I see the following example in Java Concurrency in Practice book, and it is mentioned that the class is threadsafe, and there is no information given about Person class. If the person class is mutable, then after adding a Person Object, it can be modified, say value that is used in equals method may be modified by another thread, in that case the following code will not be threadsafe. Is that correct statement?
#ThreadSafe
public class PersonSet {
#GuardedBy("this")
private final Set<Person> mySet = new HashSet<Person>();
public synchronized void addPerson(Person p) {
mySet.add(p);
}
public synchronized boolean containsPerson(Person p) {
return mySet.contains(p);
}
}
Yes it is thread safe. Thread safe in the sense that only one thread at a time can do read on set via containsPerson method or may be able to add set via addPerson method.
This class is thread safe because it has one Object state i.e. Set it self. So it protects it's state by allowing only one thread to work upon it.
However it doesn't guarantee that Person can't be modified by multiple thread. If you want to achieve the same you can either create Person as immutable object or you make it thread safe as well i.e. allow only one thread to modify it's state.
Your statement is correct: if the Person class is mutable, and an update is done on a field that contributes to hashCode and equals, then the PersonSet will have a problem - no matter in which thread.
The no duplicate Set contract will be broken, silently...
here object lock(this) is being used . the object which was used to access methods of personSet class which is of personSet type ,No two threads can access any of methods of personSet at one time. In locking there is no dependency of Person class. So personSet class is thread safe.
The thread safety in question here only pertains to the set, not the contents of the set. There are no allowances or checks made on a retrieval (i.e. get) operation on the set, so that portion is thread unsafe. Since that's not exposed, then the operations of adding and checking to see if an element is contained in the set are indeed thread-safe.
Note that while these operations are indeed safe for threads, they're also not concurrent. Since synchronized will block multiple threads from interacting with the method at once, these methods will become a bottleneck if used in a highly concurrent environment.
Related
I was reading Effective Java, and came across a condition where Joshua Bloch recommends something like
class MyComparator extends Comparator<String>{
private MyComparator(){}
private static final MyComparator INSTANCE = new MyComparator();
public int compare(String s1,String s2){
// Omitted
}
}
XYZComparator is stateless, it has no fields. hence all instances of the class are functionally equivalent. Thus it should be a singleton to save on unnecessary object creation.
So is it always safe to create a static final Object of whatever class it is pointing to if it has no fields? Wouldn't this cause multithreading issue when compare is called from two threads parallely? Or I misunderstood something basic. Is it like every thread has autonomy of execution if no fields is shared?
So is it always safe to create a static final Object of whatever class it is pointing to if it has no fields?
I would dare to say yes. Having no fields makes a class stateless and, thus, immutable, which is always desirable in a multithreading environment.
Stateless objects are always thread-safe.
Immutable objects are always thread-safe.
An excerpt from Java Concurrency In Practice:
Since the actions of a thread accessing a stateless object cannot affect the correctness of operations in other threads, stateless objects are thread-safe.
Stateless objects are always thread-safe.
The fact that most servlets can be implemented with no state greatly reduces the burden of making servlets threadͲ
safe. It is only when servlets want to remember things from one request to another that the thread-safety requirement becomes an issue.
...
An immutable object is one whose state cannot be changed after construction. Immutable objects are inherently
thread-safe; their invariants are established by the constructor, and if their state cannot be changed, these invariants
always hold.
Immutable objects are always thread-safe.
Immutable objects are simple. They can only be in one state, which is carefully controlled by the constructor. One of the
most difficult elements of program design is reasoning about the possible states of complex objects. Reasoning about
the state of immutable objects, on the other hand, is trivial.
Wouldn't this cause multithreading issue when compare is called from two threads parallelly?
No. Each thread has own stack where local variables (including method parameters) are stored. The thread's stack isn't shared, so there is no way to mess it up parallelly.
Another good example would be a stateless servlet. One more extract from that great book.
#ThreadSafe
public class StatelessFactorizer implements Servlet {
public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
encodeIntoResponse(resp, factors);
}
}
StatelessFactorizer is, like most servlets, stateless: it has no fields and references no fields from other classes. The
transient state for a particular computation exists solely in local variables that are stored on the thread's stack and are
accessible only to the executing thread. One thread accessing a StatelessFactorizer cannot influence the result of
another thread accessing the same StatelessFactorizer; because the two threads do not share state, it is as if they
were accessing different instances.
Is it like every thread has autonomy of execution if no fields is shared?
Each thread has its own program counter, stack, and local variables. There is a term "thread confinement" and one of its forms is called "stack confinement".
Stack confinement is a special case of thread confinement in which an object can only be reached through local variables. Just as encapsulation can make it easier to preserve invariants, local variables can make it easier to confine objects to a thread. Local variables are intrinsically confined to the executing thread; they exist on the executing thread's stack, which is not accessible to other threads.
To read:
Java Concurrency In Practice
Thread Confinement
Stack Confinement using local object reference
Multithreading issues are caused by unwanted changes in state. If there is no state that is changed, there are no such issues. That is also why immutable objects are very convenient in a multithreaded environment.
In this particular case, the method only operates on the input parameters s1 and s2 and no state is kept.
So is it always safe to create a static final Object of whatever class it is pointing to if it has no fields?
"Always" is too strong a claim. It's easy to construct an artificial class where instances are not thread-safe despite having no fields:
public class NotThreadSafe {
private static final class MapHolder {
private static final Map<NotThreadSafe, StringBuilder> map =
// use ConcurrentHashMap so that different instances don't
// interfere with each other:
new ConcurrentHashMap<>();
}
private StringBuilder getMyStringBuilder() {
return MapHolder.map.computeIfAbsent(this, k -> new StringBuilder());
}
public void append(final Object s) {
getMyStringBuilder().append(s);
}
public String get() {
return getMyStringBuilder().toString();
}
}
. . . but that code is not realistic. If your instances don't have any mutable state, then they'll naturally be threadsafe; and in normal Java code, mutable state means instance fields.
XYZComparator is stateless, it has no fields. hence all instances of the class are functionally equivalent. Thus it should be a singleton to save on unnecessary object creation.
From that point of view, the "current day" answer is probably: make MyComparator an enum. The JVM guarantees that MyComparatorEnum.INSTANCE will be a true singelton, and you don't have to worry about the subtle details that you have to consider when building singletons "yourself".
Explanation
So is it always safe to create a static final Object of whatever class it is pointing to if it has no fields?
Depends. Multi-threading issues can only occur when one thread is changing something while another thread is using it at the same time. Since the other thread might then not be aware of the changes due to caching and other effects. Or it results in a pure logic bug where the creator did not think about that a thread can be interrupted during an operation.
So when a class is stateless, which you have here, it is absolutely safe to be used in a multi-threaded environment. Since there is nothing for any thread to change in the first place.
Note that this also means that a class is not allowed to use not-thread-safe stuff from elsewhere. So for example changing a field in some other class while another thread is using it.
Example
Here is a pretty classic example:
public class Value {
private int value;
public int getValue() {
return value;
}
public void increment() {
int current = value; // or just value++
value = current + 1;
}
}
Now, lets assume both threads call value.increment(). One thread gets interrupted after:
int current = value; // is 0
Then the other starts and fully executes increment. So
int current = value; // is 0
value = current + 1; // is 1
So value is now 1. Now the first thread continues, the expected outcome would be 2, but we get:
value = current + 1; // is 1
Since its current was already computed before the second thread ran through, so it is still 0.
We also say that an operation (or method in this case) is not atomic. So it can be interrupted by the scheduler.
This issue can of course only happen because Value has a field value, so it has a changeable state.
YES. It is safe to create a static final object of a class if it has no fields. Here, the Comparator provides functionality only, through its compare(String, String) method.
In case of multithreading, the compare method will have to deal with local variables only (b/c it is from stateless class), and local variables are not shared b/w thread, i.e., each thread will have its own (String, String) copy and hence will not interfere with each other.
Calling the compare method from two threads in parallel is safe (stack confinement). The parameters you pass to the method are stored in that thread's stack, that any other thread cannot access.
An immutable singleton is always recommended. Abstain from creating mutable singletons, as they introduce global state in your application, that is bad.
Edit: If the params passed are mutable object references, then you have to take special care to ensure thread safety.
Why are the methods in the Observable class are synchronized?
public synchronized void deleteObserver(Observer o) {
obs.removeElement(o);
}
Observable is intended to be a very thread-safe class; it manipulates shared data 'atomically', meaning that only one thread can access it at a time. The synchronized keyword forces each interacting thread to access the Observable instance's data atomically.
synchronized methods enable a simple strategy for preventing thread interference and memory consistency errors: if an object is visible to more than one thread, all reads or writes to that object's variables are done through synchronized methods.
Note that some methods, such as notifyObservers(), are not synchronized. This is because they do not directly affect the instance data of the Observable.
Read this writeup if you want to learn more about thread-safety.
I can't give you a definitive answer regarding why Observable is implemented the way it is, but I can explain the effect.
While Vector is a synchronized collection, it isn't synchronized while iterating. This is similar to the wrappers returned by the Collections.synchronizedXXX methods. In order to safely iterate a Vector in a concurrent context you need external synchronization. They accomplish this by using synchronized methods. But if you look at notifyObservers you'll see that the method isn't synchronized. However, if you look at the body of notifyObservers you'll see a synchronized(this) {} block. They do it this way because only part of the method body needs to be executed while holding the lock. If you're not aware, a synchronized instance method is the same as using synchronized(this) {} for the whole method.
The other effect caused by using synchronized methods is that both the obs field and the changed field are guarded by the same lock. This keeps the state between those two fields consistent in a multi-threaded environment. Why they chose the enclosing instance as the lock, I have no idea, but that's what they did.
Note that, as near as I can tell, the Observable class gives no guarantees regarding thread-safety in its documentation. This means the fact that it is thread-safe is an implementation detail.
Also note that Observable has been deprecated since Java 9.
Could anyone explain what is the difference between these examples?
Example # 1.
public class Main {
private Object lock = new Object();
private MyClass myClass = new MyClass();
public void testMethod() {
// TODO Auto-generated method stub
synchronized (myClass) {
// TODO: modify myClass variable
}
}
}
Example # 2.
package com.test;
public class Main {
private MyClass myClass = new MyClass();
private Object lock = new Object();
public void testMethod() {
// TODO Auto-generated method stub
synchronized (lock) {
// TODO: modify myClass variable
}
}
}
What should I use as a monitor lock if I need to take care about synchronization when modifying the variable?
Assuming that Main is not intended to be a "leaky abstraction", here is minimal difference between the first and second examples.
It may be better to use an Object rather than some other class because an Object instance has no fields and is therefore smaller. And the Object-as-lock idiom makes it clear that the lock variable is intended to only ever used as a lock.
Having said that, there is a definite advantage in locking on an object that nothing else will ever see. The problem with a Main method synchronizing on a Main (e.g. this) is that other unrelated code could also be synchronizing on it for an unrelated purpose. By synchronizing on dedicated (private) lock object you avoid that possibility.
In response to the comment:
There is a MAJOR difference in the two cases. In the first you're locking the object that you want to manipulate. In the second you're locking some other object that has no obvious relationship to the object being manipulated. And the second case takes more space, since you must allocate the (otherwise unused) Object, rather than using the already-existing instance you're protecting.
I think you are making an INCORRECT assumption - that MyClass is the data structure that needs protecting. In fact, the Question doesn't say that. Indeed the way that the example is written implies that the lock is intended to protect the entire Main class ... not just a part of its state. And in that context, there IS an obvious connection ...
The only case where it would be better to lock the MyClass would be if the Main was a leaky abstraction that allowed other code to get hold of its myClass reference. That would be bad design, especially in a multi-threaded app.
Based on the revision history, I'm pretty sure that is not the OP's intention.
The statement synchronization is useful when changing variables of an object.
You are changing variables of myClass so you want to lock on myClass object. If you were to change something in lock then you want to lock on lock object.
In example #2 you are modifying myClass but locking on lock object which is nonsense.
In first case you lock on object that it known only within this method, so it is unlikely that anybody else will use the same object to lock on, so such lock is almost useless. Second variant makes much more sense for me.
At the same time, myClass variable is also known only within this method, so it is unlikely that other thread will access it, so probably lock is not necessary here at all. Need more complete example to say more.
In general, you want to lock on the "root" object of the data you're manipulating. If you're, eg, going to subtract a value from a field in object A and add that value to object B, you need to lock some object that is somehow common (at least by convention) between A and B, possibly the "owner" object of the two. This is because you're doing the lock to maintain a "contract" of consistency between separate pieces of data -- the object locked must be common to and conceptually encompassing of the entire set of data that must be kept consistent.
The simple case, of course, is when you're modifying field A and field B in the same object, in which case locking that object is the obvious choice.
A little less obvious is when you're dealing with static data belonging to a single class. In that case you generally want to lock the class.
A separate "monitor" object -- created only to serve as a lockable entity -- is rarely needed in Java, but might apply to, say, elements of two parallel arrays, where you want to maintain consistency between element N of the two arrays. In that case, something like a 3rd array of monitor objects might be appropriate.
(Note that this is all just a "quick hack" at laying out some rules. There are many subtleties that one can run into, especially when attempting to allow the maximum of concurrent access to heavily-accessed data. But such cases are rare outside of high-performance computing.)
Whatever you choose, it's critical that the choice be consistent across all references to the protected data. You don't want to lock object A in one case and object B in another, when referencing/modifying the same data. (And PLEASE don't fall into the trap of thinking you can lock an arbitrary instance of Class A and that will somehow serve to lock another instance of Class A. That's a classical beginner's mistake.)
In your above example you'd generally want to lock the created object, assuming the consistency you're assuring is all internal to that object. But note that in this particular example, unless the constructor for MyClass somehow lets the object address "escape", there is no need to lock at all, since there is no way that another thread can get the address of the new object.
The difference are the class of the lock and its scope
- Both topics are pretty much orthogonal with synchronization
objects with different classes may have different sizes
objects in different scopes may be available in different contexts
Basically both will behave the same in relation to synchronization
Both examples are not good syncronisation practise.
The lock Object should be placed in MyClass as private field.
I want to make sure that I correctly understand the 'Effectively Immutable Objects' behavior according to Java Memory Model.
Let's say we have a mutable class which we want to publish as an effectively immutable:
class Outworld {
// This MAY be accessed by multiple threads
public static volatile MutableLong published;
}
// This class is mutable
class MutableLong {
private long value;
public MutableLong(long value) {
this.value = value;
}
public void increment() {
value++;
}
public long get() {
return value;
}
}
We do the following:
// Create a mutable object and modify it
MutableLong val = new MutableLong(1);
val.increment();
val.increment();
// No more modifications
// UPDATED: Let's say for this example we are completely sure
// that no one will ever call increment() since now
// Publish it safely and consider Effectively Immutable
Outworld.published = val;
The question is:
Does Java Memory Model guarantee that all threads MUST have Outworld.published.get() == 3 ?
According to Java Concurrency In Practice this should be true, but please correct me if I'm wrong.
3.5.3. Safe Publication Idioms
To publish an object safely, both the reference to the object and the
object's state must be made visible to other threads at the same time.
A properly constructed object can be safely published by:
- Initializing an object reference from a static initializer;
- Storing a reference to it into a volatile field or AtomicReference;
- Storing a reference to it into a final field of a properly constructed object; or
- Storing a reference to it into a field that is properly guarded by a lock.
3.5.4. Effectively Immutable Objects
Safely published effectively immutable objects can be used safely by
any thread without additional synchronization.
Yes. The write operations on the MutableLong are followed by a happens-before relationship (on the volatile) before the read.
(It is possible that a thread reads Outworld.published and passes it on to another thread unsafely. In theory, that could see earlier state. In practice, I don't see it happening.)
There is a couple of conditions which must be met for the Java Memory Model to guarantee that Outworld.published.get() == 3:
the snippet of code you posted which creates and increments the MutableLong, then sets the Outworld.published field, must happen with visibility between the steps. One way to achieve this trivially is to have all that code running in a single thread - guaranteeing "as-if-serial semantics". I assume that's what you intended, but thought it worth pointing out.
reads of Outworld.published must have happens-after semantics from the assignment. An example of this could be having the same thread execute Outworld.published = val; then launch other the threads which could read the value. This would guarantee "as if serial" semantics, preventing re-ordering of the reads before the assignment.
If you are able to provide those guarantees, then the JMM will guarantee all threads see Outworld.published.get() == 3.
However, if you're interested in general program design advice in this area, read on.
For the guarantee that no other threads ever see a different value for Outworld.published.get(), you (the developer) have to guarantee that your program does not modify the value in any way. Either by subsequently executing Outworld.published = differentVal; or Outworld.published.increment();. While that is possible to guarantee, it can be so much easier if you design your code to avoid both the mutable object, and using a static non-final field as a global point of access for multiple threads:
instead of publishing MutableLong, copy the relevant values into a new instance of a different class, whose state cannot be modified. E.g.: introduce the class ImmutableLong, which assigns value to a final field on construction, and doesn't have an increment() method.
instead of multiple threads accessing a static non-final field, pass the object as a parameter to your Callable/Runnable implementations. This will prevent the possibility of one rogue thread from reassigning the value and interfering with the others, and is easier to reason about than static field reassignment. (Admittedly, if you're dealing with legacy code, this is easier said than done).
The question is: Does Java Memory Model guarantee that all threads
MUST have Outworld.published.get() == 3 ?
The short answer is no. Because other threads might access Outworld.published before it has been read.
After the moment when Outworld.published = val; had been performed, under condition that no other modifications done with the val - yes - it always be 3.
But if any thread performs val.increment then its value might be different for other threads.
consider this class,with no instance variables and only methods which are non-synchronous can we infer from this info that this class in Thread-safe?
public class test{
public void test1{
// do something
}
public void test2{
// do something
}
public void test3{
// do something
}
}
It depends entirely on what state the methods mutate. If they mutate no shared state, they're thread safe. If they mutate only local state, they're thread-safe. If they only call methods that are thread-safe, they're thread-safe.
Not being thread safe means that if multiple threads try to access the object at the same time, something might change from one access to the next, and cause issues. Consider the following:
int incrementCount() {
this.count++;
// ... Do some other stuff
return this.count;
}
would not be thread safe. Why is it not? Imagine thread 1 accesses it, count is increased, then some processing occurs. While going through the function, another thread accesses it, increasing count again. The first thread, which had it go from, say, 1 to 2, would now have it go from 1 to 3 when it returns. Thread 2 would see it go from 1 to 3 as well, so what happened to 2?
In this case, you would want something like this (keeping in mind that this isn't any language-specific code, but closest to Java, one of only 2 I've done threading in)
int incrementCount() synchronized {
this.count++;
// ... Do some other stuff
return this.count;
}
The synchronized keyword here would make sure that as long as one thread is accessing it, no other threads could. This would mean that thread 1 hits it, count goes from 1 to 2, as expected. Thread 2 hits it while 1 is processing, it has to wait until thread 1 is done. When it's done, thread 1 gets a return of 2, then thread 2 goes throguh, and gets the expected 3.
Now, an example, similar to what you have there, that would be entirely thread-safe, no matter what:
int incrementCount(int count) {
count++;
// ... Do some other stuff
return this.count;
}
As the only variables being touched here are fully local to the function, there is no case where two threads accessing it at the same time could try working with data changed from the other. This would make it thread safe.
So, to answer the question, assuming that the functions don't modify anything outside of the specific called function, then yes, the class could be deemed to be thread-safe.
Consider the following quote from an article about thread safety ("Java theory and practice: Characterizing thread safety"):
In reality, any definition of thread safety is going to have a certain degree of circularity, as it must appeal to the class's specification -- which is an informal, prose description of what the class does, its side effects, which states are valid or invalid, invariants, preconditions, postconditions, and so on. (Constraints on an object's state imposed by the specification apply only to the externally visible state -- that which can be observed by calling its public methods and accessing its public fields -- rather than its internal state, which is what is actually represented in its private fields.)
Thread safety
For a class to be thread-safe, it first must behave correctly in a single-threaded environment. If a class is correctly implemented, which is another way of saying that it conforms to its specification, no sequence of operations (reads or writes of public fields and calls to public methods) on objects of that class should be able to put the object into an invalid state, observe the object to be in an invalid state, or violate any of the class's invariants, preconditions, or postconditions.
Furthermore, for a class to be thread-safe, it must continue to behave correctly, in the sense described above, when accessed from multiple threads, regardless of the scheduling or interleaving of the execution of those threads by the runtime environment, without any additional synchronization on the part of the calling code. The effect is that operations on a thread-safe object will appear to all threads to occur in a fixed, globally consistent order.
So your class itself is thread-safe, as long as it doesn't have any side effects. As soon as the methods mutate any external objects (e.g. some singletons, as already mentioned by others) it's not any longer thread-safe.
Depends on what happens inside those methods. If they manipulate / call any method parameters or global variables / singletons which are not themselves thread safe, the class is not thread safe either.
(yes I see that the methods as shown here here have no parameters, but no brackets either, so this is obviously not full working code - it wouldn't even compile as is.)
yes, as long as there are no instance variables. method calls using only input parameters and local variables are inherently thread-safe. you might consider making the methods static too, to reflect this.
If it has no mutable state - it's thread safe. If you have no state - you're thread safe by association.
No, I don't think so.
For example, one of the methods could obtain a (non-thread-safe) singleton object from another class and mutate that object.
Yes - this class is thread safe but this does not mean that your application is.
An application is thread safe if the threads in it cannot concurrently access heap state. All objects in Java (and therefore all of their fields) are created on the heap. So, if there are no fields in an object then it is thread safe.
In any practical application, objects will have state. If you can guarantee that these objects are not accessed concurrently then you have a thread safe application.
There are ways of optimizing access to shared state e.g. Atomic variables or with carful use of the volatile keyword, but I think this is going beyond what you've asked.
I hope this helps.