Project-Euler -- Problem20 - java

I thought I solved this problem but the program output "0". I don't see any problem. Thank you for helping.
Question :
n! means n × (n − 1) × ... × 3 × 2 × 1
For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of
the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
Find the sum of the digits in the number 100!
package projecteuler;
public class problem20 {
public static void main(String[] args)
{
int sayi=0;
int carpim=1;
for(int i=100;i>=1;i--)
{
carpim*=i;
}
String carp=""+carpim;
int[] dizi = new int[carp.length()];
String[] dizis=new String[carp.length()];
for(int i=0;i<carp.length();i++)
{
dizis[i]=carp.substring(i);
}
for(int i=0;i<carp.length();i++)
{
dizi[i]=Integer.parseInt(dizis[i]);
sayi+=dizi[i];
}
System.out.println(sayi);
}
}

100! is 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
, and that exceeds the valid range of an int (by rather a lot). Try using a BigInteger. To get you started,
BigInteger carpim = BigInteger.ONE;
for (int i = 100; i >= 1; i--) {
carpim = carpim.multiply(BigInteger.valueOf(i));
}
System.out.println(carpim);
The output of which is the number mentioned before.

It appears the number is overflowing. https://ideone.com/UkXQ4e
4611686018427387904
-4611686018427387904
-9223372036854775808
-9223372036854775808
0
0
0
You might want to try a different class for the factorial like BigInteger

In college, I got this example for finding n! using this algorithm. this is based on the fact that n! = n * (n-1)! (for example, 5! = 4 * 3!). Using a recursive algorithm:
function factorial(n)
if (n = 0) return 1
while (n != 0)
return n * [factorial(n-1)]
once you have 100!, its easy to parse it as String and make Integers out of it to get the sum
int sum = 0;
for (Character c : yourBigInteger.toString().toCharArray()) {
sum = sum + Integer.parseInt(c.toString());
}
System.out.println(sum);

public static void descomposicionFactorial(int num) {
BigInteger factorial = BigInteger.ONE;
for (int i = num; i > 0; i--) {
factorial = factorial.multiply(BigInteger.valueOf(i));
}
String aux =factorial.toString();
char cantidad[] = aux.toCharArray();
int suma = 0, numero = 0;
for (int i = 0; i <cantidad.length; i++) {
numero = cantidad[i] - '0';
suma += numero;
}
System.out.println(suma);
}

Related

factorial of given number

I would like to find the smallest factorial of a given long number. For example, if you enter the number 100, the code should give the factorial 5, since 5! = 1 * 2 * 3 * 4 * 5 = 120 is closer than the factorial 4! = 1 * 2 * 3 * 4 = 24. I have written the code below, but when I enter 100, I only get the factorial 3.
import java.util.Scanner;
class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
long number = scanner.nextLong();
long factorial = 1;
long sum;
do {
sum = number / factorial;
factorial++;
} while (number <= sum);
System.out.println(factorial);
}
}
What am I doing wrong here?
you should calculate the factorial of numbers, untill you find an equal or smaller number than the number you entered, as shown in the following code :
import java.util.Scanner;
class Main {
public Long factorial (int n){
long p = 1L;
for(int i = 1; i<= n ; i++){
p=p*i;
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
long number = scanner.nextLong();
long i = 1;
while (factorial(i) < number) {
i++;
}
System.out.println(i);
}
Here is one way. This will return the smallest factorial greater than the number. A record is used to return the information.
record Factorial(long n, long nFact) {}
Integer[] data = {1,2,5,10,200,500,2520,1000, 5040, 720, 2000, 3000, 10_000};
for (long i : data) {
Factorial result = smallestFactorial(i);
System.out.printf("For %-8d the smallest >= %8d is (%d! = %d)%n",
i, i, result.n, result.nFact);
}
prints
For 1 the smallest >= 1 is (2! = 2)
For 2 the smallest >= 2 is (2! = 2)
For 5 the smallest >= 5 is (3! = 6)
For 10 the smallest >= 10 is (4! = 24)
For 200 the smallest >= 200 is (6! = 720)
For 500 the smallest >= 500 is (6! = 720)
For 2520 the smallest >= 2520 is (7! = 5040)
For 1000 the smallest >= 1000 is (7! = 5040)
For 5040 the smallest >= 5040 is (7! = 5040)
For 720 the smallest >= 720 is (6! = 720)
For 2000 the smallest >= 2000 is (7! = 5040)
For 3000 the smallest >= 3000 is (7! = 5040)
For 10000 the smallest >= 10000 is (8! = 40320)
This method calculates the factorial while comparing to the passed argument.
to save time it memoizes the factorials computed
continue calculating factorials until the factorial exceeds the argument.
Then return the information in a record.
public static Factorial smallestFactorial(long n) {
if (n <= 1) {
return new Factorial(2,2);
}
long fact = factorials.floorKey(n);
int k = factorials.get(fact);
while (n > fact) {
fact*=++k;
factorials.putIfAbsent(fact, k);
}
return new Factorial(k, fact);
}
The output formatting is incidental and can of course be changed to suit your requirements.

Calculate amicable numbers efficiently to a very high upper limit in java

I have a program that computes amicable pairs of numbers up to a certain limit and prints them out to Stdout. FYI - two numbers are amicable if each is equal to the sum of the proper divisors of the other (for example, 220 and 284).
My program works fine for the first 8 or so pairs, but the problem is when the limit gets to a very high number e.g 5 million it becomes very slow. Is there a way to optimize this so that it computes much faster?
Here is my code
public class Amicable{
private static int num1, num2, limit = 5000000;
public static void main(String[] args){
for(int i = 1; i < limit;i++){
num1= sumOfDivisors(i);
num2 = sumOfDivisors(i)
if(num1 == num2){
System.out.println(num2 + " " + num1);
}
}
}
}
private static int sumOfDivisors(int n){
int sum = 0;
for(int i=1;i<=n/2;i++){
if(n%i==0){
sum =sum+i;
}
}
return sum;
}
}
You should make the innermost loop efficient.
static int sumOfDivisors(int n) {
int sum = 1;
int max = (int) Math.sqrt(n);
if (n > 1 && max * max == n) // in case of n is perfect square number
sum -= max;
for (int i = 2; i <= max; ++i)
if (n % i == 0)
sum += i + n / i;
return sum;
}
If n = 220, it is divisible by 2, so you can add 2 and 110 to the sum at the same time. However, if n is a perfect square number, for example n = 100, it is divisible by 10, but if 10 and 10 are added, they will duplicate, so subtract it in advance.
output for limit =2000000:
220 284
1184 1210
2620 2924
5020 5564
6232 6368
10744 10856
12285 14595
17296 18416
63020 76084
66928 66992
.....
1468324 1749212
1511930 1598470
1669910 2062570
1798875 1870245
It took 7 seconds on my PC.
You could change the statement of "if(i<num1)" to "if(i<num1 || num1<limit)".
This is a more efficient and faster approach.
Inside sumOfDivisors:
Start iteration from 2. (no a big deal) and add 1 during return time with sum as 1 is also a divisor.
Modify loop termination logic, i <= Math.sqrt(n).
For any number ‘num’ all its divisors are always less than and equal to ‘num/2’ and all prime factors are always less than and equal to sqrt(num).
If n%i == 0, then check, both divisors are are equal or not. If equal, take one if not equal then take both one.
private static int sumOfDivisors(int n) {
int sum = 0;
int sqrt = Math.sqrt(n);
for (int i = 2; i <= sqrt; i++) {
if (n % i == 0) {
if(i == (n/i))
sum = sum + i;
else
sum += (i+ n/i);
}
}
return sum+1;
}

Java:Three digit Sum - Find out all the numbers between 1 and 999 where the sum of 1st digit and 2nd digit is equal to 3rd digit

Problem statement: Three digit sum - Find all the numbers between 1 and 999 where the sum of the 1st digit and the 2nd digit is equal to the 3rd digit.
Examples:
123 : 1+2 = 3
246 : 2+4 = 6
Java:
public class AssignmentFive {
public static void main(String[] args) {
int i=1;
int valuetwo;
int n=1;
int sum = 0;
int valuethree;
int valueone = 0;
String Numbers = "";
for (i = 1; i <= 999; i++) {
n = i;
while (n > 1) {
valueone = n % 10;/*To get the ones place digit*/
n = n / 10;
valuetwo = n % 10;/*To get the tens place digit*/
n = n / 10;
valuethree = n;/*To get the hundreds place digit*/
sum = valuethree + valuetwo;/*adding the hundreds place and
tens place*/
}
/*Checking if the ones place digit is equal to the sum and then print
the values in a string format*/
if (sum == valueone) {
Numbers = Numbers + n + " ";
System.out.println(Numbers);
}
}
}
}
I got my result :
1
10
100
1000
10000
100000
1000000
10000000
100000000
1000000000
10000000001
100000000011
1000000000111
10000000001111
100000000011111
1000000000111111
10000000001111111
100000000011111111
1000000000111111111
Process finished with exit code 0
The result is not showing the actual result like it should be which should show values like: 123, 246 (Please refer to the problem statement above.)
Please let me know what seems to be the issue with the code and how to tweak it.
Don't know what you're trying to do with that while loop, or why you are building up a space-separated string of numbers.
Your code should be something like:
for (int n = 1; n <= 999; n++) {
int digit1 = // for you to write code here
int digit2 = // for you to write code here
int digit3 = // for you to write code here
if (digit1 + digit2 == digit3) {
// print n here
}
}
So basically your question is how to calculate the numbers, right?
My first hint for you would be how to get the first, second and third value from a 2 or 3 digit number.
For example for 3 digits you can do int hundretDigit = (n - (n % 100)) % 100. Of course this is really inefficient. But just get code working before optimizing it ;)
Just think about a way to get the "ten-digit" (2nd number). Then you add them and if they equal the third one you write System.out.println(<number>);
EDIT:
For 2 digit numbers I will give you the code:
if(i >= 10 && i <= 99) {
int leftDigit = (i - (i % 10)) / 10;
if(leftDigit == (i % 10)) {
//Left digit equals right digit (for example 33 => 3 = 3
System.out.println(i);
}
}
Try again and edit your source code. If you have more questions I will edit my (this) answer to give you a little bit more help if you need!

Why the output result of this value is always zero?

I'm running this code, but why the output result of m is always zero here?
This is very strange since m is initialized to 2.
public class ScalabilityTest {
public static void main(String[] args) {
long oldTime = System.currentTimeMillis();
double[] array = new double[100000];
int p = 2;
int m = 2;
for ( int i = 0; i < array.length; i++ ) {
p += p * 12348;
for ( int j = 0; j < i; j++ ) {
double x = array[j] + array[i];
m += m * 12381923;
}
}
System.out.println( (System.currentTimeMillis()-oldTime) / 1000 );
System.out.println( p + ", " + m );
}
}
Since you are always multiplying the value of m with a number and add to m, on the 16th iteration it overflows to become 0.
In fact, since you are multiplying the number with an odd number then add it to the original, you are multiplying it with a even number, which make the trailing 0 bits moves at least one step left, thus it ends with 0:
1 1011110011101110111001000 24763848
2 1111011100110010111011000100000 2073654816
3 1111111111111101111010010000000 2147415168
4 10010100011000001100001000000000 -1805598208
5 10010010100010001100100000000000 -1836529664
6 10001011110000100010000000000000 -1950212096
7 1110010101001001000000000000000 1923383296
8 1001100000100000000000000000 159514624
9 1010011110010000000000000000000 1405616128
10 10001110001000000000000000000000 -1910505472
11 1010100100000000000000000000000 1417674752
12 1000010000000000000000000000000 1107296256
13 11001000000000000000000000000000 -939524096
14 100000000000000000000000000000 536870912
15 10000000000000000000000000000000 -2147483648
16 0 0
Here's an observation: as soon as m reaches 0, executing
m += m * 12381923;
Will keep m at 0.
I wrote a program to output the values of m as it goes, and here's what I found:
2
24763848
2073654816
2147415168
-1805598208
-1836529664
-1950212096
1923383296
159514624
1405616128
-1910505472
1417674752
1107296256
-939524096
536870912
-2147483648
0
Converged after 16 iterations.
For reference, here's the source:
public class Converge {
public static void main(String[] args) {
int m = 2;
long counter = 0; // Unnecessary, but I didn't know how many iterations we'd need!
while (m != 0) {
System.out.println(m);
m += m * 12381923;
counter++;
}
System.out.println(m);
System.out.println("Converged after " + counter + " iterations.");
}
}
Hope this helps!
It is because the int value overflows. The following documentation shows that the maximum value of an int is 2,147,483,647 and by the time the sixteenth iteration occurs, m is greater than this value and hence it overflows.

Find the largest palindrome made from the product of two 3-digit numbers

package testing.project;
public class PalindromeThreeDigits {
public static void main(String[] args) {
int value = 0;
for(int i = 100;i <=999;i++)
{
for(int j = i;j <=999;j++)
{
int value1 = i * j;
StringBuilder sb1 = new StringBuilder(""+value1);
String sb2 = ""+value1;
sb1.reverse();
if(sb2.equals(sb1.toString()) && value<value1) {
value = value1;
}
}
}
System.out.println(value);
}
}
This is the code that I wrote in Java... Is there any efficient way other than this.. And can we optimize this code more??
We suppose the largest such palindrome will have six digits rather than five, because 143*777 = 111111 is a palindrome.
As noted elsewhere, a 6-digit base-10 palindrome abccba is a multiple of 11. This is true because a*100001 + b*010010 + c*001100 is equal to 11*a*9091 + 11*b*910 + 11*c*100. So, in our inner loop we can decrease n by steps of 11 if m is not a multiple of 11.
We are trying to find the largest palindrome under a million that is a product of two 3-digit numbers. To find a large result, we try large divisors first:
We step m downwards from 999, by 1's;
Run n down from 999 by 1's (if 11 divides m, or 9% of the time) or from 990 by 11's (if 11 doesn't divide m, or 91% of the time).
We keep track of the largest palindrome found so far in variable q. Suppose q = r·s with r <= s. We usually have m < r <= s. We require m·n > q or n >= q/m. As larger palindromes are found, the range of n gets more restricted, for two reasons: q gets larger, m gets smaller.
The inner loop of attached program executes only 506 times, vs the ~ 810000 times the naive program used.
#include <stdlib.h>
#include <stdio.h>
int main(void) {
enum { A=100000, B=10000, C=1000, c=100, b=10, a=1, T=10 };
int m, n, p, q=111111, r=143, s=777;
int nDel, nLo, nHi, inner=0, n11=(999/11)*11;
for (m=999; m>99; --m) {
nHi = n11; nDel = 11;
if (m%11==0) {
nHi = 999; nDel = 1;
}
nLo = q/m-1;
if (nLo < m) nLo = m-1;
for (n=nHi; n>nLo; n -= nDel) {
++inner;
// Check if p = product is a palindrome
p = m * n;
if (p%T==p/A && (p/B)%T==(p/b)%T && (p/C)%T==(p/c)%T) {
q=p; r=m; s=n;
printf ("%d at %d * %d\n", q, r, s);
break; // We're done with this value of m
}
}
}
printf ("Final result: %d at %d * %d inner=%d\n", q, r, s, inner);
return 0;
}
Note, the program is in C but same techniques will work in Java.
What I would do:
Start at 999, working my way backwards to 998, 997, etc
Create the palindrome for my current number.
Determine the prime factorization of this number (not all that expensive if you have a pre-generated list of primes.
Work through this prime factorization list to determine if I can use a combination of the factors to make 2 3 digit numbers.
Some code:
int[] primes = new int[] {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,
73,79,83,89,97,101,103,107,109,113,,127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,
283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,
547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,
661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,
811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
947,953,967,971,977,983,991,997};
for(int i = 999; i >= 100; i--) {
String palstr = String.valueOf(i) + (new StringBuilder().append(i).reverse());
int pal = Integer.parseInt(pal);
int[] factors = new int[20]; // cannot have more than 20 factors
int remainder = pal;
int facpos = 0;
primeloop:
for(int p = 0; p < primes.length; i++) {
while(remainder % p == 0) {
factors[facpos++] = p;
remainder /= p;
if(remainder < p) break primeloop;
}
}
// now to do the combinations here
}
We can translate the task into the language of mathematics.
For a short start, we use characters as digits:
abc * xyz = n
abc is a 3-digit number, and we deconstruct it as 100*a+10*b+c
xyz is a 3-digit number, and we deconstruct it as 100*x+10*y+z
Now we have two mathematical expressions, and can define a,b,c,x,y,z as € of {0..9}.
It is more precise to define a and x as of element from {1..9}, not {0..9}, because 097 isn't really a 3-digit number, is it?
Ok.
If we want to produce a big number, we should try to reach a 9......-Number, and since it shall be palindromic, it has to be of the pattern 9....9. If the last digit is a 9, then from
(100*a + 10*b + c) * (100*x + 10*y + z)
follows that z*c has to lead to a number, ending in digit 9 - all other calculations don't infect the last digit.
So c and z have to be from (1,3,7,9) because (1*9=9, 9*1=9, 3*3=9, 7*7=49).
Now some code (Scala):
val n = (0 to 9)
val m = n.tail // 1 to 9
val niners = Seq (1, 3, 7, 9)
val highs = for (a <- m;
b <- n;
c <- niners;
x <- m;
y <- n;
z <- niners) yield ((100*a + 10*b + c) * (100*x + 10*y + z))
Then I would sort them by size, and starting with the biggest one, test them for being palindromic. So I would omit to test small numbers for being palindromic, because that might not be so cheap.
For aesthetic reasons, I wouldn't take a (toString.reverse == toString) approach, but a recursive divide and modulo solution, but on todays machines, it doesn't make much difference, does it?
// Make a list of digits from a number:
def digitize (z: Int, nums : List[Int] = Nil) : List[Int] =
if (z == 0) nums else digitize (z/10, z%10 :: nums)
/* for 342243, test 3...==...3 and then 4224.
Fails early for 123329 */
def palindromic (nums : List[Int]) : Boolean = nums match {
case Nil => true
case x :: Nil => true
case x :: y :: Nil => x == y
case x :: xs => x == xs.last && palindromic (xs.init) }
def palindrom (z: Int) = palindromic (digitize (z))
For serious performance considerations, I would test it against a toString/reverse/equals approach. Maybe it is worse. It shall fail early, but division and modulo aren't known to be the fastest operations, and I use them to make a List from the Int. It would work for BigInt or Long with few redeclarations, and works nice with Java; could be implemented in Java but look different there.
Okay, putting the things together:
highs.filter (_ > 900000) .sortWith (_ > _) find (palindrom)
res45: Option[Int] = Some(906609)
There where 835 numbers left > 900000, and it returns pretty fast, but I guess even more brute forcing isn't much slower.
Maybe there is a much more clever way to construct the highest palindrom, instead of searching for it.
One problem is: I didn't knew before, that there is a solution > 900000.
A very different approach would be, to produce big palindromes, and deconstruct their factors.
public class Pin
{
public static boolean isPalin(int num)
{
char[] val = (""+num).toCharArray();
for(int i=0;i<val.length;i++)
{
if(val[i] != val[val.length - i - 1])
{
return false;
}
}
return true;
}
public static void main(String[] args)
{
for(int i=999;i>100;i--)
for(int j=999;j>100;j--)
{
int mul = j*i;
if(isPalin(mul))
{
System.out.printf("%d * %d = %d",i,j,mul);
return;
}
}
}
}
package ex;
public class Main {
public static void main(String[] args) {
int i = 0, j = 0, k = 0, l = 0, m = 0, n = 0, flag = 0;
for (i = 999; i >= 100; i--) {
for (j = i; j >= 100; j--) {
k = i * j;
// System.out.println(k);
m = 0;
n = k;
while (n > 0) {
l = n % 10;
m = m * 10 + l;
n = n / 10;
}
if (m == k) {
System.out.println("pal " + k + " of " + i + " and" + j);
flag = 1;
break;
}
}
if (flag == 1) {
// System.out.println(k);
break;
}
}
}
}
A slightly different approach that can easily calculate the largest palindromic number made from the product of up to two 6-digit numbers.
The first part is to create a generator of palindrome numbers. So there is no need to check if a number is palindromic, the second part is a simple loop.
#include <memory>
#include <iostream>
#include <cmath>
using namespace std;
template <int N>
class PalindromeGenerator {
unique_ptr <int []> m_data;
bool m_hasnext;
public :
PalindromeGenerator():m_data(new int[N])
{
for(auto i=0;i<N;i++)
m_data[i]=9;
m_hasnext=true;
}
bool hasNext() const {return m_hasnext;}
long long int getnext()
{
long long int v=0;
long long int b=1;
for(int i=0;i<N;i++){
v+=m_data[i]*b;
b*=10;
}
for(int i=N-1;i>=0;i--){
v+=m_data[i]*b;
b*=10;
}
auto i=N-1;
while (i>=0)
{
if(m_data[i]>=1) {
m_data[i]--;
return v;
}
else
{
m_data[i]=9;
i--;
}
}
m_hasnext=false;
return v;
}
};
template<int N>
void findmaxPalindrome()
{
PalindromeGenerator<N> gen;
decltype(gen.getnext()) minv=static_cast<decltype(gen.getnext())> (pow(10,N-1));
decltype(gen.getnext()) maxv=static_cast<decltype(gen.getnext())> (pow(10,N)-1);
decltype(gen.getnext()) start=11*(maxv/11);
while(gen.hasNext())
{
auto v=gen.getnext();
for (decltype(gen.getnext()) i=start;i>minv;i-=11)
{
if (v%i==0)
{
auto r=v/i;
if (r>minv && r<maxv ){
cout<<"done:"<<v<<" "<<i<< "," <<r <<endl;
return ;
}
}
}
}
return ;
}
int main(int argc, char* argv[])
{
findmaxPalindrome<6>();
return 0;
}
You can use the fact that 11 is a multiple of the palindrome to cut down on the search space. We can get this since we can assume the palindrome will be 6 digits and >= 111111.
e.g. ( from projecteuler ;) )
P= xyzzyx = 100000x + 10000y + 1000z + 100z + 10y +x
P=100001x+10010y+1100z
P=11(9091x+910y+100z)
Check if i mod 11 != 0, then the j loop can be subtracted by 11 (starting at 990) since at least one of the two must be divisible by 11.
You can try the following which prints
999 * 979 * 989 = 967262769
largest palindrome= 967262769 took 0.015
public static void main(String... args) throws IOException, ParseException {
long start = System.nanoTime();
int largestPalindrome = 0;
for (int i = 999; i > 100; i--) {
LOOP:
for (int j = i; j > 100; j--) {
for (int k = j; k > 100; k++) {
int n = i * j * k;
if (n < largestPalindrome) continue LOOP;
if (isPalindrome(n)) {
System.out.println(i + " * " + j + " * " + k + " = " + n);
largestPalindrome = n;
}
}
}
}
long time = System.nanoTime() - start;
System.out.printf("largest palindrome= %d took %.3f seconds%n", largestPalindrome, time / 1e9);
}
private static boolean isPalindrome(int n) {
if (n >= 100 * 1000 * 1000) {
// 9 digits
return n % 10 == n / (100 * 1000 * 1000)
&& (n / 10 % 10) == (n / (10 * 1000 * 1000) % 10)
&& (n / 100 % 10) == (n / (1000 * 1000) % 10)
&& (n / 1000 % 10) == (n / (100 * 1000) % 10);
} else if (n >= 10 * 1000 * 1000) {
// 8 digits
return n % 10 == n / (10 * 1000 * 1000)
&& (n / 10 % 10) == (n / (1000 * 1000) % 10)
&& (n / 100 % 10) == (n / (100 * 1000) % 10)
&& (n / 1000 % 10) == (n / (10 * 1000) % 10);
} else if (n >= 1000 * 1000) {
// 7 digits
return n % 10 == n / (1000 * 1000)
&& (n / 10 % 10) == (n / (100 * 1000) % 10)
&& (n / 100 % 10) == (n / (10 * 1000) % 10);
} else throw new AssertionError();
}
i did this my way , but m not sure if this is the most efficient way of doing this .
package problems;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class P_4 {
/**
* #param args
* #throws IOException
*/
static int[] arry = new int[6];
static int[] arry2 = new int[6];
public static boolean chk()
{
for(int a=0;a<arry.length;a++)
if(arry[a]!=arry2[a])
return false;
return true;
}
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
InputStreamReader ir = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(ir);
int temp,z,i;
for(int x=999;x>100;x--)
for(int y=999;y>100;y--)
{
i=0;
z=x*y;
while(z>0)
{
temp=z%10;
z=z/10;
arry[i]=temp;
i++;
}
for(int k = arry.length;k>0;k--)
arry2[arry.length- k]=arry[k-1];
if(chk())
{
System.out.print("pelindrome = ");
for(int l=0;l<arry2.length;l++)
System.out.print(arry2[l]);
System.out.println(x);
System.out.println(y);
}
}
}
}
This is code in C, a little bit long, but gets the job done.:)
#include <stdio.h>
#include <stdlib.h>
/*
A palindromic number reads the same both ways. The largest palindrome made from the product of two
2-digit numbers is 9009 = 91 99.
Find the largest palindrome made from the product of two 3-digit numbers.*/
int palndr(int b)
{
int *x,*y,i=0,j=0,br=0;
int n;
n=b;
while(b!=0)
{
br++;
b/=10;
}
x=(int *)malloc(br*sizeof(int));
y=(int *)malloc(br*sizeof(int));
int br1=br;
while(n!=0)
{
x[i++]=y[--br]=n%10;
n/=10;
}
int ind = 1;
for(i=0;i<br1;i++)
if(x[i]!=y[i])
ind=0;
free(x);
free(y);
return ind;
}
int main()
{
int i,cek,cekmax=1;
int j;
for(i=100;i<=999;i++)
{
for(j=i;j<=999;j++)
{
cek=i*j;
if(palndr(cek))
{
if(pp>cekmax)
cekmax=cek;
}
}
}
printf("The largest palindrome is: %d\n\a",cekmax);
}
You can actually do it with Python, it's easy just take a look:
actualProduct = 0
highestPalindrome = 0
# Setting the numbers. In case it's two digit 10 and 99, in case is three digit 100 and 999, etc.
num1 = 100
num2 = 999
def isPalindrome(number):
number = str(number)
reversed = number[::-1]
if number==reversed:
return True
else:
return False
a = 0
b = 0
for i in range(num1,num2+1):
for j in range(num1,num2+1):
actualProduct = i * j
if (isPalindrome(actualProduct) and (highestPalindrome < actualProduct)):
highestPalindrome = actualProduct
a = i
b = j
print "Largest palindrome made from the product of two %d-digit numbers is [ %d ] made of %d * %d" % (len(str(num1)), highestPalindrome, a, b)
Since we are not cycling down both iterators (num1 and num2) at the same time, the first palindrome number we find will be the largest. We don’t need to test to see if the palindrome we found is the largest. This significantly reduces the time it takes to calculate.
package testing.project;
public class PalindromeThreeDigits {
public static void main(String[] args) {
int limit = 99;
int max = 999;
int num1 = max, num2, prod;
while(num1 > limit)
{
num2 = num1;
while(num2 > limit)
{
total = num1 * num2;
StringBuilder sb1 = new StringBuilder(""+prod);
String sb2 = ""+prod;
sb1.reverse();
if( sb2.equals(sb1.toString()) ) { //optimized here
//print and exit
}
num2--;
}
num1--;
}
}//end of main
}//end of class PalindromeThreeDigits
I tried the solution by Tobin joy and vickyhacks and both of them produce the result 580085 which is wrong here is my solution, though very clumsy:
import java.util.*;
class ProjEu4
{
public static void main(String [] args) throws Exception
{
int n=997;
ArrayList<Integer> al=new ArrayList<Integer>();
outerloop:
while(n>100){
int k=reverse(n);
int fin=n*1000+k;
al=findfactors(fin);
if(al.size()>=2)
{
for(int i=0;i<al.size();i++)
{
if(al.contains(fin/al.get(i))){
System.out.println(fin+" factors are:"+al.get(i)+","+fin/al.get(i));
break outerloop;}
}
}
n--;
}
}
private static ArrayList<Integer> findfactors(int fin)
{
ArrayList<Integer> al=new ArrayList<Integer>();
for(int i=100;i<=999;i++)
{
if(fin%i==0)
al.add(i);
}
return al;
}
private static int reverse(int number)
{
int reverse = 0;
while(number != 0){
reverse = (reverse*10)+(number%10);
number = number/10;
}
return reverse;
}
}
Most probably it is replication of one of the other solution but it looks simple owing to pythonified code ,even it is a bit brute-force.
def largest_palindrome():
largest_palindrome = 0;
for i in reversed(range(1,1000,1)):
for j in reversed(range(1, i+1, 1)):
num = i*j
if check_palindrome(str(num)) and num > largest_palindrome :
largest_palindrome = num
print "largest palindrome ", largest_palindrome
def check_palindrome(term):
rev_term = term[::-1]
return rev_term == term
What about : in python
>>> for i in range((999*999),(100*100), -1):
... if str(i) == str(i)[::-1]:
... print i
... break
...
997799
>>>
I believe there is a simpler approach: Examine palindromes descending from the largest product of two three digit numbers, selecting the first palindrome with two three digit factors.
Here is the Ruby code:
require './palindrome_range'
require './prime'
def get_3_digit_factors(n)
prime_factors = Prime.factors(n)
rf = [prime_factors.pop]
rf << prime_factors.shift while rf.inject(:*) < 100 || prime_factors.inject(:*) > 999
lf = prime_factors.inject(:*)
rf = rf.inject(:*)
lf < 100 || lf > 999 || rf < 100 || rf > 999 ? [] : [lf, rf]
end
def has_3_digit_factors(n)
return !get_3_digit_factors(n).empty?
end
pr = PalindromeRange.new(0, 999 * 999)
n = pr.downto.find {|n| has_3_digit_factors(n)}
puts "Found #{n} - Factors #{get_3_digit_factors(n).inspect}, #{Prime.factors(n).inspect}"
prime.rb:
class Prime
class<<self
# Collect all prime factors
# -- Primes greater than 3 follow the form of (6n +/- 1)
# Being of the form 6n +/- 1 does not mean it is prime, but all primes have that form
# See http://primes.utm.edu/notes/faq/six.html
# -- The algorithm works because, while it will attempt non-prime values (e.g., (6 *4) + 1 == 25),
# they will fail since the earlier repeated division (e.g., by 5) means the non-prime will fail.
# Put another way, after repeatedly dividing by a known prime, the remainder is itself a prime
# factor or a multiple of a prime factor not yet tried (e.g., greater than 5).
def factors(n)
square_root = Math.sqrt(n).ceil
factors = []
while n % 2 == 0
factors << 2
n /= 2
end
while n % 3 == 0
factors << 3
n /= 3
end
i = 6
while i < square_root
[(i - 1), (i + 1)].each do |f|
while n % f == 0
factors << f
n /= f
end
end
i += 6
end
factors << n unless n == 1
factors
end
end
end
palindrome_range.rb:
class PalindromeRange
FIXNUM_MAX = (2**(0.size * 8 -2) -1)
def initialize(min = 0, max = FIXNUM_MAX)
#min = min
#max = max
end
def downto
return enum_for(:downto) unless block_given?
n = #max
while n >= #min
yield n if is_palindrome(n)
n -= 1
end
nil
end
def each
return upto
end
def upto
return enum_for(:downto) unless block_given?
n = #min
while n <= #max
yield n if is_palindrome(n)
n += 1
end
nil
end
private
def is_palindrome(n)
s = n.to_s
i = 0
j = s.length - 1
while i <= j
break if s[i] != s[j]
i += 1
j -= 1
end
i > j
end
end
public class ProjectEuler4 {
public static void main(String[] args) {
int x = 999; // largest 3-digit number
int largestProduct = 0;
for(int y=x; y>99; y--){
int product = x*y;
if(isPalindormic(x*y)){
if(product>largestProduct){
largestProduct = product;
System.out.println("3-digit numbers product palindormic number : " + x + " * " + y + " : " + product);
}
}
if(y==100 || product < largestProduct){y=x;x--;}
}
}
public static boolean isPalindormic(int n){
int palindormic = n;
int reverse = 0;
while(n>9){
reverse = (reverse*10) + n%10;
n=n/10;
}
reverse = (reverse*10) + n;
return (reverse == palindormic);
}
}

Categories