Java: Read InputStreamReader to String - Adding extra characters - java

I am using zip4j to extract zip files in Android. I want to read a file from the zip file without saving it somewhere. I have got it working but it adds extra characters towards the end of the file. The extra characters are part of the file earlier.
is = zipFile.getInputStream(fileHeader);
InputStreamReader isr = new InputStreamReader(is, "UTF-8");
ArrayList<String> list = new ArrayList<String>();
char[] buffer = new char[BUFF_SIZE];
while (isr.read(buffer, 0, buffer.length) != -1) {
String ans = new String(buffer);
//strUnzipped += new String(buffer);
strUnzipped += ans;
list.add(ans);
}
I have used the list to see where the extra characters are inserted. It's inserted at the last line. and the extra text if from the previous line. In a way, it's more like the buffer did not get cleared and it replaced only part of the buffer.

The buffer variable has no notion of how many characters that the prior read placed in it. You need to record the result of the read operation and use it in your string construction:
int charsRead;
while ((charsRead = isr.read(buffer, 0, buffer.length)) != -1) {
String ans = new String(buffer, 0, charsRead);
...
}
That, however, is a poor way to read what is presumably text content. If you're trying to build a giant string containing the file content, you could:
StringBuilder sb = new StringBuilder();
while ((charsRead = isr.read(buffer, 0, buffer.length)) != -1) {
sb.append(buffer, 0, charsRead);
}
strUnzipped = sb.toString();
or, if you wanted a List<String> with each entry being a single line from the file then:
LineNumberReader lnr = new LineNumberReader(isr);
String inputLine;
while((inputLine = lnr.readLine()) != null) {
list.add(inputLine);
}

Usual problem. You're not using the value returned by read() correctly.
while (isr.read(buffer, 0, buffer.length) != -1) {
String ans = new String(buffer);
should be
int count;
while ((count = isr.read(buffer)) != -1) {
String ans = new String(buffer, 0, count);
it's more like the buffer did not get cleared and it replaced only part of the buffer.
It's more like the buffer stayed how it was beyond the read count that was advised. Buffers don't get 'cleared'.

Related

InputStream returns unexpected -1/empty

I seem to be hitting a constant unexpected end of my file. My file contains first a couple of strings, then byte data.
The file contains a few separated strings, which my code reads correctly.
However when I begin to read the bytes, it returns nothing. I am pretty sure it has to do with me using the Readers. Does the BufferedReader read the entire stream? If so, how can I solve this?
I have checked the file, and it does contain plenty of data after the strings.
InputStreamReader is = new InputStreamReader(in);
BufferedReader br = new BufferedReader(is);
String line;
{
line = br.readLine();
String split[] = line.split(" ");
if (!split[0].equals("#binvox")) {
ErrorHandler.log("Not a binvox file");
return false;
}
ErrorHandler.log("Binvox version: " + split[1]);
}
ByteArrayOutputStream buffer = new ByteArrayOutputStream();
int nRead, cnt = 0;
byte[] data = new byte[16384];
while ((nRead = in.read(data, 0, data.length)) != -1) {
buffer.write(data, 0, nRead);
cnt += nRead;
}
buffer.flush();
// cnt is always 0
The binvox format is as followed:
#binvox 1
dim 64 40 32
translate -3 0 -2
scale 6.434
data
[byte data]
I'm basically trying to convert the following C code to Java:
http://www.cs.princeton.edu/~min/binvox/read_binvox.html
For reading the whole String you should do this:
ArrayList<String> lines = new ArrayList<String>();
while ((line = br.readLine();) != null) {
lines.add(line);
}
and then you may do a cycle to split each line, or just do what you have to do during the cycle.
As icza has alraedy wrote, you can't create a InputStream and a BufferedReader and user both. The BufferedReader will read from the InputStream as many as he wants, and then you can't access your data from the InputStream.
You have several ways to fix it:
Don't use any Reader. Read the bytes yourself from an InputStream and call new String(bytes) on it.
Store your data encoded (e.g. Base64). Encoded data can be read from a Reader. I would recommend this solution. That'll look like that:
public byte[] readBytes (Reader in) throws IOException
{
String base64 = in.readLine(); // Note that a Base64-representation never contains \n
byte[] data = Base64.getDecoder().decode(base64);
return data
}
You can't wrap an InputStream in a BufferedReader and use both.
As its name hints, BufferedReader might read ahead and buffer data from the underlying InputStream which then will not be available when reading from the underlying InputStream directly.
Suggested solution is not to mix text and binary data in one file. They should be stored in 2 separate files and then they can be read separately. If the remaining data is not binary, then you should not read them via InputStream but via your wrapper BufferedReader just as you read the first lines.
I recommend to create a BinvoxDetectorStream that pre-reads some bytes
public class BinvoxDetectorStream extends InputStream {
private InputStream orig;
private byte[] buffer = new byte[4096];
private int buflen;
private int bufpos = 0;
public BinvoxDetectorStream(InputStream in) {
this.orig = new BufferedInputStream(in);
this.buflen = orig.read(this.buffer, 0, this.buffer.length);
}
public BinvoxInfo getBinvoxVersion() {
// creating a reader for the buffered bytes, to read a line, and compare the header
ByteArrayInputStream bais = new ByteArrayInputStream(buffer);
BufferedReader rdr = new BufferedReader(new InputStreamReader(bais)));
String line = rdr.readLine();
String split[] = line.split(" ");
if (split[0].equals("#binvox")) {
BinvoxInfo info = new BinvoxInfo();
info.version = split[1];
split = rdr.readLine().split(" ");
[... parse all properties ...]
// seek for "data\r\n" in the buffered data
while(!(bufpos>=6 &&
buffer[bufpos-6] == 'd' &&
buffer[bufpos-5] == 'a' &&
buffer[bufpos-4] == 't' &&
buffer[bufpos-3] == 'a' &&
buffer[bufpos-2] == '\r' &&
buffer[bufpos-1] == '\n') ) {
bufpos++;
}
return info;
}
return null;
}
#Override
public int read() throws IOException {
if(bufpos < buflen) {
return buffer[bufpos++];
}
return orig.read();
}
}
Then, you can detect the Binvox version without touching the original stream:
BinvoxDetectorStream bds = new BinvoxDetectorStream(in);
BinvoxInfo info = bds.getBinvoxInfo();
if (info == null) {
return false;
}
...
[moving bytes in the usual way, but using bds!!! ]
This way we preserve the original bytes in bds, so we'll be able to copy it later.
I saw someone else's code that solved exactly this.
He/she used DataInputStream, which can do a readLine (although deprecated) and readByte.

Java: Reading file in two parts - partly as String and partly as byte[]

I have a file which is split in two parts by "\n\n" - first part is not too long String and second is byte array, which can be quite long.
I am trying to read the file as follows:
byte[] result;
try (final FileInputStream fis = new FileInputStream(file)) {
final InputStreamReader isr = new InputStreamReader(fis);
final BufferedReader reader = new BufferedReader(isr);
String line;
// reading until \n\n
while (!(line = reader.readLine()).trim().isEmpty()){
// processing the line
}
// copying the rest of the byte array
result = IOUtils.toByteArray(reader);
reader.close();
}
Even though the resulting array is the size it should be, its contents are broken. If I try to use toByteArray directly on fis or isr, the contents of result are empty.
How can I read the rest of the file correctly and efficiently?
Thanks!
The reason your contents are broken is because the IOUtils.toByteArray(...) function reads your data as a string in the default character encoding, i.e. it converts the 8-bit binary values into text characters using whatever logic your default encoding prescribes. This usually leads to many of the binary values getting corrupted.
Depending on how exactly the charset is implemented, there is a slight chance that this might work:
result = IOUtils.toByteArray(reader, "ISO-8859-1");
ISO-8859-1 uses only a single byte per character. Not all character values are defined, but many implementations will pass them anyways. Maybe you're lucky with it.
But a much cleaner solution would be to instead read the String in the beginning as binary data first and then converting it to text via new String(bytes) rather than reading the binary data at the end as a String and then converting it back.
This might mean, though, that you need to implement your own version of a BufferedReader for performance purposes.
You can find the source code of the standard BufferedReader via the obvious Google search, which will (for example) lead you here:
http://www.docjar.com/html/api/java/io/BufferedReader.java.html
It's a bit long, but conceptually not too difficult to understand, so hopefully it will be useful as a reference.
Alternatively, you could read the file into byte array, find \n\n position and split the array into the line and bytes
byte[] a = Files.readAllBytes(Paths.get("file"));
String line = "";
byte[] result = a;
for (int i = 0; i < a.length - 1; i++) {
if (a[i] == '\n' && a[i + 1] == '\n') {
line = new String(a, 0, i);
int len = a.length - i - 1;
result = new byte[len];
System.arraycopy(a, i + 1, result, 0, len);
break;
}
}
Thanks for all the comments - the final implementation was done in this way:
try (final FileInputStream fis = new FileInputStream(file)) {
ByteBuffer buffer = ByteBuffer.allocate(64);
boolean wasLast = false;
String headerValue = null, headerKey = null;
byte[] result = null;
while (true) {
byte current = (byte) fis.read();
if (current == '\n') {
if (wasLast) {
// this is \n\n
break;
} else {
// just a new line in header
wasLast = true;
headerValue = new String(buffer.array(), 0, buffer.position()));
buffer.clear();
}
} else if (current == '\t') {
// headerKey\theaderValue\n
headerKey = new String(buffer.array(), 0, buffer.position());
buffer.clear();
} else {
buffer.put(current);
wasLast = false;
}
}
// reading the rest
result = IOUtils.toByteArray(fis);
}

Java IO classes - troubles with file IO

I intitialise a BufferedReader as such:
Reader reader = new BufferedReader(new InputStreamReader(new FileInputStream(filename), "UTF-8"));
where filename is any given string.
When I process the output through a loop as such:
int k;
while((k = reader.read()) != -1){
String entry;
if (dict.containsKey(k))
entry = dict.get(k);
else if (k == mapSize)
entry = w + w.charAt(0);
else
throw new IllegalArgumentException("Bad compressed k: " + k);
this.fos.write(entry);
result += entry;
// Add w+entry[0] to the dictionary.
dict.put(mapSize++, w + entry.charAt(0));
w = entry;
}
it only reads 65536 number of characters before hitting the EOF. Anyone know what's going on here?
You don't need to call ready(). Just read the data or lines
String line;
while((line = reader.readLine()) != null) {
//process, LZW algorithm
}
or
// buffer is redundant if you are reading large blocks.
Reader reader = new InputStreamReader(new FileInputStream(filename), "UTF-8");
char[] buffer = new char[8*1024];
int len;
while((len = reader.read(buffer)) > 0) {
// process text
}
You are attempting to read binary data as character data. that's going to go badly. utf8 is a multi-byte character encoding, which means the number of characters you read from the file may not equal the number of bytes in the file. if you are trying to implement a decompression algorithm, you should be using an InputStream and reading bytes, not chars.

Android Reading from an Input stream efficiently

I am making an HTTP get request to a website for an android application I am making.
I am using a DefaultHttpClient and using HttpGet to issue the request. I get the entity response and from this obtain an InputStream object for getting the html of the page.
I then cycle through the reply doing as follows:
BufferedReader r = new BufferedReader(new InputStreamReader(inputStream));
String x = "";
x = r.readLine();
String total = "";
while(x!= null){
total += x;
x = r.readLine();
}
However this is horrendously slow.
Is this inefficient? I'm not loading a big web page - www.cokezone.co.uk so the file size is not big. Is there a better way to do this?
Thanks
Andy
The problem in your code is that it's creating lots of heavy String objects, copying their contents and performing operations on them. Instead, you should use StringBuilder to avoid creating new String objects on each append and to avoid copying the char arrays. The implementation for your case would be something like this:
BufferedReader r = new BufferedReader(new InputStreamReader(inputStream));
StringBuilder total = new StringBuilder();
for (String line; (line = r.readLine()) != null; ) {
total.append(line).append('\n');
}
You can now use total without converting it to String, but if you need the result as a String, simply add:
String result = total.toString();
I'll try to explain it better...
a += b (or a = a + b), where a and b are Strings, copies the contents of both a and b to a new object (note that you are also copying a, which contains the accumulated String), and you are doing those copies on each iteration.
a.append(b), where a is a StringBuilder, directly appends b contents to a, so you don't copy the accumulated string at each iteration.
Have you tried the built in method to convert a stream to a string? It's part of the Apache Commons library (org.apache.commons.io.IOUtils).
Then your code would be this one line:
String total = IOUtils.toString(inputStream);
The documentation for it can be found here:
http://commons.apache.org/io/api-1.4/org/apache/commons/io/IOUtils.html#toString%28java.io.InputStream%29
The Apache Commons IO library can be downloaded from here:
http://commons.apache.org/io/download_io.cgi
Another possibility with Guava:
dependency: compile 'com.google.guava:guava:11.0.2'
import com.google.common.io.ByteStreams;
...
String total = new String(ByteStreams.toByteArray(inputStream ));
I believe this is efficient enough... To get a String from an InputStream, I'd call the following method:
public static String getStringFromInputStream(InputStream stream) throws IOException
{
int n = 0;
char[] buffer = new char[1024 * 4];
InputStreamReader reader = new InputStreamReader(stream, "UTF8");
StringWriter writer = new StringWriter();
while (-1 != (n = reader.read(buffer))) writer.write(buffer, 0, n);
return writer.toString();
}
I always use UTF-8. You could, of course, set charset as an argument, besides InputStream.
What about this. Seems to give better performance.
byte[] bytes = new byte[1000];
StringBuilder x = new StringBuilder();
int numRead = 0;
while ((numRead = is.read(bytes)) >= 0) {
x.append(new String(bytes, 0, numRead));
}
Edit: Actually this sort of encompasses both steelbytes and Maurice Perry's
Possibly somewhat faster than Jaime Soriano's answer, and without the multi-byte encoding problems of Adrian's answer, I suggest:
File file = new File("/tmp/myfile");
try {
FileInputStream stream = new FileInputStream(file);
int count;
byte[] buffer = new byte[1024];
ByteArrayOutputStream byteStream =
new ByteArrayOutputStream(stream.available());
while (true) {
count = stream.read(buffer);
if (count <= 0)
break;
byteStream.write(buffer, 0, count);
}
String string = byteStream.toString();
System.out.format("%d bytes: \"%s\"%n", string.length(), string);
} catch (IOException e) {
e.printStackTrace();
}
Maybe rather then read 'one line at a time' and join the strings, try 'read all available' so as to avoid the scanning for end of line, and to also avoid string joins.
ie, InputStream.available() and InputStream.read(byte[] b), int offset, int length)
Reading one line of text at a time, and appending said line to a string individually is time-consuming both in extracting each line and the overhead of so many method invocations.
I was able to get better performance by allocating a decent-sized byte array to hold the stream data, and which is iteratively replaced with a larger array when needed, and trying to read as much as the array could hold.
For some reason, Android repeatedly failed to download the entire file when the code used the InputStream returned by HTTPUrlConnection, so I had to resort to using both a BufferedReader and a hand-rolled timeout mechanism to ensure I would either get the whole file or cancel the transfer.
private static final int kBufferExpansionSize = 32 * 1024;
private static final int kBufferInitialSize = kBufferExpansionSize;
private static final int kMillisecondsFactor = 1000;
private static final int kNetworkActionPeriod = 12 * kMillisecondsFactor;
private String loadContentsOfReader(Reader aReader)
{
BufferedReader br = null;
char[] array = new char[kBufferInitialSize];
int bytesRead;
int totalLength = 0;
String resourceContent = "";
long stopTime;
long nowTime;
try
{
br = new BufferedReader(aReader);
nowTime = System.nanoTime();
stopTime = nowTime + ((long)kNetworkActionPeriod * kMillisecondsFactor * kMillisecondsFactor);
while(((bytesRead = br.read(array, totalLength, array.length - totalLength)) != -1)
&& (nowTime < stopTime))
{
totalLength += bytesRead;
if(totalLength == array.length)
array = Arrays.copyOf(array, array.length + kBufferExpansionSize);
nowTime = System.nanoTime();
}
if(bytesRead == -1)
resourceContent = new String(array, 0, totalLength);
}
catch(Exception e)
{
e.printStackTrace();
}
try
{
if(br != null)
br.close();
}
catch(IOException e)
{
// TODO Auto-generated catch block
e.printStackTrace();
}
}
EDIT: It turns out that if you don't need to have the content re-encoded (ie, you want the content AS IS) you shouldn't use any of the Reader subclasses. Just use the appropriate Stream subclass.
Replace the beginning of the preceding method with the corresponding lines of the following to speed it up an extra 2 to 3 times.
String loadContentsFromStream(Stream aStream)
{
BufferedInputStream br = null;
byte[] array;
int bytesRead;
int totalLength = 0;
String resourceContent;
long stopTime;
long nowTime;
resourceContent = "";
try
{
br = new BufferedInputStream(aStream);
array = new byte[kBufferInitialSize];
If the file is long, you can optimize your code by appending to a StringBuilder instead of using a String concatenation for each line.
byte[] buffer = new byte[1024]; // buffer store for the stream
int bytes; // bytes returned from read()
// Keep listening to the InputStream until an exception occurs
while (true) {
try {
// Read from the InputStream
bytes = mmInStream.read(buffer);
String TOKEN_ = new String(buffer, "UTF-8");
String xx = TOKEN_.substring(0, bytes);
To convert the InputStream to String we use the
BufferedReader.readLine() method. We iterate until the BufferedReader return null which means there's no more data to read. Each line will appended to a StringBuilder and returned as String.
public static String convertStreamToString(InputStream is) {
BufferedReader reader = new BufferedReader(new InputStreamReader(is));
StringBuilder sb = new StringBuilder();
String line = null;
try {
while ((line = reader.readLine()) != null) {
sb.append(line + "\n");
}
} catch (IOException e) {
e.printStackTrace();
} finally {
try {
is.close();
} catch (IOException e) {
e.printStackTrace();
}
}
return sb.toString();
}
}`
And finally from any class where you want to convert call the function
String dataString = Utils.convertStreamToString(in);
complete
I am use to read full data:
// inputStream is one instance InputStream
byte[] data = new byte[inputStream.available()];
inputStream.read(data);
String dataString = new String(data);
Note that this applies to files stored on disk and not to streams with no default size.

Java: Reading the Trailing New Line from a Text File

How can you get the contents of a text file while preserving whether or not it has a newline at the end of the file? Using this technique, it is impossible to tell if the file ends in a newline:
BufferedReader reader = new BufferedReader(new FileReader(fromFile));
StringBuilder contents = new StringBuilder();
String line = null;
while ((line=reader.readLine()) != null) {
contents.append(line);
contents.append("\n");
}
Don't use readLine(); transfer the contents one character at a time using the read() method. If you use it on a BufferedReader, this will have the same performance, although unlike your code above it will not "normalize" Windows-style CR/LF line breaks.
You can read the whole file content using one of the techniques listed here
My favorite is this one:
public static long copyLarge(InputStream input, OutputStream output)
throws IOException {
byte[] buffer = new byte[DEFAULT_BUFFER_SIZE];
long count = 0;
int n = 0;
while ((n = input.read(buffer))>=0) {
output.write(buffer, 0, n);
count += n;
}
return count;
}

Categories