How to handle many jpa entities in one request (OpenSessionInView) - java

we have classic Spring application with OpenSessionInView pattern.
Sometimes we want proces many (=unknown size) entities in one request.
This is well-known OutOfMemory issue.
Long time ago, we create function(hack) to switch current hibernate session for particular method.
public void proceedOnePerson(int id) {
recalculateVAT(id);
}
public void proceedAllPerson(int[] ids) {
for(int id : ids) {
switchToAnotherHibernateSesion();
recalculateVAT(id); //OutOfMemory
closeAnotherSessionAndSwitchBackToOriginSession();
}
}
Is there standard solution to this in Spring, Spring Boot or Spring Data?
Session.clear is not suitable, because has side effect on other entities from other methods.
Session.evict is not suitable too, because developer of method recalculateVAT had no idea if this function will be used in batch. Error prone.
Spring batch is too heavy. And we dont want to write one method for user and second method for batch.

I think you are trying to use Open Session in view pattern, performance of this pattern is very poor, and view layer is nos prepared to manage hibernate or other jpa implement exception. Why don't you use spring data with a service layer transforming pojos objects to dto to be consumed by view layer?
OutOfMemory is typicall when you use this pattern when you are getting a lot of data información with multiples queries, if you do not use this patter this problem will disapear.

Related

DDD implementation with Spring Data and JPA + Hibernate problem with identities

So I'm trying for the first time in a not so complex project to implement Domain Driven Design by separating all my code into application, domain, infrastructure and interfaces packages.
I also went with the whole separation of the JPA Entities to Domain models that will hold my business logic as rich models and used the Builder pattern to instantiate. This approach created me a headache and can't figure out if Im doing it all wrong when using JPA + ORM and Spring Data with DDD.
Process explanation
The application is a Rest API consumer (without any user interaction) that process daily through Scheduler tasks a fairly big amount of data resources and stores or updates into MySQL. Im using RestTemplate to fetch and convert the JSON responses into Domain objects and from there Im applying any business logic within the Domain itself e.g. validation, events, etc
From what I have read the aggregate root object should have an identity in their whole lifecycle and should be unique. I have used the id of the rest API object because is already something that I use to identify and track in my business domain. I have also created a property for the Technical id so when I convert Entities to Domain objects it can hold a reference for the update process.
When I need to persist the Domain to the data source (MySQL) for the first time Im converting them into Entity objects and I persist them using the save() method. So far so good.
Now when I need to update those records in the data source I first fetch them as a List of Employees from data source, convert Entity objects to Domain objects and then I fetch the list of Employees from the rest API as Domain models. Up until now I have two lists of the same Domain object types as List<Employee>. I'm iterating them using Streams and checking if an objects are not equal() between them if yes a collection of List items is created as a third list with Employee objects that need to be updated. Here I've already passed the technical Id to the domain objects in the third list of Employees so Hibernate can identify and use to update the records that are already exists.
Up to here are all fairly simple stuff until I use the saveAll() method to update the records.
Questions
I alway see Hibernate using INSERT instead of updating the list of
records. So If Im correct Hibernate session is not recognising the
objects that Im throwing into it because I have detached them when I
used the convert to domain object?
Does anyone have a better idea how can I implement this differently or fix
this problem?
Or should I stop using this approach as two different objects and continue use
them as rich Entity models?
Simple classes to explain it with code
EmployeeDO.java
#Entity
#Table(name = "employees")
public class EmployeeDO implements Serializable {
#Id
#GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String name;
public EmployeeDO() {}
...omitted getter/setters
}
Employee.java
public class Employee {
private Long persistId;
private Long employeeId;
private String name;
private Employee() {}
...omitted getters and Builder
}
EmployeeConverter.java
public class EmployeeConverter {
public static EmployeeDO serialize(Employee employee) {
EmployeeDO target = new EmployeeDO();
if (employee.getPersistId() != null) {
target.setId(employee.getPersistId());
}
target.setName(employee.getName());
return target;
}
public static Employee deserialize(EmployeeDO employee) {
return new Country.Builder(employee.getEmployeeId)
.withPersistId(employee.getId()) //<-- Technical ID setter
.withName(employee.getName())
.build();
}
}
EmployeeRepository.java
#Component
public class EmployeeReporistoryImpl implements EmployeeRepository {
#Autowired
EmployeeJpaRepository db;
#Override
public List<Employee> findAll() {
return db.findAll().stream()
.map(employee -> EmployeeConverter.deserialize(employee))
.collect(Collectors.toList());
}
#Override
public void saveAll(List<Employee> employees) {
db.saveAll(employees.stream()
.map(employee -> EmployeeConverter.serialize(employee))
.collect(Collectors.toList()));
}
}
EmployeeJpaRepository.java
#Repository
public interface EmployeeJpaRepository extends JpaRepository<EmployeeDO, Long> {
}
I use the same approach on my project: two different models for the domain and the persistence.
First, I would suggest you to don't use the converter approach but use the Memento pattern. Your domain entity exports a memento object and it could be restored from the same object. Yes, the domain has 2 functions that aren't related to the domain (they exist just to supply a non-functional requirement), but, on the other side, you avoid to expose functions, getters and constructors that the domain business logic never use.
For the part about the persistence, I don't use JPA exactly for this reason: you have to write a lot of code to reload, update and persist the entities correctly. I write directly SQL code: I can write and test it fast, and once it works I'm sure that it does what I want. With the Memento object I can have directly what I will use in the insert/update query, and I avoid myself a lot of headaches about the JPA of handling complex tables structures.
Anyway, if you want to use JPA, the only solution is to:
load the persistence entities and transform them into domain entities
update the domain entities according to the changes that you have to do in your domain
save the domain entities, that means:
reload the persistence entities
change, or create if there're new ones, them with the changes that you get from the updated domain entities
save the persistence entities
I've tried a mixed solution, where the domain entities are extended by the persistence ones (a bit complex to do). A lot of care should be took to avoid that domain model should adapts to the restrictions of JPA that come from the persistence model.
Here there's an interesting reading about the splitting of the two models.
Finally, my suggestion is to think how complex the domain is and use the simplest solution for the problem:
is it big and with a lot of complex behaviours? Is expected that it will grow up in a big one? Use two models, domain and persistence, and manage the persistence directly with SQL It avoids a lot of caos in the read/update/save phase.
is it simple? Then, first, should I use the DDD approach? If really yes, I would let the JPA annotations to split inside the domain. Yes, it's not pure DDD, but we live in the real world and the time to do something simple in the pure way should not be some orders of magnitude bigger that the the time I need to to it with some compromises. And, on the other side, I can write all this stuff in an XML in the infrastructure layer, avoiding to clutter the domain with it. As it's done in the spring DDD sample here.
When you want to update an existing object, you first have to load it through entityManager.find() and apply the changes on that object or use entityManager.merge since you are working with detached entities.
Anyway, modelling rich domain models based on JPA is the perfect use case for Blaze-Persistence Entity Views.
Blaze-Persistence is a query builder on top of JPA which supports many of the advanced DBMS features on top of the JPA model. I created Entity Views on top of it to allow easy mapping between JPA models and custom interface defined models, something like Spring Data Projections on steroids. The idea is that you define your target structure the way you like and map attributes(getters) via JPQL expressions to the entity model. Since the attribute name is used as default mapping, you mostly don't need explicit mappings as 80% of the use cases is to have DTOs that are a subset of the entity model.
The interesting point here is that entity views can also be updatable and support automatic translation back to the entity/DB model.
A mapping for your model could look as simple as the following
#EntityView(EmployeeDO.class)
#UpdatableEntityView
interface Employee {
#IdMapping("persistId")
Long getId();
Long getEmployeeId();
String getName();
void setName(String name);
}
Querying is a matter of applying the entity view to a query, the simplest being just a query by id.
Employee dto = entityViewManager.find(entityManager, Employee.class, id);
The Spring Data integration allows you to use it almost like Spring Data Projections: https://persistence.blazebit.com/documentation/entity-view/manual/en_US/index.html#spring-data-features and it can also be saved back. Here a sample repository
#Repository
interface EmployeeRepository {
Employee findOne(Long id);
void save(Employee e);
}
It will only fetch the mappings that you tell it to fetch and also only update the state that you make updatable through setters.
With the Jackson integration you can deserialize your payload onto a loaded entity view or you can avoid loading alltogether and use the Spring MVC integration to capture just the state that was transferred and flush that. This could look like the following:
#RequestMapping(path = "/employee/{id}", method = RequestMethod.PUT, consumes = MediaType.APPLICATION_JSON_VALUE)
public ResponseEntity<String> updateEmp(#EntityViewId("id") #RequestBody Employee emp) {
employeeRepository.save(emp);
return ResponseEntity.ok(emp.getId().toString());
}
Here you can see an example project: https://github.com/Blazebit/blaze-persistence/tree/master/examples/spring-data-webmvc

JAX-WS Webservice with JPA transactions

I'm going to become mad with JPA...
I have a JAX-WS Webservice like that
#WebService
public class MyService
{
#EJB private MyDbService myDbService;
...
System.out.println(dmrService.read());
...
}
My EJB contains
#Stateless
public class MyDbService
{
#PersistenceContext(unitName="mypu")
private EntityManager entityManager;
public MyEntity read()
{
MyEntity myEntity;
String queryString = "SELECT ... WHERE e.name = :type";
TypedQuery<MyEntity> query = entityManager.createQuery(queryString,MyEntity.class);
query.setParameter("type","xyz");
try
{
myEntity= query.getSingleResult();
}
catch (Exception e)
{
myEntity= null;
}
return myEntity;
}
In my persistence.xml the mypu has transaction-type="JTA" and a jta-data-source
If I call the webservice, it's working. The entity is retrieved from the db.
Now, using an external tool, I'm changing the value of one field in my record.
I'm calling the webservice again and ... the entity displayed contains the old value.
If I'm deploying again, or if I'm adding a entityManager.refresh(myEntity) after the request, I have the good value again.
In #MyTwoCents answer, Option 2 is to NOT use your 'external' tool for changes, use your application instead. Caching is of more use if your application knows about all the changes going on, or has some way of being informed of them. This is the better option, but only if your application can be the single access point for the data.
Forcing a refresh, via EntityManager.refresh() or through provider specific query hints on specific queries, or by invalidating the cache as described here https://wiki.eclipse.org/EclipseLink/Examples/JPA/Caching#How_to_refresh_the_cache is another option. This forces JPA to go past the cache and access the database on the specific query. Problems with this are you must either know when the cache is stale and needs to be refreshed, or put it on queries that cannot tolerate stale data. If that is fairly frequent or on every query, then your application is going through all the work of maintaining a cache that isn't used.
The last option is to turn off the second level cache. This forces queries to always load entities into an EntityManager from the database data, not a second level cache. You reduce the risk of stale data (but not eliminate it, as the EntityManager is required to have its own first level cache for managed entities, representing a transactional cache), but at the cost of reloading and rebuilding entities, sometimes unnecessarily if they have been read before by other threads.
Which is best depends entirely on the application and its expected use cases.
Don't be mad its fine
Flow goes like this.
You fired a query saying where type="xyz"
Now Hibernate keeps this query or state in cache so that if you fire query again it will return same value if state is not changes.
Now you are updating detail from some external resource.
Hibernate doesnt have any clue about that
So when you fire query again it returns from catch
When you do refresh, hibernate gets detail from Database
Solution :
So you can either add refresh before calling get call
OR
Change the Table value using Hibernate methods in Application so that Hibernate is aware about changes.
OR
Disable Hibernate cache to query each time from DB (not recommended as it will slow down stuff)

Does Playframework (Ebean ORM ) support managed enties

I started working on a new project using Playframework and thought to try using it with Ebean ORM. What i am wondering now is if Play with the Ebean implementation supports managed entities and if so ..how? Take this example method from the controller:
#Transactional
public Result changePassword() {
Long userId = Long.valueOf(session("id"));
User user = User.find.byId(userId);
user.setName("John Doe");
}
Is there any way to persist the changes to the database when the transaction ends? Currently what i am doing is calling user.save(). This is not much but working with JEE/JPA (and recently Dropwizard) i got used to have my entities changes persisted when the transaction ends.
No, I don't think Play natively supports something like auto save transaction as you want. Explicit save method is the only option.
Ebean.save(xyz);
General suggestion on your code, From Play 2.3.x, In your case, No need to annotate or explicitly mention the transaction, if Save is the only action on User EBean. By default each action on EBeans will be executed in separate transactions. Can specify the transaction explicitly if multiple actions need to be executed in single transaction.

Hibernate: Accessing created entity from different transaction

I am having quite complex methods which create different entities during its execution and use them. For instance, I create some images and then I add them to an article:
#Transactional
public void createArticle() {
List<Image> images = ...
for (int i = 0; i < 10; i++) {
// creating some new images, method annotated #Transactional
images.add(repository.createImage(...));
}
Article article = getArticle();
article.addImages(images);
em.merge(article);
}
This correctly works – images have their IDs and then they are added to the article. The problem is that during this execution the database is locked and nothing can be modified. This is very unconvinient because images might be processed by some graphic processor and it might take some time.
So we might try to remove the #Transactional from the main method. This could be good.
What happens is that images are correctly created and have their ID. But once I try to add them to article and call merge, I get javax.persistence.EntityNotFoundException for Image with ID XXXX. The entity manager can't see that the image was created and have its ID. So the database is not locked, but we can't do anything either.
So what can I do? I don't want to have the database locked during the whole execution and I want to be able to access the created entities!
I am using current version of Spring and Hibernate, everything defined by Annotations. I don't use session factory, I am accessing everything via javax.persistence.EntityManager.
Consider leveraging the Hibernate cascading functionality for persisting object trees in one go with minimal database locking:
#Entity
public class Article {
#OneToMany(cascade=CascadeType.MERGE)
private List<Images> images;
}
#Transactional
public void createArticle() {
//images created as Java objects in memory, no DAOs called yet
List<Image> images = ...
Article article = getArticle();
article.addImages(images);
// cascading will save the article AND the images
em.merge(article);
}
Like this the article AND it's images will get persisted at the end of the transaction in a single transaction with a minimal lifetime. Up until then no locking occurred on the database.
Alternativelly split the createArticle in two #Transactional business methods, one createImages and the other addImagesToArticle and call them one after the other in a third method in another bean:
#Service
public class OtherBean {
#Autowired
private YourService yourService;
// note that no transactional annotation is used, this is intentional
public otherMethod() {
yourService.createImages(); // first transaction - images are committed
yourService.addImagesToArticle(); // second transaction - images are added to article
}
}
You could try setting the transaction isolation on your datasource to READ_UNCOMMITTED, though that can lead to inconsistencies so it is generally not a recommended thing to do.
My best guess is that your transaction isolation level is SERIALIZABLE. That's why the DB locks affected tables for the whole duration of a transaction.
If that's the case change the level to READ_COMMITTED. Hibernate (or any JPA provider) works nicely with this one.
It won't lock anything unless you explicitly call entityManager.lock(someEntity, LockModeType.SomeLockType))
Also when you choose transaction boundaries firstly think in terms of atomicity. If createArticle() is an atomic unit of work it just has to be made transactional, breaking it into smaller transactions for the sake of 'optimization' is wrong.

JPA equivalent for Hibernate filters

Does an equivalent for the Hibernate filters exist in the JPA?
The following hibernate annotation can be for example used in order to define a filter:
#Entity
#FilterDef(name="minLength", parameters=#ParamDef( name="minLength", type="integer" ) )
#Filters( {
#Filter(name="betweenLength", condition=":minLength <= length and :maxLength >= length"),
#Filter(name="minLength", condition=":minLength <= length")
} )
public class Forest { ... }
I would like to use something equivalent from JPA in order to restrict read access to some entities. How it can be done using clean JPA, without Hibernate annotations?
I didn't find any serious and reliable solution.
I analysed the "JPA Security" project. However, its home page was last updated two years ago, its last version is 0.4.0 and it doesn't seem to be a reliable solution. It's not a standard and it is not popular.
Other alternative in Hibernate which can be used in my case to restrict read access to an entity is the Hibernate Interceptor API - the following interface method can be implemented in order to append a SQL string which contains some additional conditions:
org.hibernate.Interceptor.onPrepareStatement(String sql)
or the following method can be overriden:
org.hibernate.EmptyInterceptor.onPrepareStatement(String sql)
I found out that there are some JPA event callbacks and annotations, e.g. #PostLoad. However, none of these can be used in my case, because I need something to restrict access to entities based on some conditions (user role).
Anyone knows how it can be done using JPA standards?
It seems to me that you are attempting to perform validations on entity objects. You have a few options to accomplish this.
The first would be to use the Java Validations API and its associated validations. This is the recommended approach with Java EE, of which JPA is a part. For example, you could write your entity class as follows:
#Entity
class Person {
#NotNull
#Size(min = 5, Max = 50)
String name;
}
Now, every time you attempt to persist an instance of Person, the JPA provider will automatically validate the instance, provided there is a Java Validator on the classpath. Validation errors will be thrown as runtime exceptions and can be used to rollback transactions. It is also possible to invoke a validator manually, collect any validation errors and transform them into user-friendly messages if required.
The other (probably dirty) option is to use the JPA Event Listeners, perform validations and throw an exception if a validation fails. This will terminate the JPA operation immediately and rollback any transactions.

Categories