Can anyone tell me the complexity (Big O notation preferred) of this code? It finds the least number of "coins" needed to make a target sum.
To do this it calculates the least number of coins for each number up to the target starting from 1. Each number is worked out based on the possible pairs of numbers that could sum to it, and the pair with the smallest cost is used. An example hopefully makes this clearer
If the "coins" are {1, 3, 4} and the target is 13 then it iterates from 1 to 13, where the cost of 2 the minimum from (0+2, 1+1), the c(5) is the smallest cost of (c(0)+c(5), c(1)+c(4), c(2)+c(3)), etc up to c(13)
This is a version of the knapsack problem and I'm wondering how to define its complexity?
Code:
import java.util.*;
public class coinSumMinimalistic {
public static final int TARGET = 12003;
public static int[] validCoins = {1, 3, 5, 6, 7, 10, 12};
public static void main(String[] args) {
Arrays.sort(validCoins);
sack();
}
public static void sack() {
Map<Integer, Integer> coins = new TreeMap<Integer, Integer>();
coins.put(0, 0);
int a = 0;
for(int i = 1; i <= TARGET; i++) {
if(a < validCoins.length && i == validCoins[a]) {
coins.put(i, 1);
a++;
} else coins.put(i, -1);
}
for(int x = 2; x <= TARGET; x++) {
if(x % 5000 == 0) System.out.println("AT: " + x);
ArrayList<Integer> list = new ArrayList<Integer>();
for(int i = 0; i <= x / 2; i++) {
int j = x - i;
list.add(i);
list.add(j);
}
coins.put(x, min(list, coins));
}
System.out.println("It takes " + coins.get(TARGET) + " coins to reach the target of " + TARGET);
}
public static int min(ArrayList<Integer> combos, Map<Integer, Integer> coins) {
int min = Integer.MAX_VALUE;
int total = 0;
for(int i = 0; i < combos.size() - 1; i += 2) {
int x = coins.get(combos.get(i));
int y = coins.get(combos.get(i + 1));
if(x < 0 || y < 0) continue;
else {
total = x + y;
if(total > 0 && total < min) {
min = total;
}
}
}
int t = (min == Integer.MAX_VALUE || min < 0) ? -1:min;
return t;
}
}
EDIT: Upon research I think that the complexity is O(k*n^2) where n is the target, and k is the number of coins supplied, is this correct?
I thinky the code you provided is kind of chaotic. So this post is more about the conceptual algorithm instead of the real algorithm. This can differ a bit since for instance insertion in an ArrayList<T> is not O(1), but I'm confident that you can use good datastructures (for instance LinkedList<T>s) for this to let all operations run in constant time.
What your algorithm basically does is the following:
It starts with a map that maps all the given coins to one: it requires one coin to achieve the value on the coin.
For each iteration, it mixes all already achieved values with all already achieved values. The result is thus the sum of the coins and it takes at the sum of the number of coins unless it was already present in the collection.
This step you forgot: kick out values strictly larger than the requested value: since all coins are strictly positive, you will never be able to construct a value with such composition less than the requested value.
You keep doing this until you have constructed the requested coin value.
If at iteration i all new values added to the set are strictly larger than the requested value, you can stop: the requested value can't be constructed.
The parameters are:
n: the number of coins.
r: the requested value.
A first observation is that each step of (2.) requires O(s^2) time with s the number of elements in the set at the start of the iteration: this is because you match every value with every value.
A second observation is that you can never have more elements in the set than the requested value. This means that s is bounded by O(r) (we assume all coins are integers, thus the set can contain at most all integer values from 0 to r-1). Step (2.) has thus a maximum time complexity of O(r^2).
And furthermore the set evolves progressively: at each iteration, you will always construct a new value that is at least one larger than the maximum thus far. As a consequence, the algorithm will perform maximum O(r) iterations.
This implies that the algorithm has a time-complexity of O(r^3): r times O(r^2).
Why is the behavior exponential and thus at least NP-hard?
A first argument is that it comes down on how you represent input: in many cases, numbers are represented using a system with a radix greater than or equal to 2. This means that with k characters, you can represent a value that scales with O(g^k) with g the radix. Thus exponential. In other words, if you use a 32-bit number, worst case, r=O(2^32). So if you take this as input, there is an exponential part. If you would encode the target using unary notation, the algorithm is in P. But of course that's a bit like the padding-argument: given you provide enough useless input data (exponential or even super-exponential), all algorithms are in P, but you don't buy much with this.
A second argument is that if you leave the the requested value out of the input, you can only state that you start with n coins. You know that the number of iterations is fixed: you see the target value as an unknown constant. Each iteration, the total number of values in the Map<Integer,Integer> potentially squares. This thus means that the computational effort is:
n+n^2+n^4+n^6+...n^(log r)
^ ^ ^
| \-- first iteration \-- end of algorithm
\-- insertion
It is clear that this behavior is exponential in n.
Related
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 6 years ago.
Improve this question
I received this question during an interview, the question is
Given two integers, return the number of digits that they share.
For example 129 and 431 would return 1 - as they both share the digit 1, but no other digit. 95 and 780 would return 0, since none of the integers overlap.
My thoughts are just iterate through the digits, store them into a hashtable and check .containsKey.
My Java solution:
public int commonDigits(int x, int y) {
int count = 0;
HashTable<Integer, String> ht = new HashTable<Integer, String>();
while (x != 0) {
ht.put(x % 10, "x");
x /= 10;
}
while (y != 0) {
if ((ht.containsKey(y % 10)) {
count++;
}
y /= 10;
}
return count;
}
But this takes up O(n) space and O(n + m) time, anyways I can improve this?
Why not just use some simple bit fiddling?
public int commonDigits(int x, int y) {
int dX = 0;
while (x != 0) {
dX |= 1 << (x % 10);
x /= 10;
}
int count = 0;
while (y != 0) {
int mask = 1 << (y % 10);
if ((dX & mask) != 0) {
count ++;
dX &= ~mask;
}
y /= 10;
}
return count;
}
This just sets a corresponding bit in dX for each digit in x. In the second loop, for each digit in x, the code checks whether it has an entry in dX. If so, it's counted and the bit is reset to avoid double-counting (note that this is missing in your code, consider 123 and 141). Obviously doesn't use any additional storage (dX and count could just be bytes if that matters).
Note that you don't need a HashTable in your solution -- you could just use a HasSet or a BitSet..
Your code translated to using a BitSet with the double-counting problem fixed:
public int commonDigits(int x, int y) {
int count = 0;
BitSet ht = new BitSet();
while (x != 0) {
ht.set(x % 10, true);
x /= 10;
}
while (y != 0) {
if ((ht.get(y % 10)) {
count++;
ht.set(y % 10, false);
}
y /= 10;
}
return count;
}
Both snippets work exactly the same way, the latter just has some more overhead for the BitSet (and embedded array) instance.
This article shows why a BitSet is better than a boolean array in the general case: http://chrononsystems.com/blog/hidden-evils-of-javas-byte-array-byte
Edit:
If counting the same digit multiple times is actually desired (was not clear from the examples in the question), use an int array to store the counts:
public int commonDigits(int x, int y) {
int count = 0;
int[] digits = new int[10];
while (x != 0) {
digits[x % 10]++;
x /= 10;
}
while (y != 0) {
if (digits[x % 10] > 0) {
count++;
digits[x % 10]--;
}
y /= 10;
}
return count;
}
This is your solution with the minimum storage (an array of 10 bytes instead of a hash table):
public int commonDigits(int x, int y) {
int count = 0;
byte[] digits=new byte[10];
while (x != 0) {
digits[x%10] ++;
x /= 10;
}
while (y != 0) {
if (digits[y % 10] > 0) {
count++;
digits[y % 10] --;
}
y /= 10;
}
return count;
}
The solution is optimum in running time O(n+m), where n is the number of digits in x and m is the number of digits in y. You cannot do less than enumerating the digits of x then the digits of y.
Since there are only 10 possible digits, why not just store an integer array? Indexed from 0-9, one for each digit. Loop through each digit and increment the corresponding array element. The space complexity of this depends on what you define to be "constant" - this will always take up 10 units of space (would be 10 bytes in C/C++, not sure how JVM does it)
By conservation of information, you have to loop through each digit of both numbers (they are independent so you can't just infer one from the other), so your time complexity will remain at O(m + n). Also I think by O(n) you really mean O(log n), as this is the number of digits in any representation of the number.
There is at maximum 10 digits that can be shared. This means you don't need a complicated data structure like Hashtable, an array or bitmask will suffice!
You would simply iterate over the first number, and every digit you hit is marked as "true" (in your bitmask or array). You can even short-circuit this and return early if you have found every digit once (which is easy and cheap with a bitmask). Then go over the second number. Every time you hit a digit that is also marked as true, increase the counter. If the bitmask contains every digit, short-circuit by returning the length of the number (its highest exponent), otherwise return the counter at the end.
This doesn't reduce O-complexity, but it reduces memory footprint and adds some short-circuits for large numbers.
For example, if the first number is 1234567890, then it will always share as many digits with the second number as the second number has decimal places.
A hash table is overkill, just use an array of ten flags (whether you pack them in a single integer with bitwise operations or keep independent variables is up to you).
Scan the first integer and raise the relevant flag for every digit.
Scan the second integer and reset the relevant flag for every digit.
Return the number of true resets (from 1 to 0).
Update: to deal with duplicates, the flags need to be replaced by counters.
If both numbers have M digits, they must all be looked at so that the time complexity is at certainly Ω(M).
The case of the space complexity is less clear. All solutions presented here are O(N), where N is the number of possible digits (10 in the decimal base). But O(1) space is possible: take every digit of the first number in turn, check if it is the first such digit in the first number (to avoid counting duplicates), then check if it exists in the second number. This is an O(M²)-time process, but O(1)-space only.
Update: to deal with duplicates, every time you process a digit, count the number of identical predecessors in the first number; when looking for a match in the second number, also match the number of predecessors.
So one may wonder if a O(M)-time, O(1)-space solution is possible.
My solution is O(M+N)-time, O(N)-space. The +N in the time complexity is only required for the initialization of all N flags. If you accept not to count the initialization, you can write the algorithm in such a way that it clears all the flags it has set (so that the algorithm can be played again) and this yields a O(M)-time, O(N)-space solution.
There is an easy O(M Log M)-time, O(M)-space solution, by sorting the two strings of digits and counting the identical digits in a merge-like step. Can be of use if M is very small compared to N.
Your solution doesn't account for duplicates.
# 11, 211 -> 2
You're right to use a hash, it's faster than an array. Gonna do this in python because it's faster to type...
# Returns an array containing the shared digits
def getShared(num1, num2):
shared = []
digits1 = getDigits(num1)
digits2 = getDigits(num2)
for digit in digits1:
if digit in digits2:
while digits2[digit] > 1 and digits1[digit] > 1:
digits2[digit] = digits2[digit] - 1
digits1[digit] = digits1[digit] - 1
shared += [digit]
del digits2[digit]
del digits1[digit]
return shared
# Given an integer, returns a dictionary with the keys as the digits,
# and the value as the number of times the digit appears
def getDigits(num)
dict = {}
while num > 0:
newDigit = num % 10
if newDigit not in dict:
dict[newDigit] = 1
else:
dict[newDigit] = dict[newDigit] + 1
return dict
The problem I am trying to solve:
Given an int n, return the minimal "factorization" of this int to numbers which are all squares.
We define factorization here not in the usual manner: a factorization of k to m numbers (m1, m2, m3...) will be such that: m1 + m2 + m3 + ... = k.
For example: let n = 12. The optimal solution is: [4,4,4] since 4 is the square of 2 and 4 + 4 + 4 = 12. There is also [9,1,1,1] though it is not minimal since it's 4 numbers instead of 3 in the former.
My attempt to solve this:
My idea was given the number n we will perform the following algorithm:
First we will find the closest square number to n (for example if n = 82 we will find 81.
Then we will compute, recursively, the number we got minus the square closest to it.
Here is a flow example: assume n = 12 and our function is f, we compute f(3) UNION {9} and then f(12-4) UNION {4} and then f(12-2) UNION {2}. From each we get a list of square combinations, we take the minimal list from those. We save those in a HashMap to avoid duplications (dynamic-programming style).
Code attempt in Java (incomplete):
public List<Integer> getShortestSquareList(int n){
HashMap<Integer,List<Integer>> map = new HashMap<Integer,List<Integer>();
map.put(1, 1);
List<Integer> squareList = getSquareList(n);
return internalGetShortestSquareList(n, map, squareList);
}
List<Integer> getSquareList(int n){
List<Integer> result=new ArrayList<Integer>();
int i = 1;
while(i*i <= n){
result.add(i*i);
i++;
}
return result;
}
public int getClosestSquare(int n,List<Integer> squareList){
// getting the closestSquareIndex
}
public List<Integer> internalGetShortestSquareList(int n, HashMap<Integer m, HashMap<Integer,List<Integer>> map, List<Integer> squareList){
if (map.contains(n)) {return map.get(n);}
int closestSqureIndex=getClosestSquare(m,squareList);
List<Integer> minSquareList;
int minSize=Integer.MAX_INT;
for(int i=closestSqureIndex; i>-1; i--) {
int square = squareList.get(closestSqureIndex);
List<Integer> tempSquares= new ArrayList<Integer>(square);
tempSquares.addAll(f(n-square, map, squareList));
if (tempSquares.size() < minSize) {
minSize = tempSize;
minSquareList = tempSquares;
}
}
map.put(n, minSquareList);
return map.get(n);
}
My question:
It seems that my solution is not optimal (imo). I think that the time complexity for my solution is O(n)*O(Sqrt(n)) since the maximal recursion depth is n and the maximum number of children is Sqrt(n). My solution is probably full of bugs - which doesn't matter to me at the moment. I will appreciate any guidance to find a more optimal solution (pseudo-code or otherwise).
Based on #trincot's link, I would suggest a simple O(n sqrt n) algorithm. The idea is :
Use exhaustive search on the squares smaller or equal to n to find out if n is a square itself, or a sum of any two or three squares less than n. This can be done in sqrt(n)^3 time, which is O(n sqrt n).
If this fails, then find a "factorization" of n in four squares.
To recursively find 4-factorization of a number m, there are three cases now:
m is a prime number and m mod 4 = 1. According to the math, we know that n is a product of two squares. Both simple exhaustive search or more "mathy" methods should give an easy answer.
m is a prime number and m mod 4 = 3. This case still requires working out the details, but could be implemented using the math described in the link.
m is a composite number. This is the recursive case. First factorize m in two factors, i.e. integers u and v so that u*v=m. For performance reasons, they should be as close as possible, but this is a minor detail.
Afterwards, recursively find the 4-factorization of u and v.
Then, using the formula:
(a^2+b^2+c^2+d^2) (A^2+B^2+C^2+D^2) = (aA+bB+cC+dD)^2 + (aB-bA+cD-dC)^2 + (aC-bD-cA+dB)^2 + (aD-dA+bC-cB)^2
find the 4-factorization of m. Here I denoted u = (a^2+b^2+c^2+d^2) and v = (A^2+B^2+C^2+D^2), as their 4-factorization is known at this point.
Much simpler solution:
This is a version of the Coin Change problem.
You can call the following method with coins as the list of the square number that smaller than amount (n in your example).
Example: amount=12 , coins={1,2,4,9}
public int coinChange(int[] coins, int amount) {
int max = amount + 1;
int[] dp = new int[amount + 1];
Arrays.fill(dp, max);
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
for (int j = 0; j < coins.length; j++) {
if (coins[j] <= i) {
dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
}
}
}
return dp[amount] > amount ? -1 : dp[amount];
}
The complexity of it is O(n*m) where m is the number of coins. So in your example it the same complexity like you mention O(n*sqrt(n))
It solved with Dynamic programming - Bottom up approch.
The code has been taken from here.
This question is an extension of Java- Math.random(): Selecting an element of a 13 by 13 triangular array. I am selecting two numbers at random (0-12 inclusive) and I wanted the values to be equal.
But now, since this is a multiplication game, I want a way to bias the results so certain combinations come up more frequently (like if the Player does worse for 12x8, I want it to come up more frequently). Eventually, I would like to bias towards any of the 91 combinations, but once I get this down, that should not be hard.
My Thoughts: Add some int n to the triangular number and Random.nextInt(91 + n) to bias the results toward a combination.
private int[] triLessThan(int x, int[] bias) { // I'm thinking a 91 element array, 0 for no bias, positive for bias towards
int i = 0;
int last = 0;
while (true) {
int sum = 0;
for (int a = 0; a < i * (i + 2)/2; a++){
sum += bias[a]
}
int triangle = i * (i + 1) / 2;
if (triangle + sum > x){
int[] toReturn = {last,i};
return toReturn;
}
last = triangle;
i++;
}
}
At the random number roll:
int sum = sumOfArray(bias); // bias is the array;
int roll = random.nextInt(91 + sum);
int[] triNum = triLessThan(roll);
int num1 = triNum[1];
int num2 = roll - triNum[0]; //now split into parts and make bias[] add chances to one number.
where sumOfArray just finds the sum (that formula is easy). Will this work?
Edit: Using Floris's idea:
At random number roll:
int[] bias = {1,1,1,...,1,1,1} // 91 elements
int roll = random.nextInt(sumOfBias());
int num1 = roll;
int num2 = 0;
while (roll > 0){
roll -= bias[num2];
num2++;
}
num1 = (int) (Math.sqrt(8 * num2 + 1) - 1)/2;
num2 -= num1 * (num1 + 1) / 2;
You already know how to convert a number between 0 and 91 and turn it into a roll (from the answer to your previous question). I would suggest that you create an array of N elements, where N >> 91. Fill the first 91 elements with 0...90, and set a counter A to 91. Now choose a number between 0 and A, pick the corresponding element from the array, and convert to a multiplication problem. If the answer is wrong, append the number of the problem to the end of the array, and increment A by one.
This will create an array in which the frequencies of sampling will represent the number of times a problem was solved incorrectly - but it doesn't ever lower the frequency again if the problem is solved correctly the next time it is asked.
An alternative and better solution, and one that is a little closer to yours (but distinct) creates an array of 91 frequencies - each initially set to 1 - and keeps track of the sum (initially 91). But now, when you choose a random number (between 0 and sum) you traverse the array until the cumulative sum is greater then your random number - the number of the bin is the roll you choose, and you convert that with the formula derived earlier. If the answer is wrong you increment the bin and update the sum; if it is right, you decrement the sum but never to a value less than one, and update the sum. Repeat.
This should give you exactly what you are asking: given an array of 91 numbers ("bins"), randomly select a bin in such a way that the probability of that bin is proportional to the value in it. Return the index of the bin (which can be turned into the combination of numbers using the method you had before). This function is called with the bin (frequency) array as the first parameter, and the cumulative sum as the second. You look up where the cumulative sum of the first n elements first exceeds a random number scaled by the sum of the frequencies:
private int chooseBin(float[] freq, float fsum) {
// given an array of frequencies (probabilities) freq
// and the sum of this array, fsum
// choose a random number between 0 and 90
// such that if this function is called many times
// the frequency with which each value is observed converges
// on the frequencies in freq
float x, cs=0; // x stores random value, cs is cumulative sum
int ii=-1; // variable that increments until random value is found
x = Math.rand();
while(cs < x*fsum && ii<90) {
// increment cumulative sum until it's bigger than fraction x of sum
ii++;
cs += freq[ii];
}
return ii;
}
I confirmed that it gives me a histogram (blue bars) that looks exactly like the probability distribution that I fed it (red line):
(note - this was plotted with matlab so X goes from 1 to 91, not from 0 to 90).
Here is another idea (this is not really answering the question, but it's potentially even more interesting):
You can skew your probability of choosing a particular problem by sampling something other than a uniform distribution. For example, the square of a uniformly sampled random variate will favor smaller numbers. This gives us an interesting possibility:
First, shuffle your 91 numbers into a random order
Next, pick a number from a non-uniform distribution (one that favors smaller numbers). Since the numbers were randomly shuffled, they are in fact equally likely to be chosen. But now here's the trick: if the problem (represented by the number picked) is solved correctly, you move the problem number "to the top of the stack", where it is least likely to be chosen again. If the player gets it wrong, it is moved to the bottom of the stack, where it is most likely to be chosen again. Over time, difficult problems move to the bottom of the stack.
You can create random distributions with different degrees of skew using a variation of
roll = (int)(91*(asin(Math.rand()*a)/asin(a)))
As you make a closer to 1, the function tends to favor lower numbers with almost zero probability of higher numbers:
I believe the following code sections do what I described:
private int[] chooseProblem(float bias, int[] currentShuffle) {
// if bias == 0, we choose from uniform distribution
// for 0 < bias <= 1, we choose from increasingly biased distribution
// for bias > 1, we choose from uniform distribution
// array currentShuffle contains the numbers 0..90, initially in shuffled order
// when a problem is solved correctly it is moved to the top of the pile
// when it is wrong, it is moved to the bottom.
// return value contains number1, number2, and the current position of the problem in the list
int problem, problemIndex;
if(bias < 0 || bias > 1) bias = 0;
if(bias == 0) {
problem = random.nextInt(91);
problemIndex = problem;
}
else {
float x = asin(Math.random()*bias)/asin(bias);
problemIndex = Math.floor(91*x);
problem = currentShuffle[problemIndex];
}
// now convert "problem number" into two numbers:
int first, last;
first = (int)((Math.sqrt(8*problem + 1)-1)/2);
last = problem - first * (first+1) / 2;
// and return the result:
return {first, last, problemIndex};
}
private void shuffleProblems(int[] currentShuffle, int upDown) {
// when upDown==0, return a randomly shuffled array
// when upDown < 0, (wrong answer) move element[-upDown] to zero
// when upDown > 0, (correct answer) move element[upDown] to last position
// note - if problem 0 is answered incorrectly, don't call this routine!
int ii, temp, swap;
if(upDown == 0) {
// first an ordered list:
for(ii=0;ii<91;ii++) {
currentShuffle[ii]=ii;
}
// now shuffle it:
for(ii=0;ii<91;ii++) {
temp = currentShuffle[ii];
swap = ii + random.nextInt(91-ii);
currentShuffle[ii]=currentShuffle[swap];
currentShuffle[swap]=temp;
}
return;
}
if(upDown < 0) {
temp = currentShuffle[-upDown];
for(ii = -upDown; ii>0; ii--) {
currentShuffle[ii]=currentShuffle[ii-1];
}
currentShuffle[0] = temp;
}
else {
temp = currentShuffle[upDown];
for(ii = upDown; ii<90; ii++) {
currentShuffle[ii]=currentShuffle[ii+1];
}
currentShuffle[90] = temp;
}
return;
}
// main problem posing loop:
int[] currentShuffle = new int[91];
int[] newProblem;
int keepGoing = 1;
// initial shuffle:
shuffleProblems( currentShuffle, 0); // initial shuffle
while(keepGoing) {
newProblem = chooseProblem(bias, currentShuffle);
// pose the problem, get the answer
if(wrong) {
if(newProblem > 0) shuffleProblems( currentShuffle, -newProblem[2]);
}
else shuffleProblems( currentShuffle, newProblem[2]);
// decide if you keep going...
}
I have run into a weird issue for problem 3 of Project Euler. The program works for other numbers that are small, like 13195, but it throws this error when I try to crunch a big number like 600851475143:
Exception in thread "main" java.lang.ArithmeticException: / by zero
at euler3.Euler3.main(Euler3.java:16)
Here's my code:
//Number whose prime factors will be determined
long num = 600851475143L;
//Declaration of variables
ArrayList factorsList = new ArrayList();
ArrayList primeFactorsList = new ArrayList();
//Generates a list of factors
for (int i = 2; i < num; i++)
{
if (num % i == 0)
{
factorsList.add(i);
}
}
//If the integer(s) in the factorsList are divisable by any number between 1
//and the integer itself (non-inclusive), it gets replaced by a zero
for (int i = 0; i < factorsList.size(); i++)
{
for (int j = 2; j < (Integer) factorsList.get(i); j++)
{
if ((Integer) factorsList.get(i) % j == 0)
{
factorsList.set(i, 0);
}
}
}
//Transfers all non-zero numbers into a new list called primeFactorsList
for (int i = 0; i < factorsList.size(); i++)
{
if ((Integer) factorsList.get(i) != 0)
{
primeFactorsList.add(factorsList.get(i));
}
}
Why is it only big numbers that cause this error?
Your code is just using Integer, which is a 32-bit type with a maximum value of 2147483647. It's unsurprising that it's failing when used for numbers much bigger than that. Note that your initial loop uses int as the loop variable, so would actually loop forever if it didn't throw an exception. The value of i will go from the 2147483647 to -2147483648 and continue.
Use BigInteger to handle arbitrarily large values, or Long if you're happy with a limited range but a larger one. (The maximum value of long / Long is 9223372036854775807L.)
However, I doubt that this is really the approach that's expected... it's going to take a long time for big numbers like that.
Not sure if it's the case as I don't know which line is which - but I notice your first loop uses an int.
//Generates a list of factors
for (int i = 2; i < num; i++)
{
if (num % i == 0)
{
factorsList.add(i);
}
}
As num is a long, its possible that num > Integer.MAX_INT and your loop is wrapping around to negative at MAX_INT then looping until 0, giving you a num % 0 operation.
Why does your solution not work?
Well numbers are discrete in hardware. Discrete means thy have a min and max values. Java uses two's complement, to store negative values, so 2147483647+1 == -2147483648. This is because for type int, max value is 2147483647. And doing this is called overflow.
It seems as if you have an overflow bug. Iterable value i first becomes negative, and eventually 0, thus you get java.lang.ArithmeticException: / by zero. If your computer can loop 10 million statements a second, this would take 1h 10min to reproduce, so I leave it as assumption an not a proof.
This is also reason trivially simple statements like a+b can produce bugs.
How to fix it?
package margusmartseppcode.From_1_to_9;
public class Problem_3 {
static long lpf(long nr) {
long max = 0;
for (long i = 2; i <= nr / i; i++)
while (nr % i == 0) {
max = i;
nr = nr / i;
}
return nr > 1 ? nr : max;
}
public static void main(String[] args) {
System.out.println(lpf(600851475143L));
}
}
You might think: "So how does this work?"
Well my tough process went like:
(Dynamical programming approach) If i had list of primes x {2,3,5,7,11,13,17, ...} up to value xi > nr / 2, then finding largest prime factor is trivial:
I start from the largest prime, and start testing if devision reminder with my number is zero, if it is, then that is the answer.
If after looping all the elements, I did not find my answer, my number must be a prime itself.
(Brute force, with filters) I assumed, that
my numbers largest prime factor is small (under 10 million).
if my numbers is a multiple of some number, then I can reduce loop size by that multiple.
I used the second approach here.
Note however, that if my number would be just little off and one of {600851475013, 600851475053, 600851475067, 600851475149, 600851475151}, then my approach assumptions would fail and program would take ridiculously long time to run. If computer could execute 10m statements per second it would take 6.954 days, to find the right answer.
In your brute force approach, just generating a list of factors would take longer - assuming you do not run out of memory before.
Is there a better way?
Sure, in Mathematica you could write it as:
P3[x_] := FactorInteger[x][[-1, 1]]
P3[600851475143]
or just FactorInteger[600851475143], and lookup the largest value.
This works because in Mathematica you have arbitrary size integers. Java also has arbitrary size integer class called BigInteger.
Apart from the BigInteger problem mentioned by Jon Skeet, note the following:
you only need to test factors up to sqrt(num)
each time you find a factor, divide num by that factor, and then test that factor again
there's really no need to use a collection to store the primes in advance
My solution (which was originally written in Perl) would look something like this in Java:
long n = 600851475143L; // the original input
long s = (long)Math.sqrt(n); // no need to test numbers larger than this
long f = 2; // the smallest factor to test
do {
if (n % f == 0) { // check we have a factor
n /= f; // this is our new number to test
s = (long)Math.sqrt(n); // and our range is smaller again
} else { // find next possible divisor
f = (f == 2) ? 3 : f + 2;
}
} while (f < s); // required result is in "n"
Let A denote the set of positive integers whose decimal representation does not contain the digit 0. The sum of the reciprocals of the elements in A is known to be 23.10345.
Ex. 1,2,3,4,5,6,7,8,9,11-19,21-29,31-39,41-49,51-59,61-69,71-79,81-89,91-99,111-119, ...
Then take the reciprocal of each number, and sum the total.
How can this be verified numerically?
Write a computer program to verify this number.
Here is what I have written so far, I need help bounding this problem as this currently takes too long to complete:
Code in Java
import java.util.*;
public class recip
{
public static void main(String[] args)
{
int current = 0; double total = 0;
while(total < 23.10245)
{
if(Integer.toString(current).contains("0"))
{
current++;
}
else
{
total = total + (1/(double)current);
current++;
}
System.out.println("Total: " + total);
}
}
}
This is not that hard when approached properly.
Assume for example that you want to find the sum of reciprocals of all integers starting (i.e. the left-most digits) with 123 and ending with k non-zero digits. Obviously there are 9k such integers and the reciprocal of each of these integers is in the range 1/(124*10k) .. 1/(123*10k). Hence the sum of reciprocals of all these integers is bounded by (9/10)k/124 and (9/10)k/123.
To find bounds for sum of all reciprocals starting with 123 one has to add up the bounds above for every k>=0. This is a geometric serie, hence it can be derived that the sum of reciprocals of integers starting with 123 is bounded by 10*(9/10)k/124 and 10*(9/10)k/123.
The same method can of course be applied for any combination of left-most digits.
The more digits we examine on the left, the more accurate the result becomes.
Here is an implementation of this approach in python:
def approx(t,k):
"""Returns a lower bound and an upper bound on the sum of reciprocals of
positive integers starting with t not containing 0 in its decimal
representation.
k is the recursion depth of the search, i.e. we append k more digits
to t, before approximating the sum. A larger k gives more accurate
results, but takes longer."""
if k == 0:
return 10.0/(t+1), 10.0/t
else:
if t > 0:
low, up = 1.0/t, 1.0/t
else:
low, up = 0, 0
for i in range(10*t+1, 10*t+10):
l,u = approx(i, k-1)
low += l
up += u
return low, up
Calling approx(0, 8) for example gives the lower and upper bound:
23.103447707... and 23.103448107....
which is close to the claim 23.10345 given by the OP.
There are methods that converge faster to the sum in question, but they require more math.
A much better approximation of the sum can be found here. A generalization of the problem are the Kempner series.
For all values of current greater than some threshold N, 1.0/(double)current will be sufficiently small that total does not increase as a result of adding 1.0/(double)current. Thus, the termination criterion should be something like
while(total != total + (1.0/(double)current))
instead of testing against the limit that is known a priori. Your loop will stop when current reaches this special value of N.
I suspect that casting to string and then checking for the character '0' is the step that takes too long. If you want to avoid all zeroes, might help to increase current thus:
(Edited -- thanks to Aaron McSmooth)
current++;
for( int i = 10000000; i >= 10; i = i / 10 )
{
if ( current % i ) == 0
{
current = current + ( i / 10 );
}
}
This is untested, but the concept should be clear: whenever you hit a multiple of a power of ten (e.g. 300 or 20000), you add the next lower power of 10 (in our examples 10 + 1 and 1000 + 100 + 10 + 1, respectively) until there are no more zeroes in your number.
Change your while loop accordingly and see if this doesn't help performance to the point were your problem becomes manageable.
Oh, and you might want to restrict the System.out output a bit as well. Would every tenth, one hundreth or 10000th iteration be enough?
Edit the second:
After some sleep, I suspect my answer might be a little short-sighted (blame the late hour, if you will). I simply hoped that, oh, one million iterations of current would get you to the solution and left it at that, instead of calculating the correction cases using log( current ) etc.
On second thought, I see two problems with this whole problem. One is that your target number of 23.10345 is a leeeeettle to round for my tastes. After all, you are adding thousands of items like "1/17", "1/11111" and so on, with infinite decimal representations, and it is highly unlikely that they add up to exactly 23.10345. If some specialist for numerical mathematics says so, fine -- but then I'd like to see the algorithm by which they arrived at this conclusion.
The other problem is related to the first and concerns the limited in-memory binary representation of your rational numbers. You might get by using BigDecimals, but I have my doubts.
So, basically, I suggest you reprogram the numerical algorithm instead of going for the brute force solution. Sorry.
Edit the third:
Out of curiosity, I wrote this in C++ to test my theories. It's run for 6 minutes now and is at about 14.5 (roughly 550 mio. iterations). We'll see.
Current version is
double total = 0;
long long current = 0, currPowerCeiling = 10, iteration = 0;
while( total < 23.01245 )
{
current++;
iteration++;
if( current >= currPowerCeiling )
currPowerCeiling *= 10;
for( long long power = currPowerCeiling; power >= 10; power = power / 10 )
{
if( ( current % power ) == 0 )
{
current = current + ( power / 10 );
}
}
total += ( 1.0 / current );
if( ! ( iteration % 1000000 ) )
std::cout << iteration / 1000000 << " Mio iterations: " << current << "\t -> " << total << std::endl;
}
std::cout << current << "\t" << total << std::endl;
Calculating currPowerCeiling (or however one might call this) by hand saves some log10 and pow calculations each iteration. Every little bit helps -- but it still takes forever...
Edit the fourth:
Status is around 66,000 mio iterations, total is up to 16.2583, runtime is at around 13 hours. Not looking good, Bobby S. -- I suggest a more mathematical approach.
How about storing the current number as a byte array where each array element is a digit 0-9? That way, you can detect zeroes very quickly (comparing bytes using == instead of String.contains).
The downside would be that you'll need to implement the incrementing yourself instead of using ++. You'll also need to devise a way to mark "nonexistent" digits so that you don't detect them as zeroes. Storing -1 for nonexistent digits sounds like a reasonable solution.
For a signed 32-bit integer, this program will never stop. It will actually converge towards -2097156. Since the maximum harmonic number (the sum of integral reciprocals from 1 to N) of a signed 32-bit integer is ~14.66, this loop will never terminate, even when current wraps around from 2^31 - 1 to -2^31. Since the reciprocal of the largest negative 32-bit integer is ~-4.6566e-10, every time current returns to 0, the sum will be negative. Given that the largest number representable by a double such that number + + 1/2^31 == number is 2^52/2^31, you get roughly -2097156 as the converging value.
Having said that, and assuming you don't have a direct way of calculating the harmonic number of an arbitrary integer, there are a few things you can do to speed up your inner loop. First, the most expensive operation is going to be System.out.println; that has to interact with the console in which case your program will eventually have to flush the buffer to the console (if any). There are cases where that may not actually happen, but since you are using that for debugging they are not relevant to this question.
However, you also spend a lot of time determining whether a number has a zero. You can flip that test around to generate ranges of integers such that within that range you are guaranteed not to have an integer with a zero digit. That is really simple to do incrementally (in C++, but trivial enough to convert to Java):
class c_advance_to_next_non_zero_decimal
{
public:
c_advance_to_next_non_zero_decimal(): next(0), max_set_digit_index(0)
{
std::fill_n(digits, digit_count, 0);
return;
}
int advance_to_next_non_zero_decimal()
{
assert((next % 10) == 0);
int offset= 1;
digits[0]+= 1;
for (int digit_index= 1, digit_value= 10; digit_index<=max_set_digit_index; ++digit_index, digit_value*= 10)
{
if (digits[digit_index]==0)
{
digits[digit_index]= 1;
offset+= digit_value;
}
}
next+= offset;
return next;
}
int advance_to_next_zero_decimal()
{
assert((next % 10)!=0);
assert(digits[0]==(next % 10));
int offset= 10 - digits[0];
digits[0]+= offset;
assert(digits[0]==10);
// propagate carries forward
for (int digit_index= 0; digits[digit_index]==10 && digit_index<digit_count; ++digit_index)
{
digits[digit_index]= 0;
digits[digit_index + 1]+= 1;
max_set_digit_index= max(digit_index + 1, max_set_digit_index);
}
next+= offset;
return next;
}
private:
int next;
static const size_t digit_count= 10; // log10(2**31)
int max_set_digit_index;
int digits[digit_count];
};
What the code above does is to iterate over every range of numbers such that the range only contains numbers without zeroes. It works by determining how to go from N000... to N111... and from N111... to (N+1)000..., carrying (N+1) into 1(0)000... if necessary.
On my laptop, I can generate the harmonic number of 2^31 - 1 in 8.73226 seconds.
public class SumOfReciprocalWithoutZero {
public static void main(String[] args) {
int maxSize=Integer.MAX_VALUE/10;
long time=-System.currentTimeMillis();
BitSet b=new BitSet(maxSize);
setNumbersWithZeros(10,maxSize,b);
double sum=0.0;
for(int i=1;i<maxSize;i++)
{
if(!b.get(i))
{
sum+=1.0d/(double)i;
}
}
time+=System.currentTimeMillis();
System.out.println("Total: "+sum+"\nTimeTaken : "+time+" ms");
}
static void setNumbersWithZeros(int srt,int end,BitSet b)
{
for(int j=srt;j<end;j*=10)
{
for(int i=1;i<=10;i++)
{
int num=j*i;
b.set(num);
}
if(j>=100)
setInbetween(j, b);
}
}
static void setInbetween(int strt,BitSet b)
{
int bitToSet;
bitToSet=strt;
for(int i=1;i<=10;i++)
{
int nxtInt=-1;
while((nxtInt=b.nextSetBit(nxtInt+1))!=strt)
{
b.set(bitToSet+nxtInt);
}
nxtInt=-1;
int lim=strt/10;
while((nxtInt=b.nextClearBit(nxtInt+1))<lim)
{
b.set(bitToSet+nxtInt);
}
bitToSet=strt*i;
}
}
}
This is an implementation using BitSet.I calculated the sum of reciprocal's for all integer's in range (1-Integer.MAX_VALUE/10).The sum comes upto 13.722766931560747.This is the maximum I could calculate using BitSet since the maximum range for BitSet is Integer.MAX_VALUE.I need to divide it by 10 and limit the range to avoid overflow.But there is significant improvement in speed.I'm just posting this code in-case it might give you some new idea to improve your code.(Increase your memory using the VM argument -Xmx[Size>350]m)
Output:
Total: 13.722766931560747
TimeTaken : 60382 ms
UPDATE:
Java Porting of a previous , deleted answer :
public static void main(String[] args) {
long current =11;
double tot=1 + 1.0/2 + 1.0/3 + 1.0/4 + 1.0/5 + 1.0/6 + 1.0/7 + 1.0/8 + 1.0/9;
long i=0;
while(true)
{
current=next_current(current);
if(i%10000!=0)
System.out.println(i+" "+current+" "+tot);
for(int j=0;j<9;j++)
{
tot+=(1.0/current + 1.0/(current + 1) + 1.0/(current + 2) + 1.0/(current + 3) + 1.0/(current + 4) +
1.0/(current + 5) + 1.0/(current + 6) + 1.0/(current + 7) + 1.0/(current + 8));
current += 10;
}
i++;
}
}
static long next_current(long n){
long m=(long)Math.pow(10,(int)Math.log10(n));
boolean found_zero=false;
while(m>=1)
{
if(found_zero)
n+=m;
else if((n/m)%10==0)
{
n=n-(n%m)+m;
found_zero=true;
}
m=m/10;
}
return n;
}