JVM: most simple way to alter code of a dependency library? - java

Most of the time, I don't like Javascript and would prefer strict and compiled languages like Scala, Java, Haskell...
However, one thing that can be nice with Javascript is to be able to easily change code of external dependencies. For exemple, if you have a bug and you think it's one of your dependency library you can easily hack around and swap a library method by your own override and check if it's better. You can even add methods to Array ou String prototypes and things like that... One could even go to node_modules and alter the library code here temporarily if he wants to.
In the JVM world this seems to me like an heavy process to just get started:
Clone the dependency sources
Hack it
Compile it
Publish it to some local maven/ivy repository
Integrate the fixed version in your project
This is a pain, I just don't want to do that more than once in a year
Today I was trying to fix a bug in my app, and the lib did not provide me enough information. I would have loved to just be able to put a Logger on one line of that lib to have better insight of what was happening but instead I tried to hack with the debugger with no success (the bug was not reproductible on my computer anyway...)
Isn't there any simple alternative for rapidly altering the code of a dependency?
I would be interested in any solution for Scala, Java, Clojure or any other JVM language.
I'm not looking for a production-deployable solution, just a quick solution to use locally and eventually deployable on a test env.
Edit: I'm talking about library internals that are not intended to be modified by the library author. Please assume that the class to change is final, not replaceable by library configuration, and not injectable by any way into the library.

In Clojure you can re-bind vars, also from other namespaces, by using intern. So as long as the code you want to alter is Clojure code, that's a possible way to monkeypatch.
(intern 'user 'inc dec)
(inc 1)
=> 0
This is not something to do lightly though, since it can and will lead to problems with other code not expecting this behavior. It can be handy to use during development to temporarily fix edge cases or bugs in other libraries, but don't use it in published libraries or production code.
Best to simply fork and fix these libraries, and send a pull request to have it fixed in the original library.
When you're writing a library yourself that you expect people need to extend or overload, implement it in Clojure protocols, where these changes can be restricted to the extending/overloading namespaces only.

I disagree that AspectJ is difficult to use, it, or another bytecode manipulation library is your only realistic alternative.
Load-time weaving is a definite way around this issue. Depending on how you're using the class in question you might even be able to use a mocking library to achieve the same results, but something like AspectJ, which is specifically designed for augmentation and manipulation, would likely be the easiest.

Related

Accessing app R class from my Android library

I'm developing a library that needs to access layout items of the app implementing it. The only way I know how to do it is with reflection. In other words, if I create a constructor to my Library API like this:
public MyLibraryAPI(String packageName) {
Class appR = Class.forName(String.format("%s.R", packageName));
...
}
And the developer would instantiate the library with his package name as the parameter in the constructor.
What I ultimately need is to let my inner classes know the Android Views used in the developers layout (.xml files) - both the id and the type. Is there a way to achieve this without reflection and escape the performance overhead? I'm certain it cannot be done, but asking in case there's an expert that sees what I fail to notice.
EDIT: Additionally, proguard, by default, obfuscates the code for protection but, as a consequence, fails to provide JVM with means to achieve reflection at runtime, so if I use reflection I would have to ask the developer to turn off proguard obfuscation for his or her R class which is a bummer.
Reflection on Android is extremely costly. Some well-meaning and popular libraries like Roboguice have fallen over partly because of the performance cost of reflection.
I suspect some kind of code generation is the correct solution here. Dagger 2, Butter Knife and the Data Binding Library are successful examples of Android libraries that employ code generation. Since the data binding library performs inspections on the XML, it must be available to code generation libraries at that stage in the build and you may be able to base your implementation on that: here's a link to the source jars at Maven Central.
Apart from that, yes it seems there will be some compromise between ease of use and difficulty-to-implement. If you force your consumers to annotate their classes with your annotations, it becomes harder to use but probably much easier for you to implement. If you restrict yourself to inspecting XML and the generated R file and generating code from just that then I think your job will be a lot more difficult. On the other hand, using annotations has become rather commonplace and it may not be such an issue with your users.
Good luck!

Is writing a library with a dependency on Groovy a good idea?

I am writing a Java library right now that I publish as a Maven artifact and use in a different Java/Groovy project. I was wondering whether in general it is a good idea to write a library that depends on a certain version of Groovy (e.g. has a dependency on groovy-all-2.x.y).
The discomfort of just using Java in the library would not be too bad.
What do you think?
Should I better use a generous version range for the Groovy dependency? Should I rather write a plain Java library?
I guess it depends on how you want it to be used.
If it's not a utility and you don't think other projects will use it, then do whatever you want.
If it's a utility designed to be used in testing, I don't think a groovy dependency on the test classpath is too bad. I'm sure some projects would still avoid your utility because of the groovy dependency.
If it's a general utility that you want people to use everywhere, then I'd say a groovy dependency is definately a bad idea. I certainly wouldn't use it and I'm sure many others would avoid for the same reason.
If you want maximum adoption of your utility, keep the dependencies as few as possible. Groovy is a huge, bloated dependency that many projects will avoid.
I would say it depends on the intended use of this library. If you only plan on using it yourself and are perfectly fine with the groovy dependency as it is then leave it that way. If the library is meant to be used by others than the easiest thing for them might be to write it all in Java, since then there is less that can go wrong when trying to use the library. It really comes down to if the work required to switch it to Java is worth the benefit to you of having it all in Java.

Targeting identical classes in different packages

I have created a library which supports an application, however in the newest version of the application the developer has changed the structure without changing the class names.
So version 1 of the application has classX in package A but version 2 has classX in package B. How can I develop my library in a way which allows supporting both of these in the same build?
Edit: My library is dependent on the application, not the other way around.
That is a bad decision, if you still want to make it work you need to provide skeleton classes with old structure and delegate calls to new version of class but it would get very dirty
better to not provide backward compatibility if you are firm with the renaming decision
Short answer: You can't.
Real answer: Your library should be able to exist independently of any application that uses it. The purpose of a library is to provide a set of reusable, modular code that you can use in any application. If your library is directly dependent on application classes, then it seems like a redesign should be seriously considered, as your dependencies are backwards. For example, have A.classX and B.classX both implement some interface (or extend some class) that your library provides, then have the application pass instances of those objects, or Class's for those objects, to the library.
If your "library" can't be designed this way then consider integrating it into application code, making it a direct part of the application, and come up with a better team workflow for you, the other developer, and others to work on the same project together.
Quick fix answer: Do not provide backward compatibility, as Jigar Joshi states in his answer.
Bad answer: You could hack a fragile solution together with reflection if you really had to. But please note that the "real answer" is going to last in the long run. You are already seeing the issues with the design you have currently chosen (hence your question), and a reflection based solution isn't going to prevent that from happening again (or even be reliable).

Java API modification

I have a very quick question - Is it possible to modify the source code of Java API e.g. Junit, JABX ?
I know it seems a very stupid question, but it has been bugging me for a while.
If you can get your hands on the source, then sure you can modify it. It might not be the best option. It might be better to just create subclasses (if possible) and overwrite implementations, and use your subclasses. Or use composition to proxy the library classes. Depends on what you need to do/fix.
Keep in mind if you modify the source of an external library, and upgrade, you have to modify the source again. You might have to change your extensions/proxies as well if you go that route, but experience has taught me that's typically less complicated.
for open source API such as JUnit: yes

Statically checking a Java app for link errors

I have a scenario where I have code written against version 1 of a library but I want to ship version 2 of the library instead. The code has shipped and is therefore not changeable. I'm concerned that it might try to access classes or members of the library that existed in v1 but have been removed in v2.
I figured it would be possible to write a tool to do a simple check to see if the code will link against the newer version of the library. I appreciate that the code may still be very broken even if the code links. I am thinking about this from the other side - if the code won't link then I can be sure there is a problem.
As far as I can see, I need to run through the bytecode checking for references, method calls and field accesses to library classes then use reflection to check whether the class/member exists.
I have three-fold question:
(1) Does such a tool exist already?
(2) I have a niggling feeling it is much more complicated that I imagine and that I have missed something major - is that the case?
(3) Do you know of a handy library that would allow me to inspect the bytecode such that I can find the method calls, references etc.?
Thanks!
I think that Clirr - a binary compatibility checker - can help here:
Clirr is a tool that checks Java libraries for binary and source compatibility with older releases. Basically you give it two sets of jar files and Clirr dumps out a list of changes in the public api. The Clirr Ant task can be configured to break the build if it detects incompatible api changes. In a continuous integration process Clirr can automatically prevent accidental introduction of binary or source compatibility problems.
Changing the library in your IDE will result in all possible compile-time errors.
You don't need anything else, unless your code uses another library, which in turn uses the updated library.
Be especially wary of Spring configuration files. Class names are configured as text and don't show up as missing until runtime.
If you have access to the source code, you could just compile source against the new library. If it doesn't compile, you have definitely a problem. If it compiles you may still have a problem if the program uses reflection, some kind of IoC stuff like Spring etc.
If you have unit tests, then you may have a better change catch any linking errors.
If you have only have a .class file of the program, then I don't know any tools that would help besides decomplining class file to source and compiling source again against the new library, but that doesn't sound too healthy.
The checks you mentioned are done by the JVM/Java class loader, see e.g. Linking of Classes and Interfaces.
So "attempting to link" can be simply achieved by trying to run the application. Of course you could hoist the checks to run them yourself on your collection of .class/.jar files. I guess a bunch of 3rd party byte code manipulators like BCEL will also do similar checks for you.
I notice that you mention reflection in the tags. If you load classes/invoke methods through reflection, there's no way to analyse this in general.
Good luck!

Categories