Out of Bounds Exception on a 2D Ragged Array in Java - java

Problem solved, I ended up need a seperate counter for the array position. Thanks for the help!
I'm writing a small app that takes a string, processes each string into 7-bits of binary code and then fills in a musical scale based on the string. For instance, if I had the binary 1000100, in the key of C Major that would give me the notes C and G(C 0 0 0 G 0 0).
I'm having an issue with a specific piece of code that takes an input of String[] (in which each element is a single character worth of binary, 7-bits) and processes each individual character in the strings themselves and stores the index number of where 1's occur in the string. For example, the string 1000100 would output 1 and 5.
Here's the method that does that:
public static String[][] convertToScale(String[] e){
String[][] notes = new String[e.length][]; //create array to hold arrays of Strings that represent notes
for(int i = 0; i < e.length; i++){
notes[i] = new String[findOccurancesOf(e[i])]; //create arrays to hold array of strings
for(int x = 0; x < e[i].length(); x++){
if((e[i].charAt(x)) != 48){ //checks to see if the char being evaluated is 0(Ascii code 48)
notes[i][x] = Integer.toString(x + 1); // if the value isn't 0, it fills in the array for that position.the value at x+1 represents the position of the scale the note is at
}
}
}
return notes;
}
Here is the code that is uses to get the occurrences of 1 in e[1]:
public static int findOccurancesOf(String s){
int counter = 0;
for(int i = 0; i < s.length(); i++ ) {
if( s.charAt(i) == 1 ) {
counter++;
}
}
return counter;
}
The issue I'm having is with the convertToScale method. When using "Hello world" as my input(the input gets converted into 7-bit binary before it gets processed by either of these methods) it passes through the 2nd for-each loop just fine the first time around, but after it tries to fill another spot in the array, it throws
java.lang.ArrayIndexOutOfBoundsException: 3
EDIT:It occurs in the line notes[i][x] = Integer.toString(x + 1); of the convertToScale method. I've run the debugger multiple times through after trying the proposes changes below and I still get the same error at the same line. The findOccurancesOf method returns the right value(When evaluating H(1001000) it returns 2.) So the thing that confuses me is that the out of bounds exception comes up right when it fills the 2nd spot in the array.
Also, feel free to tell me if anything else is crazy or my syntax is bad. Thanks!

In findOccurancesOf():
if( s.charAt(i) == 1 ) { should be if( s.charAt(i) == '1' ) { to check for the character '1'.
Otherwise it's looking for the character with ASCII value 1.
There is an out of bounds exception because if findOccuranceOf() returns the wrong value, then notes[i] is not constructed with the correct length in the following line of convertToScale():
notes[i] = new String[findOccurancesOf(e[i])];
In addition, you probably want to use something like:
notes[i][c++] = Integer.toString(x + 1);
with some counter c initialized to 0, if I understand your intentions correctly.

The reason for AIOOBE lies in this line:
notes[i] = new String[findOccurancesOf(e[i])]; //create arrays to hold array of strings
Where you call findOccurancesOf method to find occurance of 1 in your String say Hello which you dont find and return 0 and then you call notes[i][x] = Integer.toString(x + 1); with x as 0. Now since you never allocated space, you get array index out of bound exception.
I would suggest the folowing:
Validate your string before assigning the index say to be greater than 0 or something.
Initialize you notes[i] as notes[i] = new String[e[i].length];
Checking character with single quotes like a == '1' rather than a == 1

The exception is caused by what almas mentioned, note however, that your logical error is most likely inside findOccurencesOf method, if the idea was to find all the '1' chars inside a string you must change to what I outlined below, note the apostrohes. Otherwise a char is getting converted to a byte ascii code, and unless matched with a code of ascii code one, the method will return 0, causing your exception
if( s.charAt(i) == '1' ) {

Related

What happens when if statement goes true (in this code)?

There is a problem in codingbat.com which you're supposed to remove "yak" substring from the original string. and they provided a solution for that which I can't understand what happens when the if statement goes true!
public String stringYak(String str) {
String result = "";
for (int i=0; i<str.length(); i++) {
// Look for i starting a "yak" -- advance i in that case
if (i+2<str.length() && str.charAt(i)=='y' && str.charAt(i+2)=='k') {
i = i + 2;
} else { // Otherwise do the normal append
result = result + str.charAt(i);
}
}
return result;
}
It just adds up i by 2 and what? When it appends to the result string?
Link of the problem:
https://codingbat.com/prob/p126212
The provided solution checks for all single characters in the input string. For this i is the current index of the checked character. When the current char is not a y and also the (i+2) character is not a k the current char index is advanced by 1 position.
Example:
yakpak
012345
i
So here in the first iteration the char at i is y and i+2 is a k, so we have to skip 3 chars. Keep in mind i is advanced by 1 everytime. So i has to be increased by 2 more. After this iteration i is here
yakpak
012345
i
So now the current char is no y and this char will get added to the result string.
But it's even simpler in Java as this functionality is build in with regex:
public String stringYak(String str) {
return str.replaceAll("y.k","");
}
The . means every char.
If i is pointing at a y and there is as k two positions down, then it wants to skip the full y*k substring, so it add 2 to i so i now refers to the k. WHen then loop continues, i++ will skip past the k, so in effect, the entire 3-letter y*k substring has been skipped.

I keep getting a "java.lang.StringIndexOutOfBoundsException" even though my for loop counter adjusts for length by subtracting 1

So my main goal is to create a program that can decrypt a caesar cipher. I have everything set up so that I have the regular alphabet set up in one array and then a decoder array where I have shifted the alphabet based on a shift/key the user inputs. (ie. if the user inputs a shift of 6, the regular alphabet array starts a, b, c... and then the decoder array starts g, h, i...).
I am currently stuck on going through the encrypted message (user inputted) and decoding each letter one by one by matching it up to the decoder array. It keeps giving me an index out of bounds error even though in the for loop that I have set up, I have subtracted one from the length of the message to compensate for it starting at 0.
The error only happens at the last character too (that's what the 35 is. I have a 35 character string that I'm using to test). But when I try to print the decoded message up until the error, I'm just getting nulls (I'm storing each decoded char in an array and print each character stored as the for loop is running).
Here is the piece of code that I'm currently stuck on:
//Decoding message by looping through each letter in String message
for (int x = 0; x < (message.length() - 1); x ++) //Gets next letter in message
{
for (int y = 0; y < (decodedArray.length - 1); x++) //Goes through decodedArray array
{
if (String.valueOf(message.charAt(x)) == (decodedArray[y])) //Comparing character to each position in decodedArray
{
decodedMessage[x] = alphabetArray[y];
}
System.out.print(decodedMessage[x]); //Testing only. Prints each character stored in array but only printing nulls.
}
}
I haven't added any checks for spaces yet because I'm currently stuck on this error but if any of you can add that, that would be greatly appreciated. I'm not sure if comparing a char to a space would work.
According to the current code in the question, I can say there are 2 problems with your code,
If you need to compare char, you can directly use to == operator without needing it to convert it to string by using String.ValueOf().
You are incrementing x in the 2nd loop, instead you need to increment y

Length of the Longest Common Substring without repeating characters

Given "abcabcbb", the answer is "abc", which the length is 3.
Given "bbbbb", the answer is "b", with the length of 1.
Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
I have came up with a solution that worked, but failed for several test cases. I then found a better solution and I rewrote it to try and understand it. The solution below works flawlessly, but after about 2 hours of battling with this thing, I still can not understand why this particular line of code works.
import java.util.*;
import java.math.*;
public class Solution {
public int lengthOfLongestSubstring(String str) {
if(str.length() == 0)
return 0;
HashMap<Character,Integer> map = new HashMap<>();
int startingIndexOfLongestSubstring = 0;
int max = 0;
for(int i = 0; i < str.length(); i++){
char currentChar = str.charAt(i);
if(map.containsKey(currentChar))
startingIndexOfLongestSubstring = Math.max(startingIndexOfLongestSubstring, map.get(currentChar) + 1);
map.put(currentChar, i);
max = Math.max(max, i - startingIndexOfLongestSubstring + 1);
}//End of loop
return max;
}
}
The line in question is max = Math.max(max, i - startingIndexOfLongestSubstring + 1);
I don't understand why this works. We're taking the max between our previous max, and the difference between our current index and the starting index of what is currently the longest substring and then adding 1. I know that the code is getting the difference between our current index, and the startingIndexOfSubstring, but I can't conceptualize WHY it works to give us the intended result; Can someone please explain this step to me, particularly WHY it works?
I'm usually bad at explaining, let me give it a shot by considering an example.
String is "wcabcdeghi".
Forget the code for a minute and assume we're trying to come up with a logic.
We start from w and keep going until we reach c -> a -> b -> c.
We need to stop at this point because "c" is repeating. So we need a map to store if a character is repeated. (In code : map.put(currentChar, i); )
Now that we know if a character is repeated, We need to know what is the max. length so far. (In code -) max
Now we know there is no point in keeping track of count of first 2 variables w->c. This is because including this, we already got the Max. value. So from next iteration onwards we need to check length only from a -> b -> soon.
Lets have a variable (In code -)startingIndexOfLongestSubstring to keep track of this. (This should've been named startingIndexOfNonRepetativeCharacter, then again I'm bad with naming as well).
Now we again keep continuing, but wait we still haven't finalized on how to keep track of sub-string that we're currently parsing. (i.e., from abcd...)
Coming to think of it, all I need is the position of where "a" was present (which is startingIndexOfNonRepetativeCharacter) so to know the length of current sub-string all I need to do is (In code -)i - startingIndexOfLongestSubstring + 1 (current character position - The non-repetative character length + (subtraction doesn't do inclusive of both sides so adding 1). Lets call this currentLength
But wait, what are we going to do with this count. Every time we find a new variable we need to check if this currentLength can break our max.
So (In code -) max = Math.max(max, i - startingIndexOfLongestSubstring + 1);
Now we've covered most of the statements that we need and according to our logic everytime we encounter a variable which was already present all we need is startingIndexOfLongestSubstring = map.get(currentChar). So why are we doing a Max?
Consider a scenario where String is "wcabcdewghi". when we start processing our new counter as a -> b -> c -> d -> e -> w At this point our logic checks if this character was present previously or not. Since its present, it starts the count from index "1". Which totally messes up the whole count. So We need to make sure, the next index we take from map is always greater than the starting point of our count(i.e., select a character from the map only if the character occurs before startingIndexOfLongestSubstring).
Hope I've answered all lines in the code and mainly If the explanation was understandable.
Because
i - startingIndexOfLongestSubstring + 1
is amount of characters between i and startingIndexOfLongestSubstring indexes. For example how many characters between position 2 and 3? 3-2=1 but we have 2 characters: on position 2 and position 3.
I've described every action in the code:
public class Solution {
public int lengthOfLongestSubstring(String str) {
if(str.length() == 0)
return 0;
HashMap<Character,Integer> map = new HashMap<>();
int startingIndexOfLongestSubstring = 0;
int max = 0;
// loop over all characters in the string
for(int i = 0; i < str.length(); i++){
// get character at position i
char currentChar = str.charAt(i);
// if we already met this character
if(map.containsKey(currentChar))
// then get maximum of previous 'startingIndexOfLongestSubstring' and
// map.get(currentChar) + 1 (it is last occurrence of the current character in our word before plus 1)
// "plus 1" - it is because we should start count from the next character because our current character
// is the same
startingIndexOfLongestSubstring = Math.max(startingIndexOfLongestSubstring, map.get(currentChar) + 1);
// save position of the current character in the map. If map already has some value for current character
// then it will override (we don't want to know previous positions of the character)
map.put(currentChar, i);
// get maximum between 'max' (candidate for return value) and such value for current character
max = Math.max(max, i - startingIndexOfLongestSubstring + 1);
}//End of loop
return max;
}
}

A java string exercise i came across

Look for patterns like "zip" and "zap" in the string -- length-3, starting with 'z' and ending with 'p'. Return a string where for all such words, the middle letter is gone, so "zipXzap" yields "zpXzp"
Here is a solution i got from someone:
public class Rough {
public static void main(String [] args){
StringBuffer mat = new StringBuffer("matziplzdpaztp");
for(int i = 0; i < mat.length() - 2; ++i){
if (mat.charAt(i) == 'z' & mat.charAt(i + 2) == 'p'){
mat.deleteCharAt(i + 1);
}
}
System.out.println(mat);
}
}
But why is it that the for loop condition (i < mat.length() -2) is not (i < mat.length())????
Because in the loop:
if (mat.charAt(i) == 'z' & mat.charAt(i + 2) == 'p'){
// -----------------------------------^^^^^
If i were bound by i < mat.length(), then i + 2 would be out of bounds.
Because you don't have to reach the end of your sentence since your words are at least three letters long.
"2" stands for "the length except the first word",you just need to check all the positions in the string variable , and treat the positions as the first word of the substring , so just ignore the "length of the substring without the first word".
in your case , the length of "z*p" is 3, you just check all the position in the string , and treat the position as z to check something ,so just ignore "*p" ,which has length 2.
mat.length() will give length 14 and if you check for mat.charAt(i + 2) at the end it will give java.lang.StringIndexOutOfBoundsException because the string counts from index 0 not from 1. If you still want to use mat.length() you have to replace the AND '&' operator with short circuit AND '&&' operator in if condition.

Find every possible subset given a string [duplicate]

This question already has answers here:
Memory efficient power set algorithm
(5 answers)
Closed 8 years ago.
I'm trying to find every possible anagram of a string in Java - By this I mean that if I have a 4 character long word I want all the possible 3 character long words derived from it, all the 2 character long and all the 1 character long. The most straightforward way I tought of is to use two nested for loops and iterare over the string. This is my code as of now:
private ArrayList<String> subsets(String word){
ArrayList<String> s = new ArrayList<String>();
int length = word.length();
for (int c=0; c<length; c++){
for (int i=0; i<length-c; i++){
String sub = word.substring(c, c+i+1);
System.out.println(sub);
//if (!s.contains(sub) && sub!=null)
s.add(sub);
}
}
//java.util.Collections.sort(s, new MyComparator());
//System.out.println(s.toString());
return s;
}
My problem is that it works for 3 letter words, fun yelds this result (Don't mind the ordering, the word is processed so that I have a string with the letters in alphabetical order):
f
fn
fnu
n
nu
u
But when I try 4 letter words, it leaves something out, as in catq gives me:
a
ac
acq
acqt
c
cq
cqt
q
qt
t
i.e., I don't see the 3 character long word act - which is the one I'm looking for when testing this method. I can't understand what the problem is, and it's most likely a logical error I'm making when creating the substrings. If anyone can help me out, please don't give me the code for it but rather the reasoning behind your solution. This is a piece of coursework and I need to come up with the code on my own.
EDIT: to clear something out, for me acq, qca, caq, aqc, cqa, qac, etc. are the same thing - To make it even clearer, what happens is that the string gets sorted in alphabetical order, so all those permutations should come up as one unique result, acq. So, I don't need all the permutations of a string, but rather, given a 4 character long string, all the 3 character long ones that I can derive from it - that means taking out one character at a time and returning that string as a result, doing that for every character in the original string.
I hope I have made my problem a bit clearer
It's working fine, you just misspelled "caqt" as "acqt" in your tests/input.
(The issue is probably that you're sorting your input. If you want substrings, you have to leave the input unsorted.)
After your edits: see Generating all permutations of a given string Then just sort the individual letters, and put them in a set.
Ok, as you've already devised your own solution, I'll give you my take on it. Firstly, consider how big your result list is going to be. You're essentially taking each letter in turn, and either including it or not. 2 possibilities for each letter, gives you 2^n total results, where n is the number of letters. This of course includes the case where you don't use any letter, and end up with an empty string.
Next, if you enumerate every possibility with a 0 for 'include this letter' and a 1 for don't include it, taking your 'fnu' example you end up with:
000 - ''
001 - 'u'
010 - 'n'
011 - 'nu'
100 - 'f'
101 - 'fu' (no offense intended)
110 - 'fn'
111 - 'fnu'.
Clearly, these are just binary numbers, and you can derive a function that given any number from 0-7 and the three letter input, will calculate the corresponding subset.
It's fairly easy to do in java.. don't have a java compiler to hand, but this should be approximately correct:
public string getSubSet(string input, int index) {
// Should check that index >=0 and < 2^input.length here.
// Should also check that input.length <= 31.
string returnValue = "";
for (int i = 0; i < input.length; i++) {
if (i & (1 << i) != 0) // 1 << i is the equivalent of 2^i
returnValue += input[i];
}
return returnValue;
}
Then, if you need to you can just do a loop that calls this function, like this:
for (i = 1; i < (1 << input.length); i++)
getSubSet(input, i); // this doesn't do anything, but you can add it to a list, or output it as desired.
Note I started from 1 instead of 0- this is because the result at index 0 will be the empty string. Incidentally, this actually does the least significant bit first, so your output list would be 'f', 'n', 'fn', 'u', 'fu', 'nu', 'fnu', but the order didn't seem important.
This is the method I came up with, seems like it's working
private void subsets(String word, ArrayList<String> subset){
if(word.length() == 1){
subset.add(word);
return;
}
else {
String firstChar = word.substring(0,1);
word = word.substring(1);
subsets(word, subset);
int size = subset.size();
for (int i = 0; i < size; i++){
String temp = firstChar + subset.get(i);
subset.add(temp);
}
subset.add(firstChar);
return;
}
}
What I do is check if the word is bigger than one character, otherwise I'll add the character alone to the ArrayList and start the recursive process. If it is bigger, I save the first character and make a recursive call with the rest of the String. What happens is that the whole string gets sliced in characters saved in the recursive stack, until I hit the point where my word has become of length 1, only one character remaining.
When that happens, as I said at the start, the character gets added to the List, now the recursion starts and it looks at the size of the array, in the first iteration is 1, and then with a for loop adds the character saved in the stack for the previous call concatenated with every element in the ArrayList. Then it adds the character on its own and unwinds the recursion again.
I.E., with the word funthis happens:
f saved
List empty
recursive call(un)
-
u saved
List empty
recursive call(n)
-
n.length == 1
List = [n]
return
-
list.size=1
temp = u + list[0]
List = [n, un]
add the character saved in the stack on its own
List = [n, un, u]
return
-
list.size=3
temp = f + list[0]
List = [n, un, u, fn]
temp = f + list[1]
List = [n, un, u, fn, fun]
temp = f + list[2]
List = [n, un, u, fn, fun, fu]
add the character saved in the stack on its own
List = [n, un, u, fn, fun, fu, f]
return
I have been as clear as possible, I hope this clarifies what was my initial problem and how to solve it.
This is working code:
public static void main(String[] args) {
String input = "abcde";
Set<String> returnList = permutations(input);
System.out.println(returnList);
}
private static Set<String> permutations(String input) {
if (input.length() == 1) {
Set<String> a = new TreeSet<>();
a.add(input);
return a;
}
Set<String> returnSet = new TreeSet<>();
for (int i = 0; i < input.length(); i++) {
String prefix = input.substring(i, i + 1);
Set<String> permutations = permutations(input.substring(i + 1));
returnSet.add(prefix);
returnSet.addAll(permutations);
Iterator<String> it = permutations.iterator();
while (it.hasNext()) {
returnSet.add(prefix + it.next());
}
}
return returnSet;
}

Categories