I have always read that we should use Vector everywhere in Java and that there are no performance issues, which is certainly true. I'm writing a method to calculate the MSE (Mean Squared Error) and noticed that it was very slow - I basically was passing the Vector of values. When I switched to Array, it was 10 times faster but I don't understand why.
I have written a simple test:
public static void main(String[] args) throws IOException {
Vector <Integer> testV = new Vector<Integer>();
Integer[] testA = new Integer[1000000];
for(int i=0;i<1000000;i++){
testV.add(i);
testA[i]=i;
}
Long startTime = System.currentTimeMillis();
for(int i=0;i<500;i++){
double testVal = testArray(testA, 0, 1000000);
}
System.out.println(String.format("Array total time %s ",System.currentTimeMillis() - startTime));
startTime = System.currentTimeMillis();
for(int i=0;i<500;i++){
double testVal = testVector(testV, 0, 1000000);
}
System.out.println(String.format("Vector total time %s ",System.currentTimeMillis() - startTime));
}
Which calls the following methods:
public static double testVector(Vector<Integer> data, int start, int stop){
double toto = 0.0;
for(int i=start ; i<stop ; i++){
toto += data.get(i);
}
return toto / data.size();
}
public static double testArray(Integer[] data, int start, int stop){
double toto = 0.0;
for(int i=start ; i<stop ; i++){
toto += data[i];
}
return toto / data.length;
}
The array one is indeed 10 times faster. Here is the output:
Array total time 854
Vector total time 9840
Can somebody explain me why ? I have searched for quite a while, but cannot figure it out. The vector method appears to be making a local copy of the vector, but I always thought that objects where passed by reference in Java.
I have always read that we should use Vector everywhere in Java and that there are no performance issues, - Wrong. A vector is thread safe and thus it needs additional logic (code) to handle access/ modification by multiple threads So, it is slow. An array on the other hand doesn't need additional logic to handle multiple threads. You should try ArrayList instead of Vector to increase the speed
Note (based on your comment): I'm running the method 500 times each
This is not the right way to measure performance / speed in java. You should atleast give a warm-up run so as to nullify the effect of JIT.
Yes, that's the eternal problem of poor microbenchmarking. The Vector itself is not SO slow.
Here is a trick:
add -XX:BiasedLockingStartupDelay=0 and now testVector "magically" runs 5 times faster than before!
Next, wrap testVector into synchronized (data) - and now it is almost as fast as testArray.
You are basically measuring the performance of object monitors in HotSpot, not the data structures.
Simple thing. Vector is thread-safe so it needs synchoronization to add and access. Use ArrayList which is also back-up by array but it is not thread-safe and faster
Note:
Please provide size of the elements if you know in advance to ArrayList. Since in normal ArrayList without initial capacity resize will happen intenally which uses Arrays copy
And a normal array and ArrayList without initial capacity performances too varies drastically if no of elements is larger
Poor code, instead of list.get() rather use an iterator on the list. The array will still be faster though.
Related
My program in a nutshell:
I have a program that successively runs several sort algorithms against an array of ints, timing each. The GUI allows the user to select array size and a variety of random number ranges with which to fill the array to be sorted. Each click of the "Sort" button grabs the user's array values, constructs a new array, then creates for each sort algorithm a clone of the array, using .clone().
The problem:
when "sort" button is clicked a second time the sorts improve themselves.
Somewhere there's optimization happening that I don't understand.
The reason this is an issue: if the user doesn't change their array settings and runs the sort methods again, it is true that a new array is constructed with new random numbers but the random number ranges remain the same so the run time, over a list of 125k, should remain about the same....not improve 300%.
So here is a demo program of what I am facing. It uses only one sort, Java's native sort to demonstrate the issue. It also uses hard coded values for constructing the random int array to be sorted - but does so with each "enter" press. I think this simulation accurately reflects my program because the same "error" is happening here, too.
Why is the sort faster the second time?
...the array is rebuilt with new values for each run, so how can it get faster?
package sortTooFast;
import java.util.Arrays;
import java.util.Scanner;
public class SortTooFast {
public static final int ARRAY_SIZE = 500000;
public static final int MIN_RANGE = 0;
public static final int MAX_RANGE = 100;
public static final int INCLUSIVE = 1;
int[] sortingArray;
public static void main(String[] args) {
SortTooFast test = new SortTooFast();
test.run();
}
// Run program.
public void run(){
while(true){
// Assign int[] filled with random numbers.
sortingArray = getArray();
// Inform user.
System.out.println("\nPress return key to run sort!");
// Wait for user.
new Scanner(System.in).nextLine();
System.out.println("First 15 elements to be sorted:");
// Print a small section of the array; prove not sorted
for (int i = 0; i < 15; i++){
System.out.printf("%4d", sortingArray[i]);
}
// Perform sort.
runNativeSort(sortingArray);
}
}
// Run native java sort.
private void runNativeSort(int[] array) {
// Start timer
long startTime = System.currentTimeMillis();
// Perform sort.
Arrays.sort(array);
// End timer
long finishTime = System.currentTimeMillis();
// Running time.
long runTime = finishTime - startTime;
// Report run time.
System.out.println("\nRun time: " +runTime);
}
// Obtain an array filled with random int values.
private int[] getArray() {
// Make int array.
int[] mArray = new int[ARRAY_SIZE];
// Length of array.
int length = mArray.length;
// Fill array with random numbers.
for(int counter = 0; counter < length; counter++){
int random = MIN_RANGE + (int)(Math.random() * ((MAX_RANGE - MIN_RANGE) + INCLUSIVE));
mArray[counter] = random;
}
return mArray;
}
}
Why is the sort faster the second time?
Because by that time, the JIT has optimized the bytecode into faster native code.
There are two effects you need to counter when benchmarking this sort of thing:
Time taken to JIT the code in the first place
The way that the native code improves over time as it is optimized harder and harder by the JIT.
Typically you can reduce the effect of this to achieve a steady state by running the code for long enough to get it fully optimized before you start timing.
Additionally, you should use System.nanoTime instead of System.currentTimeMillis when benchmarking: System.currentTimeMillis is meant to give you a reasonably accurate "wall clock" time, which may be adjusted by the operating system if it notices that the clock is out of sync, whereas nanoTime is specifically designed for measuring elapsed time since a particular instant, regardless of changes to the system clock.
When I write some API, it sometimes will use Collection<Model> to be the parameter. Of course, you can use ArrayList if you know ArrayList is already enough to handle all the use case.
My question is is there any considerable performance cost when for example cast the ArrayList<Model> to Collection<Model> when passing parameter.
Will the collection size also impact the performance of casting? Any advice?
Thanks for Peter's answer.
I think the answer is pretty enough to stop me to waste time on changing it.
EDIT
As said in accepted answer, the cost is actually paid in the calling of interface methods.
it's not free to keep this kind of flexibity. But the cost is not so considerable.
Like most performance questions the answer is; write cleare and simple code and the application usually performs okay as well.
A cast to an interface can take around 10 ns (less than a method call) Depending on how the code is optimised, it might be too small to measure.
A cast between generic types is a compiler time check, nothing actually happens at runtime.
When you cast, it is the reference type which changes, all references are the same size. The size of what they point to doesn't matter.
BTW: All ArrayList objects are the same size, All LinkedList objects are the same size all HashMap objects are the same size etc. They can reference an array which can be different sizes in different collection.
You can see a difference in code which hasn't been JITed.
public static void main(String... args) throws Throwable {
ArrayList<Integer> ints = new ArrayList<>();
for(int i=0;i<100;i++) ints.add(i);
sumSize(ints, 5000);
castSumSize(ints, 5000);
sumSize(ints, 5000);
castSumSize(ints, 5000);
}
public static long sumSize(ArrayList<Integer> ints, int runs) {
long sum = 0;
long start = System.nanoTime();
for(int i=0;i<runs;i++)
sum += ints.size();
long time = System.nanoTime() - start;
System.out.printf("sumSize: Took an average of %,d ns%n", time/runs);
return sum;
}
public static long castSumSize(ArrayList<Integer> ints, int runs) {
long sum = 0;
long start = System.nanoTime();
for(int i=0;i<runs;i++)
sum += ((Collection) ints).size();
long time = System.nanoTime() - start;
System.out.printf("castSumSize: Took an average of %,d ns%n", time/runs);
return sum;
}
prints
sumSize: Took an average of 31 ns
castSumSize: Took an average of 37 ns
sumSize: Took an average of 28 ns
castSumSize: Took an average of 34 ns
however the difference is likely to be due to the method calls being more expensive. The only bytecode difference is
invokevirtual #9; //Method java/util/ArrayList.size:()I
and
invokeinterface #15, 1; //InterfaceMethod java/util/Collection.size:()I
Once the JIT has optimised the code there isn't much difference. Run long enough, the time drops to 0 ns for the -server JVM because it detects the loop doesn't do anything. ;)
Compared to doing anything with any object: absolutely none.
And even if it did, be sure any program involves things taking millions more time!
Collection is an interface. You always have to provide a concrete implementation such as ArrayList.
Commonly it would be this
Collection<Model> myCollection = new ArrayList<Model>();
Designing to interfaces is actually good practice, so use Collection as your method parameter.
I have created a class to handle my debug outputs so that I don't need to strip out all my log outputs before release.
public class Debug {
public static void debug( String module, String message) {
if( Release.DEBUG )
Log.d(module, message);
}
}
After reading another question, I have learned that the contents of the if statement are not compiled if the constant Release.DEBUG is false.
What I want to know is how much overhead is generated by running this empty method? (Once the if clause is removed there is no code left in the method) Is it going to have any impact on my application? Obviously performance is a big issue when writing for mobile handsets =P
Thanks
Gary
Measurements done on Nexus S with Android 2.3.2:
10^6 iterations of 1000 calls to an empty static void function: 21s <==> 21ns/call
10^6 iterations of 1000 calls to an empty non-static void function: 65s <==> 65ns/call
10^6 iterations of 500 calls to an empty static void function: 3.5s <==> 7ns/call
10^6 iterations of 500 calls to an empty non-static void function: 28s <==> 56ns/call
10^6 iterations of 100 calls to an empty static void function: 2.4s <==> 24ns/call
10^6 iterations of 100 calls to an empty non-static void function: 2.9s <==> 29ns/call
control:
10^6 iterations of an empty loop: 41ms <==> 41ns/iteration
10^7 iterations of an empty loop: 560ms <==> 56ns/iteration
10^9 iterations of an empty loop: 9300ms <==> 9.3ns/iteration
I've repeated the measurements several times. No significant deviations were found.
You can see that the per-call cost can vary greatly depending on workload (possibly due to JIT compiling),
but 3 conclusions can be drawn:
dalvik/java sucks at optimizing dead code
static function calls can be optimized much better than non-static
(non-static functions are virtual and need to be looked up in a virtual table)
the cost on nexus s is not greater than 70ns/call (thats ~70 cpu cycles)
and is comparable with the cost of one empty for loop iteration (i.e. one increment and one condition check on a local variable)
Observe that in your case the string argument will always be evaluated. If you do string concatenation, this will involve creating intermediate strings. This will be very costly and involve a lot of gc. For example executing a function:
void empty(String string){
}
called with arguments such as
empty("Hello " + 42 + " this is a string " + count );
10^4 iterations of 100 such calls takes 10s. That is 10us/call, i.e. ~1000 times slower than just an empty call. It also produces huge amount of GC activity. The only way to avoid this is to manually inline the function, i.e. use the >>if<< statement instead of the debug function call. It's ugly but the only way to make it work.
Unless you call this from within a deeply nested loop, I wouldn't worry about it.
A good compiler removes the entire empty method, resulting in no overhead at all. I'm not sure if the Dalvik compiler already does this, but I suspect it's likely, at least since the arrival of the Just-in-time compiler with Froyo.
See also: Inline expansion
In terms of performance the overhead of generating the messages which get passed into the debug function are going to be a lot more serious since its likely they do memory allocations eg
Debug.debug(mymodule, "My error message" + myerrorcode);
Which will still occur even through the message is binned.
Unfortunately you really need the "if( Release.DEBUG ) " around the calls to this function rather than inside the function itself if your goal is performance, and you will see this in a lot of android code.
This is an interesting question and I like #misiu_mp analysis, so I thought I would update it with a 2016 test on a Nexus 7 running Android 6.0.1. Here is the test code:
public void runSpeedTest() {
long startTime;
long[] times = new long[100000];
long[] staticTimes = new long[100000];
for (int i = 0; i < times.length; i++) {
startTime = System.nanoTime();
for (int j = 0; j < 1000; j++) {
emptyMethod();
}
times[i] = (System.nanoTime() - startTime) / 1000;
startTime = System.nanoTime();
for (int j = 0; j < 1000; j++) {
emptyStaticMethod();
}
staticTimes[i] = (System.nanoTime() - startTime) / 1000;
}
int timesSum = 0;
for (int i = 0; i < times.length; i++) { timesSum += times[i]; Log.d("status", "time," + times[i]); sleep(); }
int timesStaticSum = 0;
for (int i = 0; i < times.length; i++) { timesStaticSum += staticTimes[i]; Log.d("status", "statictime," + staticTimes[i]); sleep(); }
sleep();
Log.d("status", "final speed = " + (timesSum / times.length));
Log.d("status", "final static speed = " + (timesStaticSum / times.length));
}
private void sleep() {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
private void emptyMethod() { }
private static void emptyStaticMethod() { }
The sleep() was added to prevent overflowing the Log.d buffer.
I played around with it many times and the results were pretty consistent with #misiu_mp:
10^5 iterations of 1000 calls to an empty static void function: 29ns/call
10^5 iterations of 1000 calls to an empty non-static void function: 34ns/call
The static method call was always slightly faster than the non-static method call, but it would appear that a) the gap has closed significantly since Android 2.3.2 and b) there's still a cost to making calls to an empty method, static or not.
Looking at a histogram of times reveals something interesting, however. The majority of call, whether static or not, take between 30-40ns, and looking closely at the data they are virtually all 30ns exactly.
Running the same code with empty loops (commenting out the method calls) produces an average speed of 8ns, however, about 3/4 of the measured times are 0ns while the remainder are exactly 30ns.
I'm not sure how to account for this data, but I'm not sure that #misiu_mp's conclusions still hold. The difference between empty static and non-static methods is negligible, and the preponderance of measurements are exactly 30ns. That being said, it would appear that there is still some non-zero cost to running empty methods.
I'm trying to alter some code so it can work with multithreading. I stumbled upon a performance loss when putting a Runnable around some code.
For clarification: The original code, let's call it
//doSomething
got a Runnable around it like this:
Runnable r = new Runnable()
{
public void run()
{
//doSomething
}
}
Then I submit the runnable to a ChachedThreadPool ExecutorService. This is my first step towards multithreading this code, to see if the code runs as fast with one thread as the original code.
However, this is not the case. Where //doSomething executes in about 2 seconds, the Runnable executes in about 2.5 seconds. I need to mention that some other code, say, //doSomethingElse, inside a Runnable had no performance loss compared to the original //doSomethingElse.
My guess is that //doSomething has some operations that are not as fast when working in a Thread, but I don't know what it could be or what, in that aspect is the difference with //doSomethingElse.
Could it be the use of final int[]/float[] arrays that makes a Runnable so much slower? The //doSomethingElse code also used some finals, but //doSomething uses more. This is the only thing I could think of.
Unfortunately, the //doSomething code is quite long and out-of-context, but I will post it here anyway. For those who know the Mean Shift segmentation algorithm, this a part of the code where the mean shift vector is being calculated for each pixel. The for-loop
for(int i=0; i<L; i++)
runs through each pixel.
timer.start(); // this is where I start the timer
// Initialize mode table used for basin of attraction
char[] modeTable = new char [L]; // (L is a class property and is about 100,000)
Arrays.fill(modeTable, (char)0);
int[] pointList = new int [L];
// Allcocate memory for yk (current vector)
double[] yk = new double [lN]; // (lN is a final int, defined earlier)
// Allocate memory for Mh (mean shift vector)
double[] Mh = new double [lN];
int idxs2 = 0; int idxd2 = 0;
for (int i = 0; i < L; i++) {
// if a mode was already assigned to this data point
// then skip this point, otherwise proceed to
// find its mode by applying mean shift...
if (modeTable[i] == 1) {
continue;
}
// initialize point list...
int pointCount = 0;
// Assign window center (window centers are
// initialized by createLattice to be the point
// data[i])
idxs2 = i*lN;
for (int j=0; j<lN; j++)
yk[j] = sdata[idxs2+j]; // (sdata is an earlier defined final float[] of about 100,000 items)
// Calculate the mean shift vector using the lattice
/*****************************************************/
// Initialize mean shift vector
for (int j = 0; j < lN; j++) {
Mh[j] = 0;
}
double wsuml = 0;
double weight;
// find bucket of yk
int cBucket1 = (int) yk[0] + 1;
int cBucket2 = (int) yk[1] + 1;
int cBucket3 = (int) (yk[2] - sMinsFinal) + 1;
int cBucket = cBucket1 + nBuck1*(cBucket2 + nBuck2*cBucket3);
for (int j=0; j<27; j++) {
idxd2 = buckets[cBucket+bucNeigh[j]]; // (buckets is a final int[] of about 75,000 items)
// list parse, crt point is cHeadList
while (idxd2>=0) {
idxs2 = lN*idxd2;
// determine if inside search window
double el = sdata[idxs2+0]-yk[0];
double diff = el*el;
el = sdata[idxs2+1]-yk[1];
diff += el*el;
//...
idxd2 = slist[idxd2]; // (slist is a final int[] of about 100,000 items)
}
}
//...
}
timer.end(); // this is where I stop the timer.
There is more code, but the last while loop was where I first noticed the difference in performance.
Could anyone think of a reason why this code runs slower inside a Runnable than original?
Thanks.
Edit: The measured time is inside the code, so excluding startup of the thread.
All code always runs "inside a thread".
The slowdown you see is most likely caused by the overhead that multithreading adds. Try parallelizing different parts of your code - the tasks should neither be too large, nor too small. For example, you'd probably be better off running each of the outer loops as a separate task, rather than the innermost loops.
There is no single correct way to split up tasks, though, it all depends on how the data looks and what the target machine looks like (2 cores, 8 cores, 512 cores?).
Edit: What happens if you run the test repeatedly? E.g., if you do it like this:
Executor executor = ...;
for (int i = 0; i < 10; i++) {
final int lap = i;
Runnable r = new Runnable() {
public void run() {
long start = System.currentTimeMillis();
//doSomething
long duration = System.currentTimeMillis() - start;
System.out.printf("Lap %d: %d ms%n", lap, duration);
}
};
executor.execute(r);
}
Do you notice any difference in the results?
I personally do not see any reason for this. Any program has at least one thread. All threads are equal. All threads are created by default with medium priority (5). So, the code should show the same performance in both the main application thread and other thread that you open.
Are you sure you are measuring the time of "do something" and not the overall time that your program runs? I believe that you are measuring the time of operation together with the time that is required to create and start the thread.
When you create a new thread you always have an overhead. If you have a small piece of code, you may experience performance loss.
Once you have more code (bigger tasks) you make get a performance improvement by your parallelization (the code on the thread will not necessarily run faster, but you are doing two thing at once).
Just a detail: this decision of how big small can a task be so parallelizing it is still worth is a known topic in parallel computation :)
You haven't explained exactly how you are measuring the time taken. Clearly there are thread start-up costs but I infer that you are using some mechanism that ensures that these costs don't distort your picture.
Generally speaking when measuring performance it's easy to get mislead when measuring small pieces of work. I would be looking to get a run of at least 1,000 times longer, putting the whole thing in a loop or whatever.
Here the one different between the "No Thread" and "Threaded" cases is actually that you have gone from having one Thread (as has been pointed out you always have a thread) and two threads so now the JVM has to mediate between two threads. For this kind of work I can't see why that should make a difference, but it is a difference.
I would want to be using a good profiling tool to really dig into this.
Maybe I'm being misled by my profiler (Netbeans), but I'm seeing some odd behavior, hoping maybe someone here can help me understand it.
I am working on an application, which makes heavy use of rather large hash tables (keys are longs, values are objects). The performance with the built in java hash table (HashMap specifically) was very poor, and after trying some alternatives -- Trove, Fastutils, Colt, Carrot -- I started working on my own.
The code is very basic using a double hashing strategy. This works fine and good and shows the best performance of all the other options I've tried thus far.
The catch is, according to the profiler, lookups into the hash table are the single most expensive method in the entire application -- despite the fact that other methods are called many more times, and/or do a lot more logic.
What really confuses me is the lookups are called only by one class; the calling method does the lookup and processes the results. Both are called nearly the same number of times, and the method that calls the lookup has a lot of logic in it to handle the result of the lookup, but is about 100x faster.
Below is the code for the hash lookup. It's basically just two accesses into an array (the functions that compute the hash codes, according to profiling, are virtually free). I don't understand how this bit of code can be so slow since it is just array access, and I don't see any way of making it faster.
Note that the code simply returns the bucket matching the key, the caller is expected to process the bucket. 'size' is the hash.length/2, hash1 does lookups in the first half of the hash table, hash2 does lookups in the second half. key_index is a final int field on the hash table passed into the constructor, and the values array on the Entry objects is a small array of longs usually of length 10 or less.
Any thoughts people have on this are much appreciated.
Thanks.
public final Entry get(final long theKey) {
Entry aEntry = hash[hash1(theKey, size)];
if (aEntry != null && aEntry.values[key_index] != theKey) {
aEntry = hash[hash2(theKey, size)];
if (aEntry != null && aEntry.values[key_index] != theKey) {
return null;
}
}
return aEntry;
}
Edit, the code for hash1 & hash2
private static int hash1(final long key, final int hashTableSize) {
return (int)(key&(hashTableSize-1));
}
private static int hash2(final long key, final int hashTableSize) {
return (int)(hashTableSize+((key^(key>>3))&(hashTableSize-1)));
}
Nothing in your implementation strikes me as particularly inefficient. I'll admit I don't really follow your hashing/lookup strategy, but if you say it's performant in your circumstances, I'll believe you.
The only thing that I would expect might make some difference is to move the key out of the values array of Entry.
Instead of having this:
class Entry {
long[] values;
}
//...
if ( entry.values[key_index] == key ) { //...
Try this:
class Entry {
long key;
long values[];
}
//...
if ( entry.key == key ) { //...
Instead of incurring the cost of accessing a member, plus doing bounds checking, then getting a value of the array, you should just incur the cost of accessing the member.
Is there a random-access data type faster than an array?
I was interested in the answer to this question, so I set up a test environment. This is my Array interface:
interface Array {
long get(int i);
void set(int i, long v);
}
This "Array" has undefined behaviour when indices are out of bounds. I threw together the obvious implementation:
class NormalArray implements Array {
private long[] data;
public NormalArray(int size) {
data = new long[size];
}
#Override
public long get(int i) {
return data[i];
}
#Override
public void set(int i, long v) {
data[i] = v;
}
}
And then a control:
class NoOpArray implements Array {
#Override
public long get(int i) {
return 0;
}
#Override
public void set(int i, long v) {
}
}
Finally, I designed an "array" where the first 10 indices are hardcoded members. The members are set/selected through a switch:
class TenArray implements Array {
private long v0;
private long v1;
private long v2;
private long v3;
private long v4;
private long v5;
private long v6;
private long v7;
private long v8;
private long v9;
private long[] extras;
public TenArray(int size) {
if (size > 10) {
extras = new long[size - 10];
}
}
#Override
public long get(final int i) {
switch (i) {
case 0:
return v0;
case 1:
return v1;
case 2:
return v2;
case 3:
return v3;
case 4:
return v4;
case 5:
return v5;
case 6:
return v6;
case 7:
return v7;
case 8:
return v8;
case 9:
return v9;
default:
return extras[i - 10];
}
}
#Override
public void set(final int i, final long v) {
switch (i) {
case 0:
v0 = v; break;
case 1:
v1 = v; break;
case 2:
v2 = v; break;
case 3:
v3 = v; break;
case 4:
v4 = v; break;
case 5:
v5 = v; break;
case 6:
v6 = v; break;
case 7:
v7 = v; break;
case 8:
v8 = v; break;
case 9:
v9 = v; break;
default:
extras[i - 10] = v;
}
}
}
I tested it with this harness:
import java.util.Random;
public class ArrayOptimization {
public static void main(String[] args) {
int size = 10;
long[] data = new long[size];
Random r = new Random();
for ( int i = 0; i < data.length; i++ ) {
data[i] = r.nextLong();
}
Array[] a = new Array[] {
new NoOpArray(),
new NormalArray(size),
new TenArray(size)
};
for (;;) {
for ( int i = 0; i < a.length; i++ ) {
testSet(a[i], data, 10000000);
testGet(a[i], data, 10000000);
}
}
}
private static void testGet(Array a, long[] data, int iterations) {
long nanos = System.nanoTime();
for ( int i = 0; i < iterations; i++ ) {
for ( int j = 0; j < data.length; j++ ) {
data[j] = a.get(j);
}
}
long stop = System.nanoTime();
System.out.printf("%s/get took %fms%n", a.getClass().getName(),
(stop - nanos) / 1000000.0);
}
private static void testSet(Array a, long[] data, int iterations) {
long nanos = System.nanoTime();
for ( int i = 0; i < iterations; i++ ) {
for ( int j = 0; j < data.length; j++ ) {
a.set(j, data[j]);
}
}
long stop = System.nanoTime();
System.out.printf("%s/set took %fms%n", a.getClass().getName(),
(stop - nanos) / 1000000.0);
}
}
The results were somewhat surprising. The TenArray performs non-trivially faster than a NormalArray does (for sizes <= 10). Subtracting the overhead (using the NoOpArray average) you get TenArray as taking ~65% of the time of the normal array. So if you know the likely max size of your array, I suppose it is possible to exceed the speed of an array. I would imagine switch uses either less bounds checking or more efficient bounds checking than does an array.
NoOpArray/set took 953.272654ms
NoOpArray/get took 891.514622ms
NormalArray/set took 1235.694953ms
NormalArray/get took 1148.091061ms
TenArray/set took 1149.833109ms
TenArray/get took 1054.040459ms
NoOpArray/set took 948.458667ms
NoOpArray/get took 888.618223ms
NormalArray/set took 1232.554749ms
NormalArray/get took 1120.333771ms
TenArray/set took 1153.505578ms
TenArray/get took 1056.665337ms
NoOpArray/set took 955.812843ms
NoOpArray/get took 893.398847ms
NormalArray/set took 1237.358472ms
NormalArray/get took 1125.100537ms
TenArray/set took 1150.901231ms
TenArray/get took 1057.867936ms
Now whether you can in practice get speeds faster than an array I'm not sure; obviously this way you incur any overhead associated with the interface/class/methods.
Most likely you are partially misled in your interpretation of the profilers results. Profilers are notoriously overinflating the performance impact of small, frequently called methods. In your case, the profiling overhead for the get()-method is probably larger than the actual processing spent in the method itself. The situation is worsened further, since the instrumentation also interferes with the JIT's capability to inline methods.
As a rule of thumb for this situation - if the total processing time for a piece of work of known length increases more then two- to threefold when running under the profiler, the profiling overhead will give you skewed results.
To verify your changes actually do have impact, always measure performance improvements without the profiler, too. The profiler can hint you about bottlenecks, but it can also deceive you to look at places where nothing is wrong.
Array bounds checking can have a surprisingly large impact on performance (if you do comparably little else), but it can also be hard to clearly separate from general memory access penalties. In some trivial cases, the JIT might be able to eliminate them (there have been efforts towards bounds check elimination in Java 6), but this is AFAIK mostly limited to simple loop constructs like for(x=0; x<array.length; x++).
Under some circumstances you may be able to replace array access by simple member access, completely avoiding the bound checks, but its limited to the rare cases where you access you array exclusively by constant indices. I see no way to apply it to your problem.
The change suggested by Mark Peters is most likely not solely faster because it eliminates a bounds check, but also because it alters the locality properties of your data structures in a more cache friendly way.
Many profilers tell you very confusing things, partly because of how they work, and partly because people have funny ideas about performance to begin with.
For example, you're wondering about how many times functions are called, and you're looking at code and thinking it looks like a lot of logic, therefore slow.
There's a very simple way to think about this stuff, that makes it very easy to understand what's going on.
First of all, think in terms of the percent of time a routine or statement is active, rather than the number of times it is called or the average length of time it takes. The reason for that is it is relatively unaffected by irrelevant issues like competing processes or I/O, and it saves you having to multiply the number of calls by the average execution time and divide by the total time just to see if it is a big enough to even care about. Also, percent tells you, bottom line, how much fixing it could potentially reduce the overall execution time.
Second, what I mean by "active" is "on the stack", where the stack includes the currently running instruction and all the calls "above" it back to "call main". If a routine is responsible for 10% of the time, including routines that it calls, then during that time it is on the stack. The same is true of individual statements or even instructions. (Ignore "self time" or "exclusive time". It's a distraction.)
Profilers that put timers and counters on functions can only give you some of this information. Profilers that only sample the program counter tell you even less. What you need is something that samples the call stack and reports to you by line (not just by function) the percent of stack samples containing that line. It's also important that they sample the stack a) during I/O or other blockage, but b) not while waiting for user input.
There are profilers that can do this. I'm not sure about Java.
If you're still with me, let me throw out another ringer. You're looking for things you can optimize, right? and only things that have a large enough percent to be worth the trouble, like 10% or more? Such a line of code costing 10% is on the stack 10% of the time. That means if 20,000 samples are taken, it is on about 2,000 of them. If 20 samples are taken, it is on about 2 of them, on average. Now, you're trying to find the line, right? Does it really matter if the percent is off a little bit, as long as you find it? That's another one of those happy myths of profilers - that precision of timing matters. For finding problems worth fixing, 20,000 samples won't tell you much more than 20 samples will.
So what do I do? Just take the samples by hand and study them. Code worth optimizing will simply jump out at me.
Finally, there's a big gob of good news. There are probably multiple things you could optimize. Suppose you fix a 20% problem and make it go away. Overall time shrinks to 4/5 of what it was, but the other problems aren't taking any less time, so now their percentage is 5/4 of what it was, because the denominator got smaller. Percentage-wise they got bigger, and easier to find. This effect snowballs, allowing you to really squeeze the code.
You could try using a memoizing or caching strategy to reduce the number of actual calls. Another thing you could try if you're very desperate is a native array, since indexing those is unbelievably fast, and JNI shouldn't invoke toooo much overhead if you're using parameters like longs that don't require marshalling.