"gap" between method call and the synchronized block -- avoiding deadlock in concurrency - java

The following method is a method of class SomeType-- the type it is taking as its argument.
The line comments indicate the line #s.
synchronized void someMethod(SomeType other) { // line 1
// line 2
synchronized (other) { // line 3
//...do stuff // line 4
}
}
The block indicated as "line 4" has calls to some other synchronized methods of both this
and other, and this code is intended for avoiding deadlocks.
However -- suppose both a.someMethod(b) and b.someMethod(a) are invoked concurrently, where a and b are different instances.
Further suppose that b.someMethod(a) is invoked right after a.someMethod(b) is, and they both are held up
at line 2-- each of a and b acquired its own lock and waiting for the other's lock to proceed.
Can/not this happen?
If so - on which jdk implementations? This looks like something that depends on the specific implementation unless it
is explicitly in the jdk specifications.
TIA

Yes, the deadlock you describe can happen. How often it happens may be dependent on the specifics of the threading code; these days, you are most likely using the native threading of the operating system, so it would be more dependent on the native OS than on the JDK/JRE. Deadlock is likely possible on most platforms, though, so you should guard against it in your code.
If you think contention for the method will be low or if you don't care about performance, you could synchronize on a static member or on the class itself, rather than synchronizing on the objects. If you do care about performance and think contention will be significant, you will need to figure out a way to ensure that the monitors are locked in the same order independent of which object the method is being called on and which is the method argument.

Related

How does the JVM guarantee the visibility of member variable modifications in the referenced object when using synchronized?

I want to know how does the JVM guarantee the visibility of member variable modifications in the referenced object when using synchronized.
I know synchronized and volatile will provide visibility for variable modifications.
class Test{
public int a=0;
public void modify(){
a+=1;
}
}
//Example:
// Thread A:
volatile Test test=new Test();
synchronized(locker){
test.modify();
}
// then thread B:
synchronized(locker){
test.modify();
}
// Now, I think test.a==2 is true. Is it ok? How JVM implements it?
// I know the memory barrier, does it flush all cache to main storage?
Thread A call modify in a sychronized block first, and then pass the object to thread B (Write the reference to a volatile variable.).
Then thread B call modify again (in synchronized).
Is there any guarantee for a==2? And how is the JVM implemented?
Visibility between threads is enforced with Memory Barriers/Fences. In case of synchronized block JVM will insert a memory barrier after the execution of the block completes.
JVM implements memory barriers with CPU instruction e.g. a store barrier is done with sfence and load barrier is done with lfence instruction on x86. There is also mfence and possibly other instructions which can be specific to CPU architecture.
For your (still incomplete!) example, if we can assume the following:
The code in thread A initializing test is guaranteed to run before thread B uses it.
The locker variable contains a reference to the same object for threads A & B.
then we can prove that a == 2 will be true at the point you indicate. If precondition 1 is not guaranteed, then thread B may get an NPE. If precondition 2 is not guaranteed (i.e. threads A and B may synchronize on different objects) then there is not a proper happens-before relationship to ensure that thread B sees the result of thread A's actions on a.
(#NathanHughes commented that the volatile is unnecessary. I wouldn't necessarily agree with that. It depends on details of your example that you still haven't show us.)
How JVM implements it?
The actual implementation is Java platform and (in theory) version specific. The JVM spec Memory Model places constraints on how a program that obeys "the rules" will behave. It is entirely implementation specific how that actually happens.
I know the memory barrier, does it flush all cache to main storage?
That is implementation specific too. There are different kinds of memory barrier that work in different ways. The JIT compiler will emit native code that uses the appropriate instructions to meet the guarantees required by the JLS. If there is a way to do this without doing a full cache flush then the implementation may do that.
(There is a JVM command line option to tell the JIT compiler to output the native code. If you really want to know what is happening under the hood, that is a good place to start looking.)
But if you are trying to understand / analyze your application's thread-safety, you should be doing it in terms of the Java Memory Model. Also, use higher level concurrency abstractions that allow you to avoid the lower level pitfalls.

What is the purpose of using synchronized (Thread.currentThread()){...} in Java?

I faced the following code in our project:
synchronized (Thread.currentThread()){
//some code
}
I don't understand the reason to use synchronized on currentThread.
Is there any difference between
synchronized (Thread.currentThread()){
//some code
}
and just
//some code
Can you provide an example which shows the difference?
UPDATE
more in details this code as follows:
synchronized (Thread.currentThread()) {
Thread.currentThread().wait(timeInterval);
}
It looks like just Thread.sleep(timeInterval). Is it truth?
consider this
Thread t = new Thread() {
public void run() { // A
synchronized (Thread.currentThread()) {
System.out.println("A");
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
}
}
}
};
t.start();
synchronized (t) { // B
System.out.println("B");
Thread.sleep(5000);
}
blocks A and B cannot run simultaneously, so in the given test either "A" or "B" output will be delayed by 5 secs, which one will come first is undefined
Although this is almost definitely an antipattern and should be solved differently, your immediate question still calls for an answer. If your entire codebase never acquires a lock on any Thread instance other than Thread.currentThread(), then indeed this lock will never be contended. However, if anywhere else you have
synchronized (someSpecificThreadInstance) { ... }
then such a block will have to contend with your shown block for the same lock. It may indeed happen that the thread reaching synchronized (Thread.currentThread()) must wait for some other thread to relinquish the lock.
Basically there is no difference between the presence and absence of the synchronized block. However, I can think of a situation that could give other meaning to this usage.
The synchronized blocks has an interesting side-effect of causing a memory barrier to be created by the runtime before entering and after leaving the block. A memory barrier is a special instruction to the CPU that enforces all variables that are shared between multiple threads to return their latest values. Usually, a thread works with its own copy of a shared variable, and its value is visible to this thread only. A memory barrier instructs the thread to update the value in a way so that the change is visible to the other threads.
So, the synchronized block in this case does not do any locking (as there will be no real case of lock and wait situation, at lest none I can think of)(unless the use-case mentioned in this answer is addressed), but instead it enforces the values of the shared fields to return their latest value. This, however, is true if the other places of the code that work with the variables in question also uses memory barriers (like having the same synchronized block around the update/reassignment operations). Still, this is not a solution for avoiding race conditions.
If you're interested, I recommend you to read this article. It is about memory barriers and locking in C# and the .NET framework, but the problem is similar for Java and the JVM (except for the behavior of volatile fields). It helped me a lot in understanding how threads, volatile fields and locks work in general.
One must take into account some serious considerations in this approach, that were mentioned in comments below this answer.
The memory barrier does not imply locking. The access will still be non-synchronized and a subject to race conditions and other potential issues one may encounter. The only benefit is the thread being able to read the latest values of the shared memory fields, without the use of locks. Some practices use similar approaches if the working thread only reads from values and it does only care for them to be the most present ones, while avoiding the overhead of locks - a use case could be a high-performance simultaneous data processing algorithm.
The approach above is unreliable. As per Holger's comment, the compiler could eliminate the lock statements when optimizing, as it could consider them unnecessary. This will also remove the memory barriers. The code then will not issue a lock, and it will not work as expected if a lock was meant to be used, or the purpose was to create a memory barrier.
The approach above is also unreliable because the runtime JVM can remove synchronization when it can prove the monitor will never be acquired by another thread, which is true of this construct if the code never synchronizes on another thread object which is not the current thread's thread object. So even if it works during testing on system A, it might fail under another JVM on system B. Even worse, the code could work for a while and then cease working as optimizations are applied.
The intentions of the code as it stays now are ambiguous, so one should use more explicit and expressive means to achieve its effect (see Marko Topolnik's comment for reference).
You are implementing a recursive mutex.
i.e. the same thread can enter the synchronisation block, but not other threads.

Multithreaded access and variable cache of threads

I could find the answer if I read a complete chapter/book about multithreading, but I'd like a quicker answer. (I know this stackoverflow question is similar, but not sufficiently.)
Assume there is this class:
public class TestClass {
private int someValue;
public int getSomeValue() { return someValue; }
public void setSomeValue(int value) { someValue = value; }
}
There are two threads (A and B) that access the instance of this class. Consider the following sequence:
A: getSomeValue()
B: setSomeValue()
A: getSomeValue()
If I'm right, someValue must be volatile, otherwise the 3rd step might not return the up-to-date value (because A may have a cached value). Is this correct?
Second scenario:
B: setSomeValue()
A: getSomeValue()
In this case, A will always get the correct value, because this is its first access so he can't have a cached value yet. Is this right?
If a class is accessed only in the second way, there is no need for volatile/synchronization, or is it?
Note that this example was simplified, and actually I'm wondering about particular member variables and methods in a complex class, and not about whole classes (i.e. which variables should be volatile or have synced access). The main point is: if more threads access certain data, is synchronized access needed by all means, or does it depend on the way (e.g. order) they access it?
After reading the comments, I try to present the source of my confusion with another example:
From UI thread: threadA.start()
threadA calls getSomeValue(), and informs the UI thread
UI thread gets the message (in its message queue), so it calls: threadB.start()
threadB calls setSomeValue(), and informs the UI thread
UI thread gets the message, and informs threadA (in some way, e.g. message queue)
threadA calls getSomeValue()
This is a totally synchronized structure, but why does this imply that threadA will get the most up-to-date value in step 6? (if someValue is not volatile, or not put into a monitor when accessed from anywhere)
If two threads are calling the same methods, you can't make any guarantees about the order that said methods are called. Consequently, your original premise, which depends on calling order, is invalid.
It's not about the order in which the methods are called; it's about synchronization. It's about using some mechanism to make one thread wait while the other fully completes its write operation. Once you've made the decision to have more than one thread, you must provide that synchronization mechanism to avoid data corruption.
As we all know, that its the crucial state of the data that we need to protect, and the atomic statements which govern the crucial state of the data must be Synchronized.
I had this example, where is used volatile, and then i used 2 threads which used to increment the value of a counter by 1 each time till 10000. So it must be a total of 20000. but to my surprise it didnt happened always.
Then i used synchronized keyword to make it work.
Synchronization makes sure that when a thread is accessing the synchronized method, no other thread is allowed to access this or any other synchronized method of that object, making sure that data corruption is not done.
Thread-Safe class means that it will maintain its correctness in the presence of the scheduling and interleaving of the underlining Runtime environment, without any thread-safe mechanism from the Client side, which access that class.
Let's look at the book.
A field may be declared volatile, in which case the Java memory model (ยง17) ensures that all threads see a consistent value for the variable.
So volatile is a guarantee that the declared variable won't be copied into thread local storage, which is otherwise allowed. It's further explained that this is an intentional alternative to locking for very simple kinds of synchronized access to shared storage.
Also see this earlier article, which explains that int access is necessarily atomic (but not double or long).
These together mean that if your int field is declared volatile then no locks are necessary to guarantee atomicity: you will always see a value that was last written to the memory location, not some confused value resulting from a half-complete write (as is possible with double or long).
However you seem to imply that your getters and setters themselves are atomic. This is not guaranteed. The JVM can interrupt execution at intermediate points of during the call or return sequence. In this example, this has no consequences. But if the calls had side effects, e.g. setSomeValue(++val), then you would have a different story.
The issue is that java is simply a specification. There are many JVM implementations and examples of physical operating environments. On any given combination an an action may be safe or unsafe. For instance On single processor systems the volatile keyword in your example is probably completely unnecessary. Since the writers of the memory and language specifications can't reasonably account for possible sets of operating conditions, they choose to white-list certain patterns that are guaranteed to work on all compliant implementations. Adhering to to these guidelines ensures both that your code will work on your target system and that it will be reasonably portable.
In this case "caching" typically refers to activity that is going on at the hardware level. There are certain events that occur in java that cause cores on a multi processor systems to "Synchronize" their caches. Accesses to volatile variables are an example of this, synchronized blocks are another. Imagine a scenario where these two threads X and Y are scheduled to run on different processors.
X starts and is scheduled on proc 1
y starts and is scheduled on proc 2
.. now you have two threads executing simultaneously
to speed things up the processors check local caches
before going to main memory because its expensive.
x calls setSomeValue('x-value') //assuming proc 1's cache is empty the cache is set
//this value is dropped on the bus to be flushed
//to main memory
//now all get's will retrieve from cache instead
//of engaging the memory bus to go to main memory
y calls setSomeValue('y-value') //same thing happens for proc 2
//Now in this situation depending on to order in which things are scheduled and
//what thread you are calling from calls to getSomeValue() may return 'x-value' or
//'y-value. The results are completely unpredictable.
The point is that volatile(on compliant implementations) ensures that ordered writes will always be flushed to main memory and that other processor's caches will be flagged as 'dirty' before the next access regardless of the thread from which that access occurs.
disclaimer: volatile DOES NOT LOCK. This is important especially in the following case:
volatile int counter;
public incrementSomeValue(){
counter++; // Bad thread juju - this is at least three instructions
// read - increment - write
// there is no guarantee that this operation is atomic
}
this could be relevant to your question if your intent is that setSomeValue must always be called before getSomeValue
If the intent is that getSomeValue() must always reflect the most recent call to setSomeValue() then this is a good place for the use of the volatile keyword. Just remember that without it there is no guarantee that getSomeValue() will reflect to most recent call to setSomeValue() even if setSomeValue() was scheduled first.
If I'm right, someValue must be volatile, otherwise the 3rd step might not return the up-to-date value (because A may have a cached
value). Is this correct?
If thread B calls setSomeValue(), you need some sort of synchronization to ensure that thread A can read that value. volatile won't accomplish this on its own, and neither will making the methods synchronized. The code that does this is ultimately whatever synchronization code you added that made sure that A: getSomeValue() happens after B: setSomeValue(). If, as you suggest, you used a message queue to synchronize threads, this happens because the memory changes made by thread A became visible to thread B once thread B acquired the lock on your message queue.
If a class is accessed only in the second way, there is no need for
volatile/synchronization, or is it?
If you are really doing your own synchronization then it doesn't sound like you care whether these classes are thread-safe. Be sure that you aren't accessing them from more than one thread at the same time though; otherwise, any methods that aren't atomic (assiging an int is) may lead to you to be in an unpredictable state. One common pattern is to put the shared state into an immutable object so that you are sure that the receiving thread isn't calling any setters.
If you do have a class that you want to be updated and read from multiple threads, I'd probably do the simplest thing to start, which is often to synchronize all public methods. If you really believe this to be a bottleneck, you could look into some of the more complex locking mechanisms in Java.
So what does volatile guarantee?
For the exact semantics, you might have to go read tutorials, but one way to summarize it is that 1) any memory changes made by the last thread to access the volatile will be visible to the current thread accessing the volatile, and 2) that accessing the volatile is atomic (it won't be a partially constructed object, or a partially assigned double or long).
Synchronized blocks have analogous properties: 1) any memory changes made by the last thread to access to the lock will be visible to this thread, and 2) the changes made within the block are performed atomically with respect to other synchronized blocks
(1) means any memory changes, not just changes to the volatile (we're talking post JDK 1.5) or within the synchronized block. This is what people mean when they refer to ordering, and this is accomplished in different ways on different chip architectures, often by using memory barriers.
Also, in the case of synchronous blocks (2) only guarantees that you won't see inconsistent values if you are within another block synchronized on the same lock. It's usually a good idea to synchronize all access to shared variables, unless you really know what you are doing.

Is unsynchronized read of integer threadsafe in java?

I see this code quite frequently in some OSS unit tests, but is it thread safe ? Is the while loop guaranteed to see the correct value of invoc ?
If no; nerd points to whoever also knows which CPU architecture this may fail on.
private int invoc = 0;
private synchronized void increment() {
invoc++;
}
public void isItThreadSafe() throws InterruptedException {
for (int i = 0; i < TOTAL_THREADS; i++) {
new Thread(new Runnable() {
public void run() {
// do some stuff
increment();
}
}).start();
}
while (invoc != TOTAL_THREADS) {
Thread.sleep(250);
}
}
No, it's not threadsafe. invoc needs to be declared volatile, or accessed while synchronizing on the same lock, or changed to use AtomicInteger. Just using the synchronized method to increment invoc, but not synchronizing to read it, isn't good enough.
The JVM does a lot of optimizations, including CPU-specific caching and instruction reordering. It uses the volatile keyword and locking to decide when it can optimize freely and when it has to have an up-to-date value available for other threads to read. So when the reader doesn't use the lock the JVM can't know not to give it a stale value.
This quote from Java Concurrency in Practice (section 3.1.3) discusses how both writes and reads need to be synchronized:
Intrinsic locking can be used to guarantee that one thread sees the effects of another in a predictable manner, as illustrated by Figure 3.1. When thread A executes a synchronized block, and subsequently thread B enters a synchronized block guarded by the same lock, the values of variables that were visible to A prior to releasing the lock are guaranteed to be visible to B upon acquiring the lock. In other words, everything A did in or prior to a synchronized block is visible to B when it executes a synchronized block guarded by the same lock. Without synchronization, there is no such guarantee.
The next section (3.1.4) covers using volatile:
The Java language also provides an alternative, weaker form of synchronization, volatile variables, to ensure that updates to a variable are propagated predictably to other threads. When a field is declared volatile, the compiler and runtime are put on notice that this variable is shared and that operations on it should not be reordered with other memory operations. Volatile variables are not cached in registers or in caches where they are hidden from other processors, so a read of a volatile variable always returns the most recent write by any thread.
Back when we all had single-CPU machines on our desktops we'd write code and never have a problem until it ran on a multiprocessor box, usually in production. Some of the factors that give rise to the visiblity problems, things like CPU-local caches and instruction reordering, are things you would expect from any multiprocessor machine. Elimination of apparently unneeded instructions could happen for any machine, though. There's nothing forcing the JVM to ever make the reader see the up-to-date value of the variable, you're at the mercy of the JVM implementors. So it seems to me this code would not be a good bet for any CPU architecture.
Well!
private volatile int invoc = 0;
Will do the trick.
And see Are java primitive ints atomic by design or by accident? which sites some of the relevant java definitions. Apparently int is fine, but double & long might not be.
edit, add-on. The question asks, "see the correct value of invoc ?". What is "the correct value"? As in the timespace continuum, simultaneity doesn't really exist between threads. One of the above posts notes that the value will eventually get flushed, and the other thread will get it. Is the code "thread safe"? I would say "yes", because it won't "misbehave" based on the vagaries of sequencing, in this case.
Theoretically, it is possible that the read is cached. Nothing in Java memory model prevents that.
Practically, that is extremely unlikely to happen (in your particular example). The question is, whether JVM can optimize across a method call.
read #1
method();
read #2
For JVM to reason that read#2 can reuse the result of read#1 (which can be stored in a CPU register), it must know for sure that method() contains no synchronization actions. This is generally impossible - unless, method() is inlined, and JVM can see from the flatted code that there's no sync/volatile or other synchronization actions between read#1 and read#2; then it can safely eliminate read#2.
Now in your example, the method is Thread.sleep(). One way to implement it is to busy loop for certain times, depending on CPU frequency. Then JVM may inline it, and then eliminate read#2.
But of course such implementation of sleep() is unrealistic. It is usually implemented as a native method that calls OS kernel. The question is, can JVM optimize across such a native method.
Even if JVM has knowledge of internal workings of some native methods, therefore can optimize across them, it's improbable that sleep() is treated that way. sleep(1ms) takes millions of CPU cycles to return, there is really no point optimizing around it to save a few reads.
--
This discussion reveals the biggest problem of data races - it takes too much effort to reason about it. A program is not necessarily wrong, if it is not "correctly synchronized", however to prove it's not wrong is not an easy task. Life is much simpler, if a program is correctly synchronized and contains no data race.
As far as I understand the code it should be safe. The bytecode can be reordered, yes. But eventually invoc should be in sync with the main thread again. Synchronize guarantees that invoc is incremented correctly so there is a consistent representation of invoc in some register. At some time this value will be flushed and the little test succeeds.
It is certainly not nice and I would go with the answer I voted for and would fix code like this because it smells. But thinking about it I would consider it safe.
If you're not required to use "int", I would suggest AtomicInteger as an thread-safe alternative.

Java Thread - Synchronization issue

From Sun's tutorial:
Synchronized methods enable a simple strategy for preventing thread interference and memory consistency errors: if an object is visible to more than one thread, all reads or writes to that object's variables are done through synchronized methods. (An important exception: final fields, which cannot be modified after the object is constructed, can be safely read through non-synchronized methods, once the object is constructed) This strategy is effective, but can present problems with liveness, as we'll see later in this lesson.
Q1. Is the above statements mean that if an object of a class is going to be shared among multiple threads, then all instance methods of that class (except getters of final fields) should be made synchronized, since instance methods process instance variables?
In order to understand concurrency in Java, I recommend the invaluable Java Concurrency in Practice.
In response to your specific question, although synchronizing all methods is a quick-and-dirty way to accomplish thread safety, it does not scale well at all. Consider the much maligned Vector class. Every method is synchronized, and it works terribly, because iteration is still not thread safe.
No. It means that synchronized methods are a way to achieve thread safety, but they're not the only way and, by themselves, they don't guarantee complete safety in all situations.
Not necessarily. You can synchronize (e.g. place a lock on dedicated object) part of the method where you access object's variables, for example. In other cases, you may delegate job to some inner object(s) which already handles synchronization issues.
There are lots of choices, it all depends on the algorithm you're implementing. Although, 'synchronized' keywords is usually the simplest one.
edit
There is no comprehensive tutorial on that, each situation is unique. Learning it is like learning a foreign language: never ends :)
But there are certainly helpful resources. In particular, there is a series of interesting articles on Heinz Kabutz's website.
http://www.javaspecialists.eu/archive/Issue152.html
(see the full list on the page)
If other people have any links I'd be interested to see also. I find the whole topic to be quite confusing (and, probably, most difficult part of core java), especially since new concurrency mechanisms were introduced in java 5.
Have fun!
In the most general form yes.
Immutable objects need not be synchronized.
Also, you can use individual monitors/locks for the mutable instance variables (or groups there of) which will help with liveliness. As well as only synchronize the portions where data is changed, rather than the entire method.
synchronized methodName vs synchronized( object )
That's correct, and is one alternative. I think it would be more efficient to synchronize access to that object only instead synchronize all it's methods.
While the difference may be subtle, it would be useful if you use that same object in a single thread
ie ( using synchronized keyword on the method )
class SomeClass {
private int clickCount = 0;
public synchronized void click(){
clickCount++;
}
}
When a class is defined like this, only one thread at a time may invoke the click method.
What happens if this method is invoked too frequently in a single threaded app? You'll spend some extra time checking if that thread can get the object lock when it is not needed.
class Main {
public static void main( String [] args ) {
SomeClass someObject = new SomeClass();
for( int i = 0 ; i < Integer.MAX_VALUE ; i++ ) {
someObject.click();
}
}
}
In this case, the check to see if the thread can lock the object will be invoked unnecessarily Integer.MAX_VALUE ( 2 147 483 647 ) times.
So removing the synchronized keyword in this situation will run much faster.
So, how would you do that in a multithread application?
You just synchronize the object:
synchronized ( someObject ) {
someObject.click();
}
Vector vs ArrayList
As an additional note, this usage ( syncrhonized methodName vs. syncrhonized( object ) ) is, by the way, one of the reasons why java.util.Vector is now replaced by java.util.ArrayList. Many of the Vector methods are synchronized.
Most of the times a list is used in a single threaded app or piece of code ( ie code inside jsp/servlets is executed in a single thread ), and the extra synchronization of Vector doesn't help to performance.
Same goes for Hashtable being replaced by HashMap
In fact getters a should be synchronized too or fields are to be made volatile. That is because when you get some value, you're probably interested in a most recent version of the value. You see, synchronized block semantics provides not only atomicity of execution (e.g. it guarantees that only one thread executes this block at one time), but also a visibility. It means that when thread enters synchronized block it invalidates its local cache and when it goes out it dumps any variables that have been modified back to main memory. volatile variables has the same visibility semantics.
No. Even getters have to be synchronized, except when they access only final fields. The reason is, that, for example, when accessing a long value, there is a tiny change that another thread currently writes it, and you read it while just the first 4 bytes have been written while the other 4 bytes remain the old value.
Yes, that's correct. All methods that modify data or access data that may be modified by a different thread need to be synchronized on the same monitor.
The easy way is to mark the methods as synchronized. If these are long-running methods, you may want to only synchronize that parts that the the reading/writing. In this case you would definie the monitor, along with wait() and notify().
The simple answer is yes.
If an object of the class is going to be shared by multiple threads, you need to syncronize the getters and setters to prevent data inconsistency.
If all the threads would have seperate copy of object, then there is no need to syncronize the methods. If your instance methods are more than mere set and get, you must analyze the threat of threads waiting for a long running getter/setter to finish.
You could use synchronized methods, synchronized blocks, concurrency tools such as Semaphore or if you really want to get down and dirty you could use Atomic References. Other options include declaring member variables as volatile and using classes like AtomicInteger instead of Integer.
It all depends on the situation, but there are a wide range of concurrency tools available - these are just some of them.
Synchronization can result in hold-wait deadlock where two threads each have the lock of an object, and are trying to acquire the lock of the other thread's object.
Synchronization must also be global for a class, and an easy mistake to make is to forget to synchronize a method. When a thread holds the lock for an object, other threads can still access non synchronized methods of that object.

Categories