpected, 0, 0, array.length);
else findRight(sumExpected, 0, 0 - 1, array.length - 1);
System.out.println("Calculating in " + ((System.currentTimeMillis() - startAt) / 1000));
}
private void findLeft(int total, int indexBag, int left, int right) {
while (left < array.length && array[arrayIndex[left]] < 0 && indexBag < bagLength) {
navigating(total, arrayIndex[left], indexBag, left, right);
left++;
}
}
private void findRight(int total, int indexBag, int left, int right) {
while (right >= 0 && array[arrayIndex[right]] >= 0 && indexBag < bagLength) {
navigating(total, arrayIndex[right], indexBag, left, right);
right--;
}
}
private void navigating(int total, int index, int indexBag, int left, int right) {
result[indexBag] = index;
total += array[index];
if (total == 0 && indexBag == bagLength - 1) {
System.out.println(String.format("R[%d] %s", resultIndex++, toResultString()));
return;
}
if (total > 0) findLeft(total, indexBag + 1, left + 1, right);
else findRight(total, indexBag + 1, left, right - 1);
}
private String toResultString() {
int [] copyResult = Arrays.copyOf(result, result.length);
Arrays.sort(copyResult);
int iMax = copyResult.length - 1;
StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(array[copyResult[i]]);
if (i == iMax)
return b.append(']').toString();
b.append(", ");
}
}
}
public class ThreeSumTest {
#Test
public void test() {
ThreeSum test = new ThreeSum();
test.calculate(100, 0, 3);
Assert.assertTrue(true);
}
}
I need to design an algorithm to find the maximum value I can get from (stepping) along an int[] at predefined (step lengths).
Input is the number of times we can "use" each step length; and is given by n2, n5 and n10. n2 means that we move 2 spots in the array, n5 means 5 spots and n10 means 10 spots. We can only move forward (from left to right).
The int[] contains the values 1..5, the size of the array is (n2*2 + n5*5 + n10*10). The starting point is int[0].
Example: we start at int[0]. From here we can move to int[0+2] == 3, int[0+5] == 4 or int[0+10] == 1. Let's move to int[5] since it has the highest value. From int[5] we can move to int[5+2], int[5+5] or int[5+10] etc.
We should move along the array in step lengths of 2, 5 or 10 (and we can only use each step length n2-, n5- and n10-times) in such a manner that we step in the array to collect as high sum as possible.
The output is the maximum value possible.
public class Main {
private static int n2 = 5;
private static int n5 = 3;
private static int n10 = 2;
private static final int[] pokestops = new int[n2 * 2 + n5 * 5 + n10 * 10];
public static void main(String[] args) {
Random rand = new Random();
for (int i = 0; i < pokestops.length; i++) {
pokestops[i] = Math.abs(rand.nextInt() % 5) + 1;
}
System.out.println(Arrays.toString(pokestops));
//TODO: return the maximum value possible
}
}
This is an answer in pseudocode (I didn't run it, but it should work).
fill dp with -1.
dp(int id, int 2stepcount, int 5stepcount, int 10stepcount) {
if(id > array_length - 1) return 0;
if(dp[id][2stepcount][5stepcount][10stepcount] != -1) return dp[id][2stepcount][5stepcount][10stepcount];
else dp[id][2stepcount][5stepcount][10stepcount] = 0;
int 2step = 2stepcount < max2stepcount? dp(id + 2, 2stepcount + 1, 5stepcount, 10stepcount) : 0;
int 5step = 5stepcount < max5stepcount? dp(id + 5, 2stepcount, 5stepcount + 1, 10stepcount) : 0;
int 10step = 10stepcount < max10stepcount? dp(id + 10, 2stepcount, 5stepcount, 10stepcount + 1) : 0;
dp[id][2stepcount][5stepcount][10stepcount] += array[id] + max(2step, 5step, 10step);
return dp[id][2stepcount][5stepcount][10stepcount];
}
Call dp(0,0,0,0) and the answer is in dp[0][0][0][0].
If you wanna go backwards, then you do this:
fill dp with -1.
dp(int id, int 2stepcount, int 5stepcount, int 10stepcount) {
if(id > array_length - 1 || id < 0) return 0;
if(dp[id][2stepcount][5stepcount][10stepcount] != -1) return dp[id][2stepcount][5stepcount][10stepcount];
else dp[id][2stepcount][5stepcount][10stepcount] = 0;
int 2stepForward = 2stepcount < max2stepcount? dp(id + 2, 2stepcount + 1, 5stepcount, 10stepcount) : 0;
int 5stepForward = 5stepcount < max5stepcount? dp(id + 5, 2stepcount, 5stepcount + 1, 10stepcount) : 0;
int 10stepForward = 10stepcount < max10stepcount? dp(id + 10, 2stepcount, 5stepcount, 10stepcount + 1) : 0;
int 2stepBackward = 2stepcount < max2stepcount? dp(id - 2, 2stepcount + 1, 5stepcount, 10stepcount) : 0;
int 5stepBackward = 5stepcount < max5stepcount? dp(id - 5, 2stepcount, 5stepcount + 1, 10stepcount) : 0;
int 10stepBackward = 10stepcount < max10stepcount? dp(id - 10, 2stepcount, 5stepcount, 10stepcount + 1) : 0;
dp[id][2stepcount][5stepcount][10stepcount] += array[id] + max(2stepForward, 5stepForward, 10stepForward, 2stepBackward, 5backForward, 10backForward);
return dp[id][2stepcount][5stepcount][10stepcount];
}
But your paths don't get fulled explored, because we stop if the index is negative or greater than the array size - 1, you can add the wrap around functionality, I guess.
this is a solution but i am not sure how optimal it is !
i did some optimization on it but i think much more can be done
I posted it with the example written in question
import java.util.Arrays;
import java.util.Random;
public class FindMax {
private static int n2 = 5;
private static int n5 = 3;
private static int n10 = 2;
private static final int[] pokestops = new int[n2 * 2 + n5 * 5 + n10 * 10];
public static int findMaxValue(int n2, int n5, int n10, int pos, int[] pokestops) {
System.out.print("|");
if (n2 <= 0 || n5 <= 0 || n10 <= 0) {
return 0;
}
int first;
int second;
int third;
if (pokestops[pos] == 5 || ((first = findMaxValue(n2 - 1, n5, n10, pos + 2, pokestops)) == 5) || ((second = findMaxValue(n2, n5 - 1, n10, pos + 5, pokestops)) == 5) || ((third = findMaxValue(n2, n5, n10 - 1, pos + 10, pokestops)) == 5)) {
return 5;
}
return Math.max(Math.max(Math.max(first, second), third), pokestops[pos]);
}
public static void main(String[] args) {
Random rand = new Random();
for (int i = 0; i < pokestops.length; i++) {
pokestops[i] = Math.abs(rand.nextInt() % 5) + 1;
}
System.out.println(Arrays.toString(pokestops));
//TODO: return the maximum value possible
int max = findMaxValue(n2, n5, n10, 0, pokestops);
System.out.println("");
System.out.println("Max is :" + max);
}
}
You need to calculate following dynamic programming dp[c2][c5][c10][id] - where c2 is number of times you've stepped by 2, c5 - by 5, c10 - by 10 and id - where is your current position. I will write example for c2 and c5 only, it can be easily extended.
int[][][][] dp = new int[n2 + 1][n5 + 1][pokestops.length + 1];
for (int[][][] dp2 : dp) for (int[][] dp3 : dp2) Arrays.fill(dp3, Integer.MAX_VALUE);
dp[0][0][0] = pokestops[0];
for (int c2 = 0; c2 <= n2; c2++) {
for (int c5 = 0; c5 <= n5; c5++) {
for (int i = 0; i < pokestops.length; i++) {
if (c2 < n2 && dp[c2 + 1][c5][i + 2] < dp[c2][c5][i] + pokestops[i + 2]) {
dp[c2 + 1][c5][i + 2] = dp[c2][c5][i] + pokestops[i + 2];
}
if (c5 < n5 && dp[c2][c5 + 1][i + 5] < dp[c2][c5][i] + pokestops[i + 5]) {
dp[c2][c5 + 1][i + 5] = dp[c2][c5][i] + pokestops[i + 5];
}
}
}
}
I know the target language is java, but I like pyhton and conversion will not be complicated.
You can define a 4-dimensional array dp where dp[i][a][b][c] is the maximum value that you can
get starting in position i when you already has a steps of length 2, b of length 5 and c of length
10. I use memoization to get a cleaner code.
import random
values = []
memo = {}
def dp(pos, n2, n5, n10):
state = (pos, n2, n5, n10)
if state in memo:
return memo[state]
res = values[pos]
if pos + 2 < len(values) and n2 > 0:
res = max(res, values[pos] + dp(pos + 2, n2 - 1, n5, n10))
if pos + 5 < len(values) and n5 > 0:
res = max(res, values[pos] + dp(pos + 5, n2, n5 - 1, n10))
if pos + 10 < len(values) and n10 > 0:
res = max(res, values[pos] + dp(pos + 10, n2, n5, n10 - 1))
memo[state] = res
return res
n2, n5, n10 = 5, 3, 2
values = [random.randint(1, 5) for _ in range(n2*2 + n5*5 + n10*10)]
print dp(0, n2, n5, n10)
Suspiciously like homework. Not tested:
import java.util.Arrays;
import java.util.Random;
public class Main {
private static Step[] steps = new Step[]{
new Step(2, 5),
new Step(5, 3),
new Step(10, 2)
};
private static final int[] pokestops = new int[calcLength(steps)];
private static int calcLength(Step[] steps) {
int total = 0;
for (Step step : steps) {
total += step.maxCount * step.size;
}
return total;
}
public static void main(String[] args) {
Random rand = new Random();
for (int i = 0; i < pokestops.length; i++) {
pokestops[i] = Math.abs(rand.nextInt() % 5) + 1;
}
System.out.println(Arrays.toString(pokestops));
int[] initialCounts = new int[steps.length];
for (int i = 0; i < steps.length; i++) {
initialCounts[i] = steps[i].maxCount;
}
Counts counts = new Counts(initialCounts);
Tree base = new Tree(0, null, counts);
System.out.println(Tree.max.currentTotal);
}
static class Tree {
final int pos;
final Tree parent;
private final int currentTotal;
static Tree max = null;
Tree[] children = new Tree[steps.length*2];
public Tree(int pos, Tree parent, Counts counts) {
this.pos = pos;
this.parent = parent;
if (pos < 0 || pos >= pokestops.length || counts.exceeded()) {
currentTotal = -1;
} else {
int tmp = parent == null ? 0 : parent.currentTotal;
this.currentTotal = tmp + pokestops[pos];
if (max == null || max.currentTotal < currentTotal) max = this;
for (int i = 0; i < steps.length; i++) {
children[i] = new Tree(pos + steps[i].size, this, counts.decrement(i));
// uncomment to allow forward-back traversal:
//children[2*i] = new Tree(pos - steps[i].size, this, counts.decrement(i));
}
}
}
}
static class Counts {
int[] counts;
public Counts(int[] counts) {
int[] tmp = new int[counts.length];
System.arraycopy(counts, 0, tmp, 0, counts.length);
this.counts = tmp;
}
public Counts decrement(int i) {
int[] tmp = new int[counts.length];
System.arraycopy(counts, 0, tmp, 0, counts.length);
tmp[i] -= 1;
return new Counts(tmp);
}
public boolean exceeded() {
for (int count : counts) {
if (count < 0) return true;
}
return false;
}
}
static class Step {
int size;
int maxCount;
public Step(int size, int maxCount) {
this.size = size;
this.maxCount = maxCount;
}
}
}
There's a line you can uncomment to allow forward and back movement (I'm sure someone said in the comments that was allowed, but now I see in your post it says forward only...)
assume that we have a board like this :
and we want to find the most profitable path from left to right with the following movement pattern :
for example in this board the most profitable path is :
i.e. {2, 0} -> {2, 1} -> {3, 2} -> {3, 3}
I wrote the following code :
import java.util.*;
public final class Board {
private final int[][] board;
private final int n;
public Board(int n) {
board = new int[n][n];
this.n = n;
generateBoard();
}
public static class Node {
public int x;
public int y;
public int value;
public Node(int x, int y, int value) {
this.x = x;
this.y = y;
this.value = value;
}
#Override
public String toString() {
return "{" + x + ", " + y + "}";
}
}
public static class Path implements Comparable<Path> {
private LinkedList<Node> path = new LinkedList<>();
public Path() {
}
public Path(List<Node> nodes) {
this.path.addAll(nodes);
}
public void addLast(Node node) {
path.addLast(node);
}
public void removeLast() {
path.removeLast();
}
public List<Node> get() {
return path;
}
public int getProfit() {
return path.stream().map(node -> node.value).mapToInt(value -> value).sum();
}
#Override
public String toString() {
return path.toString();
}
#Override
public int compareTo(Path o) {
return getProfit() > o.getProfit() ? 1 : -1;
}
}
public void generateBoard() {
Random random = new Random();
for (int x = 0; x < n; x++) {
for (int y = 0; y < n; y++) {
board[x][y] = random.nextInt(200) + 1 - 100;
}
}
}
public void printBoard() {
for (int[] b : board) {
System.out.println(Arrays.toString(b));
}
}
public Path findTheMostProfitablePath() {
TreeSet<Path> paths = new TreeSet<>();
for (int x = 0; x < n; x++) {
visit(new Node(x, 0, board[x][0]), paths);
}
return paths.last();
}
private void visit(Node root, Collection<Path> paths) {
Stack<Node> stack = new Stack<>();
stack.add(root);
Node node;
Path currentPath = new Path();
while (!stack.isEmpty()) {
node = stack.pop();
currentPath.addLast(node);
List<Node> children = getChildren(node.x, node.y);
if (children == null) {
paths.add(new Path(currentPath.get()));
currentPath.removeLast();
} else {
stack.addAll(children);
}
}
}
private List<Node> getChildren(int x, int y) {
if (y == n - 1) {
return null;
}
y++;
List<Node> children = new LinkedList<>();
if (x == 0) {
children.add(new Node(x, y, board[x][y]));
children.add(new Node(x + 1, y, board[x + 1][y]));
} else if (x == n - 1) {
children.add(new Node(x - 1, y, board[x - 1][y]));
children.add(new Node(x, y, board[x][y]));
} else {
children.add(new Node(x - 1, y, board[x - 1][y]));
children.add(new Node(x, y, board[x][y]));
children.add(new Node(x + 1, y, board[x + 1][y]));
}
return children;
}
public static void main(String[] args) {
Board board = new Board(3);
System.out.println("Board :");
board.printBoard();
System.out.println("\nThe most profitable path :\n" + board.findTheMostProfitablePath());
}
}
but it fails to find the path...
output :
Board :
[-7, 1, 18]
[88, 56, 18]
[-18, -13, 100]
The most profitable path :
[{1, 0}, {2, 1}, {1, 1}, {2, 2}]
whats's wrong with my code?
I know this is not the best algorithm to find the most profitable path and also it is very slow.
in a n*n board the number of paths would be :
n * 2 ^ (n-1) < number of paths < n * 3 ^ (n-1)
and in this algorithm we are checking all paths to find the most profitable one.
Thanks.
You are solving the Longest Path Problem, which is usually NP-Complete. However, in your case, you actually have a Directed Acyclic Graph, and thus an efficient solution is available with the following recurrence formula:
D(i,-1) = D(i,m) = -INFINITY //out of bounds
D(-1,j) = 0 [ j>=0 ] //succesful path
D(i,j) = max{ D(i-1, j-1) , D(i-1,j),D(i-1,j+1)} + A[i][j] //choose best out of 3
By applying Dynamic Programming techniques to implement this formula, an efficient O(n*m) optimal solution can be achieved.
When you are done, a simple scan on the rightest column will find you the destination of the "most profitable" path, and you can reconstruct the actual path from there by going back through the above and writing down each decision at each step.