How to make your variable immune to reflection? [duplicate] - java

How to restrict developers to use reflection to access private methods and constructors in Java?
Using normal Java code we can't access private constructors or private methods outside of a class. But by using reflection we can access any private methods and constructors in a Java class.
So how can we give security to our Java code?

Run your application using a SecurityManager and a sufficiently restrictive security policy.
There's a short summary in the tutorial and extensive information in the security documentation.

Add checkPermission() method in all of your private method/constructor.
checkPermission using sun.reflect.Reflection.getCallerClass(int n) by assert callerClass=selfClass.
The getCallerClass returns the class of the method realFramesToSkip frames up the stack (zero-based), ignoring frames associated with java.lang.reflect.Method.invoke() and its implementation. The first frame is that associated with this method, so getCallerClass(0) returns the Class object for sun.reflect.Reflection.
public class PrivateConstructorClass {
private PrivateConstructorClass() {
checkPerMission();
//you own code go below
}
void checkPerMission() {
Class self = sun.reflect.Reflection.getCallerClass(1);
Class caller = sun.reflect.Reflection.getCallerClass(3);
if (self != caller) {
throw new java.lang.IllegalAccessError();
}
}
}
You can try to test reflect, it will fail:
public class TestPrivateMain {
Object newInstance() throws Exception {
final Class<?> c = Class.forName("package.TestPrivate");
final Constructor<?> constructor = c.getDeclaredConstructor();
constructor.setAccessible(true);
return constructor.newInstance();
}
public static void main(String[] args) throws Exception {
Object t = new TestPrivateMain().newInstance();
}
}

You (as the developer of the code in question) cannot do that.
The end user, who runs the application, could install a SecurityManager that forbids reflection.

Related

Check is instance method is called from a constructor

I would like to check, from an instance method of a non-final class, whether the constructors and initializers of that class and its chain of subclasses for the specific instance have already completed.
In the following example, I have a class Abstract, which can be used to implement an interface which allows listeners to be added (which, for simplicity, are just Runnable instances here) and which provides a method signalEvent() which calls all attached listeners.
abstract class Abstract {
protected final void signalEvent() {
// Check that constructs have run and call listeners.
}
public final void addListener(Runnable runnable) {
...
}
}
class Concrete extends Abstract {
Concrete() {
// Should not call signalEvent() here.
}
void somethingHappened() {
// May call signalEvent() here.
}
}
Now it is possible to call signalEvent() from within the subclass constructor, but there is no way that a listener has already been added by that time and the event would just be lost. In our code-base, once in a while, someone adds such a call and I would like to be able to catch such calls as early as possible (using an assert statement or similar).
Is it possible to check whether an instance method is being called, directly or indirectly, from the subclass constructor or initializer of the current instance or, alternatively, is it possible to check whether all constructors for an instance have been completed?
In short, there is no elegant Java mechanism that allows you to do that, but you may consider using a factory pattern. Instead of creating instances directly using new keyword, you could create a factory class, that takes care of creating the actual instance and invokes an additional "post-create" method, that lets the instance know it's been completely created.
If you're using some dependency injection like spring, you get that out of the box, but if not, a solution could look something like this:
interface PostConstruct { // the classes need to implement that
void postConstruct();
}
public class InstanceFactory {
public <T extends PostConstruct> T create(Class<T> clazz, Object... params) {
T instance = //create using reflection
instance.postConstruct();
return instance;
}
}
A solution to the problem to see if a method or code is being called from a constructor. The code below will print true and false respectivly but would be slow and not pretty at all.
I still believe it is not the right solution for the problem above. As Codbender said, better to check if a listener has been added or set a status variable which would be faster
Edit - fixed the issue that Codebender mentioned and also made sure to check back in the stack trace incase of being called a couple of methods deep
public class TestClass extends TestAbstract {
public TestClass() throws Exception {
submethod();
}
public void submethod() throws Exception {
System.out.println(isInConstructor());
}
public static void main(String[] args) throws Exception {
System.out.println(new TestClass().isInConstructor());
}
}
public class TestAbstract {
public boolean isInConstructor() throws Exception {
StackTraceElement[] elements = Thread.currentThread().getStackTrace();
for (StackTraceElement element : elements) {
if (element.getMethodName().equals("<init>") &&
TestAbstract.class.isAssignableFrom(Class.forName(element.getClassName()))) {
return true;
}
}
return false;
}
}

Generic way of referencing parent class in Java

I have some code that I need to reuse in several Java apps. That code implements a GUI which in turn needs to access some static variables and methods from the calling class. Those variables and methods are always called the same in all of the apps. Is there a generic way to obtain a handle to the calling class in Java so the code for "someGUI" class can remain untouched and in fact come from the same source file for all the different apps?
Minimal working example:
import javax.swing.*;
class test {
static int variable = 123;
public static void main(String[] args) {
someGUI sg = new someGUI();
sg.setVisible(true);
}
}
class someGUI extends JFrame {
public someGUI() {
System.out.println(String.format("test.variable = %d", test.variable));
}
}
How can I "generify" the reference to "test" in test.variable to always just refer to the calling class? It's not the "super" class, at least using super.variable doesn't work.
Firstly I would advise against this approach since there are only brittle ways to implement it. You should parameterize SomeGUI with a parameter containing the values you need instead.
However, it is possible to do what you ask by examining the thread's stack trace and using reflection to access the static fields by name. For example like this:
class Test {
static int variable = 123;
public static void main(String[] args) throws Exception {
SomeGUI sg = new SomeGUI();
}
static class SomeGUI extends JFrame {
public SomeGUI() throws Exception {
StackTraceElement[] stackTrace = Thread.currentThread().getStackTrace();
// stackTrace[0] is getStackTrace(), stackTrace[1] is SomeGUI(),
// stackTrace[2] is the point where our object is constructed.
StackTraceElement callingStackTraceElement = stackTrace[2];
String className = callingStackTraceElement.getClassName();
Class<?> c = Class.forName(className);
Field declaredField = c.getDeclaredField("variable");
Object value = declaredField.get(null);
System.out.println(String.format("test.variable = %d", value));
}
}
}
This will print test.variable = 123.
Obviously this is sensitive to renaming of the variables. It is also sensitive to dynamic proxies.
Also, it should be noted that you need to do this in the constructor. If you try to do this kind of lookup in other methods you can not find out how the instance was created.
There is no inheritance between somGUI and test,
Actual inheritance is there between someGUI and JFrame.
If you use super(), JVM tries to find 'variable' in JFrame, that is not what you wanted.
Use static methods setters & getters to access the 'variable' instead of direct accessing them.

How to test a private constructor in Java application? [duplicate]

This question already has answers here:
How to add test coverage to a private constructor?
(18 answers)
Closed 5 years ago.
If a class contains a bunch of static methods, in order to make sure no one by mistake initializes an instance of this class, I made a private constructor:
private Utils() {
}
Now .. how could this be tested, given that constructor can't be seen? Can this be test covered at all?
Using reflection, you can invoke a private constructor:
Constructor<Util> c = Utils.class.getDeclaredConstructor();
c.setAccessible(true);
Utils u = c.newInstance(); // Hello sailor
However, you can make even that not possible:
private Utils() {
throw new UnsupportedOperationException();
}
By throwing an exception in the constructor, you prevent all attempts.
I would make the class itself final too, just "because":
public final class Utils {
private Utils() {
throw new UnsupportedOperationException();
}
}
Test the intent of the code .. always :)
For example: If the point of the constructor being private is to not be seen then what you need to test is this fact and nothing else.
Use the reflection API to query for the constructors and validate that they have the private attribute set.
I would do something like this:
#Test()
public void testPrivateConstructors() {
final Constructor<?>[] constructors = Utils.class.getDeclaredConstructors();
for (Constructor<?> constructor : constructors) {
assertTrue(Modifier.isPrivate(constructor.getModifiers()));
}
}
If you want to have a proper test for the object construction, you should test the public API which allows you to get the constructed object. That's the reason the said API should exist: to build the objects properly so you should test it for that :).
#Test
public//
void privateConstructorTest() throws Exception {
final Constructor<?>[] constructors = Utils.class.getDeclaredConstructors();
// check that all constructors are 'private':
for (final Constructor<?> constructor : constructors) {
Assert.assertTrue(Modifier.isPrivate(constructor.getModifiers()));
}
// call the private constructor:
constructors[0].setAccessible(true);
constructors[0].newInstance((Object[]) null);
}
to make sure no one by mistake initializes an instance of this class
Usually what I do, is to change the method/constructor from private to default package visibility. And I use the same package for my test class, so from the test the method/constructor is accessible, even if it is not from outside.
To enforce the policy to not instantiate the class you can:
throw UnsupportedOperationException("don't instantiate this class!") from the default empty constructor.
declare the class abstract: if it only contains static methods, you can call the static methods but not instantiate it, unless you subclass it.
or apply both 1+2, you can still subclass and run the constructor if your test shares the same package as the target class.
This should be quite "error proof"; malicious coders will always find a workaround :)
If you have a private constructor, it is called from some not-so-private method of your code. So you test that method, and your constructor is covered. There's no religious virtue in having a test per method. You are looking for function or better yet branch coverage level, and you can get that simply by exercising the constructor through the code path that uses it.
If that code path is convoluted and hard to test, perhaps you need to refactor it.
If you add an exception in the constructor such as:
private Utils() {
throw new UnsupportedOperationException();
}
The invocation of constructor.newInstance() in the test class will throw an InvocationTargetException instead of your UnsupportedOperationException, but the desired exception will be contained in the thrown one.
If you want to assert the thrown of your exception, you could throw the target of the invocation exception, once the invocation exception has been caught.
For instance, using jUnit 4 you could do this:
#Test(expected = UnsupportedOperationException.class)
public void utilityClassTest() throws NoSuchMethodException, IllegalAccessException, InstantiationException {
final Constructor<Utils> constructor = Utils.class.getDeclaredConstructor();
constructor.setAccessible(true);
try {
constructor.newInstance();
} catch (InvocationTargetException e) {
throw (UnsupportedOperationException) e.getTargetException();
}
}
Don't. The constructor is private. That's all you need. Java enforces its privacy.
Don't test the platform.

How to restrict developers to use reflection to access private methods and constructors in Java?

How to restrict developers to use reflection to access private methods and constructors in Java?
Using normal Java code we can't access private constructors or private methods outside of a class. But by using reflection we can access any private methods and constructors in a Java class.
So how can we give security to our Java code?
Run your application using a SecurityManager and a sufficiently restrictive security policy.
There's a short summary in the tutorial and extensive information in the security documentation.
Add checkPermission() method in all of your private method/constructor.
checkPermission using sun.reflect.Reflection.getCallerClass(int n) by assert callerClass=selfClass.
The getCallerClass returns the class of the method realFramesToSkip frames up the stack (zero-based), ignoring frames associated with java.lang.reflect.Method.invoke() and its implementation. The first frame is that associated with this method, so getCallerClass(0) returns the Class object for sun.reflect.Reflection.
public class PrivateConstructorClass {
private PrivateConstructorClass() {
checkPerMission();
//you own code go below
}
void checkPerMission() {
Class self = sun.reflect.Reflection.getCallerClass(1);
Class caller = sun.reflect.Reflection.getCallerClass(3);
if (self != caller) {
throw new java.lang.IllegalAccessError();
}
}
}
You can try to test reflect, it will fail:
public class TestPrivateMain {
Object newInstance() throws Exception {
final Class<?> c = Class.forName("package.TestPrivate");
final Constructor<?> constructor = c.getDeclaredConstructor();
constructor.setAccessible(true);
return constructor.newInstance();
}
public static void main(String[] args) throws Exception {
Object t = new TestPrivateMain().newInstance();
}
}
You (as the developer of the code in question) cannot do that.
The end user, who runs the application, could install a SecurityManager that forbids reflection.

Is there a way to simulate the C++ 'friend' concept in Java?

I would like to be able to write a Java class in one package which can access non-public methods of a class in another package without having to make it a subclass of the other class. Is this possible?
Here is a small trick that I use in JAVA to replicate C++ friend mechanism.
Lets say I have a class Romeo and another class Juliet. They are in different packages (family) for hatred reasons.
Romeo wants to cuddle Juliet and Juliet wants to only let Romeo cuddle her.
In C++, Juliet would declare Romeo as a (lover) friend but there are no such things in java.
Here are the classes and the trick :
Ladies first :
package capulet;
import montague.Romeo;
public class Juliet {
public static void cuddle(Romeo.Love love) {
Objects.requireNonNull(love);
System.out.println("O Romeo, Romeo, wherefore art thou Romeo?");
}
}
So the method Juliet.cuddle is public but you need a Romeo.Love to call it. It uses this Romeo.Love as a "signature security" to ensure that only Romeo can call this method and checks that the love is real so that the runtime will throw a NullPointerException if it is null.
Now boys :
package montague;
import capulet.Juliet;
public class Romeo {
public static final class Love { private Love() {} }
private static final Love love = new Love();
public static void cuddleJuliet() {
Juliet.cuddle(love);
}
}
The class Romeo.Love is public, but its constructor is private. Therefore anyone can see it, but only Romeo can construct it. I use a static reference so the Romeo.Love that is never used is only constructed once and does not impact optimization.
Therefore, Romeo can cuddle Juliet and only he can because only he can construct and access a Romeo.Love instance, which is required by Juliet to cuddle her (or else she'll slap you with a NullPointerException).
The designers of Java explicitly rejected the idea of friend as it works in C++. You put your "friends" in the same package. Private, protected, and packaged security is enforced as part of the language design.
James Gosling wanted Java to be C++ without the mistakes. I believe he felt that friend was a mistake because it violates OOP principles. Packages provide a reasonable way to organize components without being too purist about OOP.
NR pointed out that you could cheat using reflection, but even that only works if you aren't using the SecurityManager. If you turn on Java standard security, you won't be able to cheat with reflection unless you write security policy to specifically allow it.
The 'friend' concept is useful in Java, for example, to separate an API from its implementation. It is common for implementation classes to need access to API class internals but these should not be exposed to API clients. This can be achieved using the 'Friend Accessor' pattern as detailed below:
The class exposed through the API:
package api;
public final class Exposed {
static {
// Declare classes in the implementation package as 'friends'
Accessor.setInstance(new AccessorImpl());
}
// Only accessible by 'friend' classes.
Exposed() {
}
// Only accessible by 'friend' classes.
void sayHello() {
System.out.println("Hello");
}
static final class AccessorImpl extends Accessor {
protected Exposed createExposed() {
return new Exposed();
}
protected void sayHello(Exposed exposed) {
exposed.sayHello();
}
}
}
The class providing the 'friend' functionality:
package impl;
public abstract class Accessor {
private static Accessor instance;
static Accessor getInstance() {
Accessor a = instance;
if (a != null) {
return a;
}
return createInstance();
}
private static Accessor createInstance() {
try {
Class.forName(Exposed.class.getName(), true,
Exposed.class.getClassLoader());
} catch (ClassNotFoundException e) {
throw new IllegalStateException(e);
}
return instance;
}
public static void setInstance(Accessor accessor) {
if (instance != null) {
throw new IllegalStateException(
"Accessor instance already set");
}
instance = accessor;
}
protected abstract Exposed createExposed();
protected abstract void sayHello(Exposed exposed);
}
Example access from a class in the 'friend' implementation package:
package impl;
public final class FriendlyAccessExample {
public static void main(String[] args) {
Accessor accessor = Accessor.getInstance();
Exposed exposed = accessor.createExposed();
accessor.sayHello(exposed);
}
}
There are two solutions to your question that don't involve keeping all classes in the same package.
The first is to use the Friend Accessor/Friend Package pattern described in (Practical API Design, Tulach 2008).
The second is to use OSGi. There is an article here explaining how OSGi accomplishes this.
Related Questions: 1, 2, and 3.
As far as I know, it is not possible.
Maybe, You could give us some more details about Your design. Questions like these are likely the result of design flaws.
Just consider
Why are those classes in different packages, if they are so closely related?
Has A to access private members of B or should the operation be moved to class B and triggered by A?
Is this really calling or is event-handling better?
eirikma's answer is easy and excellent. I might add one more thing: instead of having a publicly accessible method, getFriend() to get a friend which cannot be used, you could go one step further and disallow getting the friend without a token: getFriend(Service.FriendToken). This FriendToken would be an inner public class with a private constructor, so that only Service could instantiate one.
Here's a clear use-case example with a reusable Friend class. The benefit of this mechanism is simplicity of use. Maybe good for giving unit test classes more access than the rest of the application.
To begin, here is an example of how to use the Friend class.
public class Owner {
private final String member = "value";
public String getMember(final Friend friend) {
// Make sure only a friend is accepted.
friend.is(Other.class);
return member;
}
}
Then in another package you can do this:
public class Other {
private final Friend friend = new Friend(this);
public void test() {
String s = new Owner().getMember(friend);
System.out.println(s);
}
}
The Friend class is as follows.
public final class Friend {
private final Class as;
public Friend(final Object is) {
as = is.getClass();
}
public void is(final Class c) {
if (c == as)
return;
throw new ClassCastException(String.format("%s is not an expected friend.", as.getName()));
}
public void is(final Class... classes) {
for (final Class c : classes)
if (c == as)
return;
is((Class)null);
}
}
However, the problem is that it can be abused like so:
public class Abuser {
public void doBadThings() {
Friend badFriend = new Friend(new Other());
String s = new Owner().getMember(badFriend);
System.out.println(s);
}
}
Now, it may be true that the Other class doesn't have any public constructors, therefore making the above Abuser code impossible. However, if your class does have a public constructor then it is probably advisable to duplicate the Friend class as an inner class. Take this Other2 class as an example:
public class Other2 {
private final Friend friend = new Friend();
public final class Friend {
private Friend() {}
public void check() {}
}
public void test() {
String s = new Owner2().getMember(friend);
System.out.println(s);
}
}
And then the Owner2 class would be like this:
public class Owner2 {
private final String member = "value";
public String getMember(final Other2.Friend friend) {
friend.check();
return member;
}
}
Notice that the Other2.Friend class has a private constructor, thus making this a much more secure way of doing it.
The provided solution was perhaps not the simplest. Another approach is based on the same idea as in C++: private members are not accessible outside the package/private scope, except for a specific class that the owner makes a friend of itself.
The class that needs friend access to a member should create a inner public abstract "friend class" that the class owning the hidden properties can export access to, by returning a subclass that implement the access-implementing methods. The "API" method of the friend class can be private so it is not accessible outside the class that needs friend access. Its only statement is a call to an abstract protected member that the exporting class implements.
Here's the code:
First the test that verifies that this actually works:
package application;
import application.entity.Entity;
import application.service.Service;
import junit.framework.TestCase;
public class EntityFriendTest extends TestCase {
public void testFriendsAreOkay() {
Entity entity = new Entity();
Service service = new Service();
assertNull("entity should not be processed yet", entity.getPublicData());
service.processEntity(entity);
assertNotNull("entity should be processed now", entity.getPublicData());
}
}
Then the Service that needs friend access to a package private member of Entity:
package application.service;
import application.entity.Entity;
public class Service {
public void processEntity(Entity entity) {
String value = entity.getFriend().getEntityPackagePrivateData();
entity.setPublicData(value);
}
/**
* Class that Entity explicitly can expose private aspects to subclasses of.
* Public, so the class itself is visible in Entity's package.
*/
public static abstract class EntityFriend {
/**
* Access method: private not visible (a.k.a 'friendly') outside enclosing class.
*/
private String getEntityPackagePrivateData() {
return getEntityPackagePrivateDataImpl();
}
/** contribute access to private member by implementing this */
protected abstract String getEntityPackagePrivateDataImpl();
}
}
Finally: the Entity class that provides friendly access to a package private member only to the class application.service.Service.
package application.entity;
import application.service.Service;
public class Entity {
private String publicData;
private String packagePrivateData = "secret";
public String getPublicData() {
return publicData;
}
public void setPublicData(String publicData) {
this.publicData = publicData;
}
String getPackagePrivateData() {
return packagePrivateData;
}
/** provide access to proteced method for Service'e helper class */
public Service.EntityFriend getFriend() {
return new Service.EntityFriend() {
protected String getEntityPackagePrivateDataImpl() {
return getPackagePrivateData();
}
};
}
}
Okay, I must admit it is a bit longer than "friend service::Service;" but it might be possible to shorten it while retaining compile-time checking by using annotations.
In Java it is possible to have a "package-related friendness".
This can be userful for unit testing.
If you do not specify private/public/protected in front of a method, it will be "friend in the package".
A class in the same package will be able to access it, but it will be private outside the class.
This rule is not always known, and it is a good approximation of a C++ "friend" keyword.
I find it a good replacement.
I think that friend classes in C++ are like inner-class concept in Java. Using inner-classes
you can actually define an enclosing class and an enclosed one. Enclosed class has full access to the public and private members of it's enclosing class.
see the following link:
http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
Not using a keyword or so.
You could "cheat" using reflection etc., but I wouldn't recommend "cheating".
I think, the approach of using the friend accessor pattern is way too complicated. I had to face the same problem and I solved using the good, old copy constructor, known from C++, in Java:
public class ProtectedContainer {
protected String iwantAccess;
protected ProtectedContainer() {
super();
iwantAccess = "Default string";
}
protected ProtectedContainer(ProtectedContainer other) {
super();
this.iwantAccess = other.iwantAccess;
}
public int calcSquare(int x) {
iwantAccess = "calculated square";
return x * x;
}
}
In your application you could write the following code:
public class MyApp {
private static class ProtectedAccessor extends ProtectedContainer {
protected ProtectedAccessor() {
super();
}
protected PrivateAccessor(ProtectedContainer prot) {
super(prot);
}
public String exposeProtected() {
return iwantAccess;
}
}
}
The advantage of this method is that only your application has access to the protected data. It's not exactly a substitution of the friend keyword. But I think it's quite suitable when you write custom libraries and you need to access protected data.
Whenever you have to deal with instances of ProtectedContainer you can wrap your ProtectedAccessor around it and you gain access.
It also works with protected methods. You define them protected in your API. Later in your application you write a private wrapper class and expose the protected method as public. That's it.
If you want to access protected methods you could create a subclass of the class you want to use that exposes the methods you want to use as public (or internal to the namespace to be safer), and have an instance of that class in your class (use it as a proxy).
As far as private methods are concerned (I think) you are out of luck.
I agree that in most cases the friend keyword is unnecessary.
Package-private (aka. default) is sufficient in most cases where you have a group of heavily intertwined classes
For debug classes that want access to internals, I usually make the method private and access it via reflection. Speed usually isn't important here
Sometimes, you implement a method that is a "hack" or otherwise which is subject to change. I make it public, but use #Deprecated to indicate that you shouldn't rely on this method existing.
And finally, if it really is necessary, there is the friend accessor pattern mentioned in the other answers.
A method I've found for solving this problem is to create an accessor object, like so:
class Foo {
private String locked;
/* Anyone can get locked. */
public String getLocked() { return locked; }
/* This is the accessor. Anyone with a reference to this has special access. */
public class FooAccessor {
private FooAccessor (){};
public void setLocked(String locked) { Foo.this.locked = locked; }
}
private FooAccessor accessor;
/** You get an accessor by calling this method. This method can only
* be called once, so calling is like claiming ownership of the accessor. */
public FooAccessor getAccessor() {
if (accessor != null)
throw new IllegalStateException("Cannot return accessor more than once!");
return accessor = new FooAccessor();
}
}
The first code to call getAccessor() "claims ownership" of the accessor. Usually, this is code that creates the object.
Foo bar = new Foo(); //This object is safe to share.
FooAccessor barAccessor = bar.getAccessor(); //This one is not.
This also has an advantage over C++'s friend mechanism, because it allows you to limit access on a per-instance level, as opposed to a per-class level. By controlling the accessor reference, you control access to the object. You can also create multiple accessors, and give different access to each, which allows fine-grained control over what code can access what:
class Foo {
private String secret;
private String locked;
/* Anyone can get locked. */
public String getLocked() { return locked; }
/* Normal accessor. Can write to locked, but not read secret. */
public class FooAccessor {
private FooAccessor (){};
public void setLocked(String locked) { Foo.this.locked = locked; }
}
private FooAccessor accessor;
public FooAccessor getAccessor() {
if (accessor != null)
throw new IllegalStateException("Cannot return accessor more than once!");
return accessor = new FooAccessor();
}
/* Super accessor. Allows access to secret. */
public class FooSuperAccessor {
private FooSuperAccessor (){};
public String getSecret() { return Foo.this.secret; }
}
private FooSuperAccessor superAccessor;
public FooSuperAccessor getAccessor() {
if (superAccessor != null)
throw new IllegalStateException("Cannot return accessor more than once!");
return superAccessor = new FooSuperAccessor();
}
}
Finally, if you'd like things to be a bit more organized, you can create a reference object, which holds everything together. This allows you to claim all accessors with one method call, as well as keep them together with their linked instance. Once you have the reference, you can pass the accessors out to the code that needs it:
class Foo {
private String secret;
private String locked;
public String getLocked() { return locked; }
public class FooAccessor {
private FooAccessor (){};
public void setLocked(String locked) { Foo.this.locked = locked; }
}
public class FooSuperAccessor {
private FooSuperAccessor (){};
public String getSecret() { return Foo.this.secret; }
}
public class FooReference {
public final Foo foo;
public final FooAccessor accessor;
public final FooSuperAccessor superAccessor;
private FooReference() {
this.foo = Foo.this;
this.accessor = new FooAccessor();
this.superAccessor = new FooSuperAccessor();
}
}
private FooReference reference;
/* Beware, anyone with this object has *all* the accessors! */
public FooReference getReference() {
if (reference != null)
throw new IllegalStateException("Cannot return reference more than once!");
return reference = new FooReference();
}
}
After much head-banging (not the good kind), this was my final solution, and I very much like it. It is flexible, simple to use, and allows very good control over class access. (The with reference only access is very useful.) If you use protected instead of private for the accessors/references, sub-classes of Foo can even return extended references from getReference. It also doesn't require any reflection, so it can be used in any environment.
I prefer delegation or composition or factory class (depending upon the issue that results in this problem) to avoid making it a public class.
If it is a "interface/implementation classes in different packages" problem, then I would use a public factory class that would in the same package as the impl package and prevent the exposure of the impl class.
If it is a "I hate to make this class/method public just to provide this functionality for some other class in a different package" problem, then I would use a public delegate class in the same package and expose only that part of the functionality needed by the "outsider" class.
Some of these decisions are driven by the target server classloading architecture (OSGi bundle, WAR/EAR, etc.), deployment and package naming conventions. For example, the above proposed solution, 'Friend Accessor' pattern is clever for normal java applications. I wonder if it gets tricky to implement it in OSGi due to the difference in classloading style.
I once saw a reflection based solution that did "friend checking" at runtime using reflection and checking the call stack to see if the class calling the method was permitted to do so. Being a runtime check, it has the obvious drawback.
As of Java 9, modules can be used to make this a non-issue in many cases.

Categories