Spring And Hibernate - generic entity updates - java

I have a very simple task,
I have a "User" Entity.
This user has tons of fields, for example :
firstName
age
country
.....
My goal is to expose a simple controller for update:
#RequestMapping(value = "/mywebapp/updateUser")
public void updateUser(data)
I would like clients to call my controller with updates that might include one or more fields to be updated.
What are the best practices to implement such method?
One naive solution will be to send from the client the whole entity, and in the server just override all fields, but that seems very inefficient.
another naive and bad solution might be the following:
#Transactional
#RequestMapping(value = "/mywebapp/updateUser")
public void updateUser(int userId, String[] fieldNames, String[] values) {
User user = this.userDao.findById(userId);
for (int i=0 ; i < fieldsNames.length ; i++) {
String fieldName = fieldsName[i];
switch(fieldName) {
case fieldName.equals("age") {
user.setAge(values[i]);
}
case fieldName.equals("firstName") {
user.setFirstName(values[i]);
}
....
}
}
}
Obviously these solutions aren't serious, there must be a more robust\generic way of doing that (reflection maybe).
Any ideas?

I once did this genetically using Jackson. It has a very convenient ObjectMapper.readerForUpdating(Object) method that can read values from a JsonNode/Tree onto an existing object.
The controller/service
#PATCH
#Transactional
public DomainObject partialUpdate (Long id, JsonNode data) {
DomainObject o = repository.get(id);
return objectMapper.readerForUpdating(o).readValue(data);
}
That was it. We used Jersey to expose the services as REST Web services, hence the #PATCH annotation.
As to whether this is a controller or a service: it handles raw transfer data (the JsonNode), but to work efficiently it needs to be transactional (Changes made by the reader are flushed to the database when the transaction commits. Reading the object in the same transaction allows hibernate to dynamically update only the changed fields).

If your User entity doesn't contains any security fields like login or password, you can simply use it as model attribute. In this case all fields will be updated automatically from the form inputs, those fields that are not supose to be updated, like id should be hidden fields on the form.
If you don't want to expose all your entity propeties to the presentation layer you can use pojo aka command to mapp all needed fields from user entity
BWT It is really bad practice to make your controller methods transactional. You should separate your application layers. You need to have service. This is the layer where #Transactional annotation belongs to. You do all the logic there before crud operations.

Related

DDD implementation with Spring Data and JPA + Hibernate problem with identities

So I'm trying for the first time in a not so complex project to implement Domain Driven Design by separating all my code into application, domain, infrastructure and interfaces packages.
I also went with the whole separation of the JPA Entities to Domain models that will hold my business logic as rich models and used the Builder pattern to instantiate. This approach created me a headache and can't figure out if Im doing it all wrong when using JPA + ORM and Spring Data with DDD.
Process explanation
The application is a Rest API consumer (without any user interaction) that process daily through Scheduler tasks a fairly big amount of data resources and stores or updates into MySQL. Im using RestTemplate to fetch and convert the JSON responses into Domain objects and from there Im applying any business logic within the Domain itself e.g. validation, events, etc
From what I have read the aggregate root object should have an identity in their whole lifecycle and should be unique. I have used the id of the rest API object because is already something that I use to identify and track in my business domain. I have also created a property for the Technical id so when I convert Entities to Domain objects it can hold a reference for the update process.
When I need to persist the Domain to the data source (MySQL) for the first time Im converting them into Entity objects and I persist them using the save() method. So far so good.
Now when I need to update those records in the data source I first fetch them as a List of Employees from data source, convert Entity objects to Domain objects and then I fetch the list of Employees from the rest API as Domain models. Up until now I have two lists of the same Domain object types as List<Employee>. I'm iterating them using Streams and checking if an objects are not equal() between them if yes a collection of List items is created as a third list with Employee objects that need to be updated. Here I've already passed the technical Id to the domain objects in the third list of Employees so Hibernate can identify and use to update the records that are already exists.
Up to here are all fairly simple stuff until I use the saveAll() method to update the records.
Questions
I alway see Hibernate using INSERT instead of updating the list of
records. So If Im correct Hibernate session is not recognising the
objects that Im throwing into it because I have detached them when I
used the convert to domain object?
Does anyone have a better idea how can I implement this differently or fix
this problem?
Or should I stop using this approach as two different objects and continue use
them as rich Entity models?
Simple classes to explain it with code
EmployeeDO.java
#Entity
#Table(name = "employees")
public class EmployeeDO implements Serializable {
#Id
#GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String name;
public EmployeeDO() {}
...omitted getter/setters
}
Employee.java
public class Employee {
private Long persistId;
private Long employeeId;
private String name;
private Employee() {}
...omitted getters and Builder
}
EmployeeConverter.java
public class EmployeeConverter {
public static EmployeeDO serialize(Employee employee) {
EmployeeDO target = new EmployeeDO();
if (employee.getPersistId() != null) {
target.setId(employee.getPersistId());
}
target.setName(employee.getName());
return target;
}
public static Employee deserialize(EmployeeDO employee) {
return new Country.Builder(employee.getEmployeeId)
.withPersistId(employee.getId()) //<-- Technical ID setter
.withName(employee.getName())
.build();
}
}
EmployeeRepository.java
#Component
public class EmployeeReporistoryImpl implements EmployeeRepository {
#Autowired
EmployeeJpaRepository db;
#Override
public List<Employee> findAll() {
return db.findAll().stream()
.map(employee -> EmployeeConverter.deserialize(employee))
.collect(Collectors.toList());
}
#Override
public void saveAll(List<Employee> employees) {
db.saveAll(employees.stream()
.map(employee -> EmployeeConverter.serialize(employee))
.collect(Collectors.toList()));
}
}
EmployeeJpaRepository.java
#Repository
public interface EmployeeJpaRepository extends JpaRepository<EmployeeDO, Long> {
}
I use the same approach on my project: two different models for the domain and the persistence.
First, I would suggest you to don't use the converter approach but use the Memento pattern. Your domain entity exports a memento object and it could be restored from the same object. Yes, the domain has 2 functions that aren't related to the domain (they exist just to supply a non-functional requirement), but, on the other side, you avoid to expose functions, getters and constructors that the domain business logic never use.
For the part about the persistence, I don't use JPA exactly for this reason: you have to write a lot of code to reload, update and persist the entities correctly. I write directly SQL code: I can write and test it fast, and once it works I'm sure that it does what I want. With the Memento object I can have directly what I will use in the insert/update query, and I avoid myself a lot of headaches about the JPA of handling complex tables structures.
Anyway, if you want to use JPA, the only solution is to:
load the persistence entities and transform them into domain entities
update the domain entities according to the changes that you have to do in your domain
save the domain entities, that means:
reload the persistence entities
change, or create if there're new ones, them with the changes that you get from the updated domain entities
save the persistence entities
I've tried a mixed solution, where the domain entities are extended by the persistence ones (a bit complex to do). A lot of care should be took to avoid that domain model should adapts to the restrictions of JPA that come from the persistence model.
Here there's an interesting reading about the splitting of the two models.
Finally, my suggestion is to think how complex the domain is and use the simplest solution for the problem:
is it big and with a lot of complex behaviours? Is expected that it will grow up in a big one? Use two models, domain and persistence, and manage the persistence directly with SQL It avoids a lot of caos in the read/update/save phase.
is it simple? Then, first, should I use the DDD approach? If really yes, I would let the JPA annotations to split inside the domain. Yes, it's not pure DDD, but we live in the real world and the time to do something simple in the pure way should not be some orders of magnitude bigger that the the time I need to to it with some compromises. And, on the other side, I can write all this stuff in an XML in the infrastructure layer, avoiding to clutter the domain with it. As it's done in the spring DDD sample here.
When you want to update an existing object, you first have to load it through entityManager.find() and apply the changes on that object or use entityManager.merge since you are working with detached entities.
Anyway, modelling rich domain models based on JPA is the perfect use case for Blaze-Persistence Entity Views.
Blaze-Persistence is a query builder on top of JPA which supports many of the advanced DBMS features on top of the JPA model. I created Entity Views on top of it to allow easy mapping between JPA models and custom interface defined models, something like Spring Data Projections on steroids. The idea is that you define your target structure the way you like and map attributes(getters) via JPQL expressions to the entity model. Since the attribute name is used as default mapping, you mostly don't need explicit mappings as 80% of the use cases is to have DTOs that are a subset of the entity model.
The interesting point here is that entity views can also be updatable and support automatic translation back to the entity/DB model.
A mapping for your model could look as simple as the following
#EntityView(EmployeeDO.class)
#UpdatableEntityView
interface Employee {
#IdMapping("persistId")
Long getId();
Long getEmployeeId();
String getName();
void setName(String name);
}
Querying is a matter of applying the entity view to a query, the simplest being just a query by id.
Employee dto = entityViewManager.find(entityManager, Employee.class, id);
The Spring Data integration allows you to use it almost like Spring Data Projections: https://persistence.blazebit.com/documentation/entity-view/manual/en_US/index.html#spring-data-features and it can also be saved back. Here a sample repository
#Repository
interface EmployeeRepository {
Employee findOne(Long id);
void save(Employee e);
}
It will only fetch the mappings that you tell it to fetch and also only update the state that you make updatable through setters.
With the Jackson integration you can deserialize your payload onto a loaded entity view or you can avoid loading alltogether and use the Spring MVC integration to capture just the state that was transferred and flush that. This could look like the following:
#RequestMapping(path = "/employee/{id}", method = RequestMethod.PUT, consumes = MediaType.APPLICATION_JSON_VALUE)
public ResponseEntity<String> updateEmp(#EntityViewId("id") #RequestBody Employee emp) {
employeeRepository.save(emp);
return ResponseEntity.ok(emp.getId().toString());
}
Here you can see an example project: https://github.com/Blazebit/blaze-persistence/tree/master/examples/spring-data-webmvc

Should DAOs execute database queries or just prepare its statements? [duplicate]

I was going through a document and I came across a term called DAO. I found out that it is a Data Access Object. Can someone please explain me what this actually is?
I know that it is some kind of an interface for accessing data from different types of sources, in the middle of this little research of mine I bumped into a concept called data source or data source object, and things got messed up in my mind.
I really want to know what a DAO is programmatically in terms of where it is used. How it is used? Any links to pages that explain this concept from the very basic stuff is also appreciated.
The Data Access Object is basically an object or an interface that provides access to an underlying database or any other persistence storage.
That definition from:
http://en.wikipedia.org/wiki/Data_access_object
Check also the sequence diagram here:
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
Maybe a simple example can help you understand the concept:
Let's say we have an entity to represent an employee:
public class Employee {
private int id;
private String name;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
The employee entities will be persisted into a corresponding Employee table in a database.
A simple DAO interface to handle the database operation required to manipulate an employee entity will be like:
interface EmployeeDAO {
List<Employee> findAll();
List<Employee> findById();
List<Employee> findByName();
boolean insertEmployee(Employee employee);
boolean updateEmployee(Employee employee);
boolean deleteEmployee(Employee employee);
}
Next we have to provide a concrete implementation for that interface to deal with SQL server, and another to deal with flat files, etc.
What is DATA ACCESS OBJECT (DAO) -
It is a object/interface, which is used to access data from database of data storage.
WHY WE USE DAO:
To abstract the retrieval of data from a data resource such as a database.
The concept is to "separate a data resource's client interface from its data access mechanism."
 
The problem with accessing data directly is that the source of the data can change. Consider, for example, that your application is deployed in an environment that accesses an Oracle database. Then it is subsequently deployed to an environment that uses Microsoft SQL Server. If your application uses stored procedures and database-specific code (such as generating a number sequence), how do you handle that in your application? You have two options:
Rewrite your application to use SQL Server instead of Oracle (or add conditional code to handle the differences), or
Create a layer in-between your application logic and data access layers
The DAO Pattern consists of the following:
Data Access Object Interface - This interface defines the standard operations to be performed on a model object(s).
Data Access Object concrete class -This class implements above interface. This class is responsible to get data from a datasource
which can be database / xml or any other storage mechanism.
Model Object or Value Object - This object is simple POJO containing get/set methods to store data retrieved using DAO class.
See examples
I hope this has cleared up your understanding of DAO!
DAO (Data Access Object) is a very used design pattern in enterprise applications. It basically is the module that is used to access data from every source (DBMS, XML and so on). I suggest you to read some examples, like this one:
DAO Example
Please note that there are different ways to implements the original DAO Pattern, and there are many frameworks that can simplify your work. For example, the ORM (Object Relational Mapping) frameworks like iBatis or Hibernate, are used to map the result of SQL queries to java objects.
Hope it helps,
Bye!
Data Access Object Pattern or DAO pattern is used to separate low level data accessing API or operations from high level business services. Following are the participants in Data Access Object Pattern.
Data Access Object Interface - This interface defines the standard operations to be performed on a model object(s).
Data Access Object concrete class -This class implements above interface. This class is responsible to get data from a datasource which can be database / xml or any other storage mechanism.
Model Object or Value Object - This object is simple POJO containing get/set methods to store data retrieved using DAO class.
Sample code here..
Don't get confused with too many explanations. DAO: From the name itself it means Accessing Data using Object. DAO is separated from other Business Logic.
I am going to be general and not specific to Java as DAO and ORM are used in all languages.
To understand DAO you first need to understand ORM (Object Relational Mapping). This means that if you have a table called "person" with columns "name" and "age", then you would create object-template for that table:
type Person {
name
age
}
Now with help of DAO instead of writing some specific queries, to fetch all persons, for what ever type of db you are using (which can be error-prone) instead you do:
list persons = DAO.getPersons();
...
person = DAO.getPersonWithName("John");
age = person.age;
You do not write the DAO abstraction yourself, instead it is usually part of some opensource project, depending on what language and framework you are using.
Now to the main question here. "..where it is used..". Well usually if you are writing complex business and domain specific code your life will be very difficult without DAO. Of course you do not need to use ORM and DAO provided, instead you can write your own abstraction and native queries. I have done that in the past and almost always regretted it later.
I think the best example (along with explanations) you can find on the oracle website : here. Another good tuturial could be found here.
Spring JPA DAO
For example we have some entity Group.
For this entity we create the repository GroupRepository.
public interface GroupRepository extends JpaRepository<Group, Long> {
}
Then we need to create a service layer with which we will use this repository.
public interface Service<T, ID> {
T save(T entity);
void deleteById(ID id);
List<T> findAll();
T getOne(ID id);
T editEntity(T entity);
Optional<T> findById(ID id);
}
public abstract class AbstractService<T, ID, R extends JpaRepository<T, ID>> implements Service<T, ID> {
private final R repository;
protected AbstractService(R repository) {
this.repository = repository;
}
#Override
public T save(T entity) {
return repository.save(entity);
}
#Override
public void deleteById(ID id) {
repository.deleteById(id);
}
#Override
public List<T> findAll() {
return repository.findAll();
}
#Override
public T getOne(ID id) {
return repository.getOne(id);
}
#Override
public Optional<T> findById(ID id) {
return repository.findById(id);
}
#Override
public T editEntity(T entity) {
return repository.saveAndFlush(entity);
}
}
#org.springframework.stereotype.Service
public class GroupServiceImpl extends AbstractService<Group, Long, GroupRepository> {
private final GroupRepository groupRepository;
#Autowired
protected GroupServiceImpl(GroupRepository repository) {
super(repository);
this.groupRepository = repository;
}
}
And in the controller we use this service.
#RestController
#RequestMapping("/api")
class GroupController {
private final Logger log = LoggerFactory.getLogger(GroupController.class);
private final GroupServiceImpl groupService;
#Autowired
public GroupController(GroupServiceImpl groupService) {
this.groupService = groupService;
}
#GetMapping("/groups")
Collection<Group> groups() {
return groupService.findAll();
}
#GetMapping("/group/{id}")
ResponseEntity<?> getGroup(#PathVariable Long id) {
Optional<Group> group = groupService.findById(id);
return group.map(response -> ResponseEntity.ok().body(response))
.orElse(new ResponseEntity<>(HttpStatus.NOT_FOUND));
}
#PostMapping("/group")
ResponseEntity<Group> createGroup(#Valid #RequestBody Group group) throws URISyntaxException {
log.info("Request to create group: {}", group);
Group result = groupService.save(group);
return ResponseEntity.created(new URI("/api/group/" + result.getId()))
.body(result);
}
#PutMapping("/group")
ResponseEntity<Group> updateGroup(#Valid #RequestBody Group group) {
log.info("Request to update group: {}", group);
Group result = groupService.save(group);
return ResponseEntity.ok().body(result);
}
#DeleteMapping("/group/{id}")
public ResponseEntity<?> deleteGroup(#PathVariable Long id) {
log.info("Request to delete group: {}", id);
groupService.deleteById(id);
return ResponseEntity.ok().build();
}
}
The Data Access Object manages the connection with the data source to obtain and store data.It abstracts the underlying data access implementation for the Business Object to enable transparent access to the data source.
A data source could be any database such as an RDBMS, XML repository or flat file system etc.
DAO is an act like as "Persistence Manager " in 3 tier architecture as well as DAO also design pattern as you can consult "Gang of Four" book.
Your application service layer just need to call the method of DAO class without knowing hidden & internal details of DAO's method.
Dao clases are used to reuse the jdbc logic & Dao(Data Access Object) is a design pattern.
dao is a simple java class which contains JDBC logic .
Data Access Layer has proven good in separate business logic layer and persistent layer. The DAO design pattern completely hides the data access implementation from its clients
The Java Data Access Object (Java DAO) is an important component in business applications. Business applications almost always need access to data from relational or object databases and the Java platform offers many techniques for accessingthis data. The oldest and most mature technique is to use the Java Database Connectivity (JDBC)API, which provides the capability to execute SQL queries against a databaseand then fetch the results, one column at a time.
Pojo also consider as Model class in Java where we can create getter and setter for particular variable defined in private .
Remember all variables are here declared with private modifier
I just want to explain it in my own way with a small story that I experienced in one of my projects. First I want to explain Why DAO is important? rather than go to What is DAO? for better understanding.
Why DAO is important?
In my one project of my project, I used Client.class which contains all the basic information of our system users. Where I need client then every time I need to do an ugly query where it is needed. Then I felt that decreases the readability and made a lot of redundant boilerplate code.
Then one of my senior developers introduced a QueryUtils.class where all queries are added using public static access modifier and then I don't need to do query everywhere. Suppose when I needed activated clients then I just call -
QueryUtils.findAllActivatedClients();
In this way, I made some optimizations of my code.
But there was another problem !!!
I felt that the QueryUtils.class was growing very highly. 100+ methods were included in that class which was also very cumbersome to read and use. Because this class contains other queries of another domain models ( For example- products, categories locations, etc ).
Then the superhero Mr. CTO introduced a new solution named DAO which solved the problem finally. I felt DAO is very domain-specific. For example, he created a DAO called ClientDAO.class where all Client.class related queries are found which seems very easy for me to use and maintain. The giant QueryUtils.class was broken down into many other domain-specific DAO for example - ProductsDAO.class, CategoriesDAO.class, etc which made the code more Readable, more Maintainable, more Decoupled.
What is DAO?
It is an object or interface, which made an easy way to access data from the database without writing complex and ugly queries every time in a reusable way.

Data access object (DAO) in Java

I was going through a document and I came across a term called DAO. I found out that it is a Data Access Object. Can someone please explain me what this actually is?
I know that it is some kind of an interface for accessing data from different types of sources, in the middle of this little research of mine I bumped into a concept called data source or data source object, and things got messed up in my mind.
I really want to know what a DAO is programmatically in terms of where it is used. How it is used? Any links to pages that explain this concept from the very basic stuff is also appreciated.
The Data Access Object is basically an object or an interface that provides access to an underlying database or any other persistence storage.
That definition from:
http://en.wikipedia.org/wiki/Data_access_object
Check also the sequence diagram here:
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
Maybe a simple example can help you understand the concept:
Let's say we have an entity to represent an employee:
public class Employee {
private int id;
private String name;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
The employee entities will be persisted into a corresponding Employee table in a database.
A simple DAO interface to handle the database operation required to manipulate an employee entity will be like:
interface EmployeeDAO {
List<Employee> findAll();
List<Employee> findById();
List<Employee> findByName();
boolean insertEmployee(Employee employee);
boolean updateEmployee(Employee employee);
boolean deleteEmployee(Employee employee);
}
Next we have to provide a concrete implementation for that interface to deal with SQL server, and another to deal with flat files, etc.
What is DATA ACCESS OBJECT (DAO) -
It is a object/interface, which is used to access data from database of data storage.
WHY WE USE DAO:
To abstract the retrieval of data from a data resource such as a database.
The concept is to "separate a data resource's client interface from its data access mechanism."
 
The problem with accessing data directly is that the source of the data can change. Consider, for example, that your application is deployed in an environment that accesses an Oracle database. Then it is subsequently deployed to an environment that uses Microsoft SQL Server. If your application uses stored procedures and database-specific code (such as generating a number sequence), how do you handle that in your application? You have two options:
Rewrite your application to use SQL Server instead of Oracle (or add conditional code to handle the differences), or
Create a layer in-between your application logic and data access layers
The DAO Pattern consists of the following:
Data Access Object Interface - This interface defines the standard operations to be performed on a model object(s).
Data Access Object concrete class -This class implements above interface. This class is responsible to get data from a datasource
which can be database / xml or any other storage mechanism.
Model Object or Value Object - This object is simple POJO containing get/set methods to store data retrieved using DAO class.
See examples
I hope this has cleared up your understanding of DAO!
DAO (Data Access Object) is a very used design pattern in enterprise applications. It basically is the module that is used to access data from every source (DBMS, XML and so on). I suggest you to read some examples, like this one:
DAO Example
Please note that there are different ways to implements the original DAO Pattern, and there are many frameworks that can simplify your work. For example, the ORM (Object Relational Mapping) frameworks like iBatis or Hibernate, are used to map the result of SQL queries to java objects.
Hope it helps,
Bye!
Data Access Object Pattern or DAO pattern is used to separate low level data accessing API or operations from high level business services. Following are the participants in Data Access Object Pattern.
Data Access Object Interface - This interface defines the standard operations to be performed on a model object(s).
Data Access Object concrete class -This class implements above interface. This class is responsible to get data from a datasource which can be database / xml or any other storage mechanism.
Model Object or Value Object - This object is simple POJO containing get/set methods to store data retrieved using DAO class.
Sample code here..
Don't get confused with too many explanations. DAO: From the name itself it means Accessing Data using Object. DAO is separated from other Business Logic.
I am going to be general and not specific to Java as DAO and ORM are used in all languages.
To understand DAO you first need to understand ORM (Object Relational Mapping). This means that if you have a table called "person" with columns "name" and "age", then you would create object-template for that table:
type Person {
name
age
}
Now with help of DAO instead of writing some specific queries, to fetch all persons, for what ever type of db you are using (which can be error-prone) instead you do:
list persons = DAO.getPersons();
...
person = DAO.getPersonWithName("John");
age = person.age;
You do not write the DAO abstraction yourself, instead it is usually part of some opensource project, depending on what language and framework you are using.
Now to the main question here. "..where it is used..". Well usually if you are writing complex business and domain specific code your life will be very difficult without DAO. Of course you do not need to use ORM and DAO provided, instead you can write your own abstraction and native queries. I have done that in the past and almost always regretted it later.
I think the best example (along with explanations) you can find on the oracle website : here. Another good tuturial could be found here.
Spring JPA DAO
For example we have some entity Group.
For this entity we create the repository GroupRepository.
public interface GroupRepository extends JpaRepository<Group, Long> {
}
Then we need to create a service layer with which we will use this repository.
public interface Service<T, ID> {
T save(T entity);
void deleteById(ID id);
List<T> findAll();
T getOne(ID id);
T editEntity(T entity);
Optional<T> findById(ID id);
}
public abstract class AbstractService<T, ID, R extends JpaRepository<T, ID>> implements Service<T, ID> {
private final R repository;
protected AbstractService(R repository) {
this.repository = repository;
}
#Override
public T save(T entity) {
return repository.save(entity);
}
#Override
public void deleteById(ID id) {
repository.deleteById(id);
}
#Override
public List<T> findAll() {
return repository.findAll();
}
#Override
public T getOne(ID id) {
return repository.getOne(id);
}
#Override
public Optional<T> findById(ID id) {
return repository.findById(id);
}
#Override
public T editEntity(T entity) {
return repository.saveAndFlush(entity);
}
}
#org.springframework.stereotype.Service
public class GroupServiceImpl extends AbstractService<Group, Long, GroupRepository> {
private final GroupRepository groupRepository;
#Autowired
protected GroupServiceImpl(GroupRepository repository) {
super(repository);
this.groupRepository = repository;
}
}
And in the controller we use this service.
#RestController
#RequestMapping("/api")
class GroupController {
private final Logger log = LoggerFactory.getLogger(GroupController.class);
private final GroupServiceImpl groupService;
#Autowired
public GroupController(GroupServiceImpl groupService) {
this.groupService = groupService;
}
#GetMapping("/groups")
Collection<Group> groups() {
return groupService.findAll();
}
#GetMapping("/group/{id}")
ResponseEntity<?> getGroup(#PathVariable Long id) {
Optional<Group> group = groupService.findById(id);
return group.map(response -> ResponseEntity.ok().body(response))
.orElse(new ResponseEntity<>(HttpStatus.NOT_FOUND));
}
#PostMapping("/group")
ResponseEntity<Group> createGroup(#Valid #RequestBody Group group) throws URISyntaxException {
log.info("Request to create group: {}", group);
Group result = groupService.save(group);
return ResponseEntity.created(new URI("/api/group/" + result.getId()))
.body(result);
}
#PutMapping("/group")
ResponseEntity<Group> updateGroup(#Valid #RequestBody Group group) {
log.info("Request to update group: {}", group);
Group result = groupService.save(group);
return ResponseEntity.ok().body(result);
}
#DeleteMapping("/group/{id}")
public ResponseEntity<?> deleteGroup(#PathVariable Long id) {
log.info("Request to delete group: {}", id);
groupService.deleteById(id);
return ResponseEntity.ok().build();
}
}
The Data Access Object manages the connection with the data source to obtain and store data.It abstracts the underlying data access implementation for the Business Object to enable transparent access to the data source.
A data source could be any database such as an RDBMS, XML repository or flat file system etc.
DAO is an act like as "Persistence Manager " in 3 tier architecture as well as DAO also design pattern as you can consult "Gang of Four" book.
Your application service layer just need to call the method of DAO class without knowing hidden & internal details of DAO's method.
Dao clases are used to reuse the jdbc logic & Dao(Data Access Object) is a design pattern.
dao is a simple java class which contains JDBC logic .
Data Access Layer has proven good in separate business logic layer and persistent layer. The DAO design pattern completely hides the data access implementation from its clients
The Java Data Access Object (Java DAO) is an important component in business applications. Business applications almost always need access to data from relational or object databases and the Java platform offers many techniques for accessingthis data. The oldest and most mature technique is to use the Java Database Connectivity (JDBC)API, which provides the capability to execute SQL queries against a databaseand then fetch the results, one column at a time.
Pojo also consider as Model class in Java where we can create getter and setter for particular variable defined in private .
Remember all variables are here declared with private modifier
I just want to explain it in my own way with a small story that I experienced in one of my projects. First I want to explain Why DAO is important? rather than go to What is DAO? for better understanding.
Why DAO is important?
In my one project of my project, I used Client.class which contains all the basic information of our system users. Where I need client then every time I need to do an ugly query where it is needed. Then I felt that decreases the readability and made a lot of redundant boilerplate code.
Then one of my senior developers introduced a QueryUtils.class where all queries are added using public static access modifier and then I don't need to do query everywhere. Suppose when I needed activated clients then I just call -
QueryUtils.findAllActivatedClients();
In this way, I made some optimizations of my code.
But there was another problem !!!
I felt that the QueryUtils.class was growing very highly. 100+ methods were included in that class which was also very cumbersome to read and use. Because this class contains other queries of another domain models ( For example- products, categories locations, etc ).
Then the superhero Mr. CTO introduced a new solution named DAO which solved the problem finally. I felt DAO is very domain-specific. For example, he created a DAO called ClientDAO.class where all Client.class related queries are found which seems very easy for me to use and maintain. The giant QueryUtils.class was broken down into many other domain-specific DAO for example - ProductsDAO.class, CategoriesDAO.class, etc which made the code more Readable, more Maintainable, more Decoupled.
What is DAO?
It is an object or interface, which made an easy way to access data from the database without writing complex and ugly queries every time in a reusable way.

Read only fields in spring-roo or spring-web-mvc

I have what appears to be a common problem within spring-mvc. Several of my domain object have fields that are not updatable so in my view I am not binding these fields.
For competeness sake The way these are excluded from the view is by editing the spring-roo scaffolded view setting the render attribute on the parameter to false.
As spring-mvc creates a new instance of the object rather than updating the existing object these fields are null. This means however that the object fails its validation before the control reaches the controller.
A lot of my entities will have extra fields that are not updatable in the view so I'd like to be able to come up with a generic solution rather than continually doing the same work over and over again (violating DRY).
How can one allow validation to occur in a consistent manner if fields are omitted from the view?
#RequestMapping(method = RequestMethod.PUT, produces = "text/html")
public String UserController.update(#Valid User user, BindingResult bindingResult, Model uiModel, HttpServletRequest httpServletRequest) {
if (bindingResult.hasErrors()) {
populateEditForm(uiModel, user);
return "admin/users/update";
}
uiModel.asMap().clear();
user.merge();
return "redirect:/admin/users/" + encodeUrlPathSegment(user.getId().toString(), httpServletRequest);
}
Possible Solutions:
Omit #Valid annotation from the controller.
Pros
Easy to implement.
Easy to understand.
Cons
Means changing the controller method for every update on every object.
Validation is not occuring in the same place as all of the rest of the application.
No easy way to return the binding errors back to the view (need to validate the object afterwards)
Add Custom Validator for methods that need omitted fields
Example:
#InitBinder
public void initBinder(WebDataBinder binder, HttpServletRequest request) {
if (request.getMethod().equals("PUT")) {
binder.setDisallowedFields("registrationDate", "password");
Validator validator = binder.getValidator();
Validator userUpdateValidator = new UserUpdateValidator();
binder.setValidator(userUpdateValidator);
}
}
Pros
Clear flow.
Cons
Suffers wildly from DRY problems. This means that If the domain object is altered in any way I need to revalidate.
Field validation is not the same as Hibernate validation when saving.
No tangible benefits over omitting validation and manually validating.
Would consider if?
Custom validator could delegate to standard JSR-303 validator but just omit fields.
Remove JSR-303 annotations from the domain object
Not an option this means that there is no validation on an object before saving. Worse I believe it will affect the DDL that is producted for database, removing constraints from the DB itself. Only put in here for completeness sake
Lookup domain object before validation occurs
The idea of this solution is to lookup the existing domain object before updating. Copying any not null fields to the old object from the request.
Pros
- The validation can go through the normal cycle.
- The validation doesn't need to change depending on what method you are implying.
Cons
Database access before hitting the controller has a bit of a smell.
I can't see any way to implement this.
Won't work for fields that need to be omitted during other stages of the object lifecycle. For example if adding a timestamp during creation.
I would like to know how to implement either a validator that delegates to the standard JSR-303 validator or alternatively how to lookup the object before modifying it. Or if anyone has any other possible solutions?
Either of these solutions allow for the treatment to be consistent over multiple objects.
Hopefully either would allow for added annotations such as.
#RooCreateOnly which means the domain object could be annotated as such leaving all the validation definitions in the one place.
The last option can be achieved with the #ModelAttribute annotation.
Create a method that returns your domain object and add the #ModelAttribute annotation to it. Then add the same annotation to the domain object argument of the method where you want to use that object. Spring will first load the object from the ModelAttribute method then merge it with the posted data.
Example:
#ModelAttribute("foobar")
public User fetchUser() {
return loadUser();
}
#RequestMapping(method = RequestMethod.PUT, produces = "text/html")
public String update(#ModelAttribute("foobar") #Valid User user, BindingResult bindingResult, Model uiModel, HttpServletRequest httpServletRequest) {
return etc();
}
You can use the disabled property for the input tags in your jspx file containing the form for the fields that you want to mark as read-only.
Also make sure you clear the z attribute relating the field so that Roo will ignore the tag if there is any change made to the entity later on.
Cheers!
I'm posting another answer totally unrelated to my previous one.
There is another solution: wrap your domain object into special form object that only expose the fields you want to validate.
Example:
public class UserForm {
private final User user = new User();
// User has many fields, but here we only want lastName
#NotEmpty // Or whatever validation you want
public String getLastName() {
return this.user.getLastName();
}
public void setLastName(String lastName) {
this.user.setLastName(lastName);
}
public User getUser() {
return this.user;
}
}

Objectify + JSP: displaying 1:N relationships

My bean looks like that:
#Entity
public class Fattura {
#Id
Long id;
#NotEmpty
String numero;
#Min(value=0)
Double importo;
Key<User> utente;
// gets & sets....
}
The "utente" property is the key of another bean I created: a "Fattura" can have only one "User", one "User" can have many "Fattura"s
My Spring MVC controller will manage a request for a list of Fattura and display them in a simple jsp:
#RequestMapping( value = "/fatture" , method = RequestMethod.GET )
public ModelAndView leFatture() {
ModelAndView mav = new ModelAndView("fatture");
mav.addObject("fatture",fatturaService.listFatture());
return mav;
}
the code of the jsp is really simple: only a foreach cycle in a table
My question is:
how can I display the "utente"?
The only thing I have is its key, but I'd like to do something like ${fattura.utente.firstName} in my JSP, how can I do it?
Unfortunately you would have to manually fetch "utente" in your DAO class. There is no automatic fetching in Objectify like in Twig. In my POJOs I have following fields
#Transient private Organization sender; // Pickup location (for client RPC)
transient private Key<Organization> senderKey; // Pickup location (for Datastore)
I load entity from Datastore and then load manually Organization using senderKey.
In new Objectify4 you'll be able to do what you want like this:
class Beastie {
#Parent
#Load
ParentThing parent;
#Id Long id;
#Load({"bigGroup", "smallGroup"})
SomeThing some;
#Load("bigGroup")
List<OtherThing> others;
#Load
Ref<OtherThing> refToOtherThing;
Ref<OtherThing> anotherRef; // this one is never fetched automatically
}
Here is evolving design document of new version.
Update at Nov 17, 2011: This is big news. Twig author, John Patterson, joined Objectify project today.
I know it sounds annoying that you have to manually fetch the two objects, but it's actually very useful to know that you're doubling your work and time to do this - each "get" call take a while and the second won't start until the first is complete. It a typical NoSQL environment, you shouldn't often need to have two separate entities - is there a reason that you do?
There are only two reasons I can easily think of:
The class references another object of the same type - this is the example in the Objectify documentation, where a person has a reference to their spouse, who is also a person.
The class that you're embedding the other into ("Fattura" in your case) has masses of data in it that you don't want fetched at the same time as you want to fetch the "User" - and you need the user on it's own more often than you need the "Fattura" and the "User". It would need to be quite a lot of data to be worth the extra datastore call when you DO want the "Fattura".
You don't necessarily have to use temporary field for just getting a object.
This works:
public User getUtente() {
Objectify ofy = ObjectifyService.begin();
return ofy.get(utenteKey);
}
This will of course do a datastore get() each time the getter is called. You can improve this by using #Cached on your User entity, so they turn into memcache calls after the first call. Memcache is good, but we can do a little better using the session cache:
public User getUtente() {
Objectify ofy = myOfyProvider.get();
return ofy.get(utenteKey);
}
The key thing here is that you need to provide (through myOfyProvider) an instance of Objectify that is bound to the current request/thread, and that has the session cache enabled. (ie, for any given request, myOfyProvider.get() should return the same instance of Objectify)
In this setup, the exact same instance of User will be returned from the session cache each time the getter is called, and no requests to the datastore/memcache will be made after from the initial load of this Entity.

Categories