Which pattern could I use for a game with complex rules? - java

I'm creating a 2D turn-based multiplayer (no AI) board game in Java using the MVC pattern in which there are a lot of rules and conditions, I can't figure out a good pattern to implement them, for example:
The player can choose a character from a pool of 12: They have similarities between them but each character could move differently, could use different items, etc.
The movement ability, which could already be different based on the character, could change during the game by using items (for just one turn) or after some events (for all the game). For example moving by 3 cells instead of 2.
All these rules could be different based on the selected game-mode which could also change the winning conditions and some game strategies.
Which patterns could be suitable for this? Especially the fact that different characters could have different behaviors depending also on the gamemode and the state of the game.
I know there are already a lot of questions on game patterns on SO but I could not find something suitable to this.

If I had to design this game, I would try to identify different objects that are hidden in the problem statement as follows :
The player can choose a character from a pool of 12
Hmmm. So I am going to need a Player and Character class.
They have similarities between them but each character could move
differently, could use different items
Ok. So there is behavior that is common to each Character but Characters can also have additional behavior that is different from the common behavior. Let's add methods in Character for each behavior that is common across characters.
But what about the behavior that is only applicable for a particular type of Character? Ok so I definitely need a way to add behavior to my characters at runtime.
Hmmmm. Let's create an interface called Behavior which contains a method called.. umm.. behave. Let's create a couple of classes that implement this interface and implement the behave method.
So far so good. We have a Character class that can be used to instantiate one of 12 characters. We have a Behavior hierarchy for additional behaviors not common across characters. We now need to make these two classes work together in such a way that we can add behavior at runtime. Throughout my career, I have been told to favor composition over inheritance. So I guess I am going to make character have-a Behavior by adding a Behavior reference in Character. There is a name for this pattern.. this is the Strategy pattern.
The most important take-away from the above explanation is that you don't look at a problem and say what design pattern can I apply?. Instead, you come up with an initial draft of what your design will be like and say this looks like the XYZ pattern
There are lot of requirements that I have not covered in this answer. The idea of this answer is to explain to you the kind of thought process you can put in to come up with an initial draft of your design and keep evolving it rather than over-designing right at the beginning.

Take a look at ECS (entity component system) architectural pattern and DDD methodology. DDD was created specifically for application with complex domain logic and games usually has it.
Some useful links:
http://en.wikipedia.org/wiki/Entity_component_system
http://en.wikipedia.org/wiki/Domain-driven_design
To fully understand DDD you HAVE TO read Eric Evans book called Domain Driven Design.

Related

What design pattern is good for applying attributes to a class that changes its behavior?

I am trying to find the best way to structure my project. What I would like to do is have a "Structure", which is made of multiple "part". These parts also will have separate attributes, for example it could be spinning, hovering, vibrating, jumping, shaking, growing, accelerating.
So for example, I might have a "structure" called human that is made of 6 "parts". I am going to set each part to one of the available options, so in this case, 2 parts are going to be arms, 2 parts are going to be legs, one part is a torso, and one part is a head. Now, I want to be able to apply the attribute spinning to one of the parts, the arm. So now I should have a human with a spinning arm.
Additionally, I would like other people to be able to create their own cusom attributes, structures, and parts.
I would like to get an idea on how I should structure my code, and apply an attribute to a part. Additionally, what design pattern would be good for this?
The requirement is to have a single interface for a composition of various objects / components.
There are 2 suitable design patterns for this requirement.
Facade (https://dzone.com/refcardz/design-patterns?chapter=17)
Composite Object (https://dzone.com/refcardz/design-patterns?chapter=15)
Facade pattern can be used when the way in which the internal components are assembled must be abstracted.
Composite object pattern can be used when the assembly of the components must be advertised.

Elegant code when there are many subclasses?

I have an interesting programming problem that has had me stumped for days. Some context to aid my questions:
Currently I am writing a game that uses a Material Emum to hold all the materials needed in the game ie Material.DIRT, Material.WATER, Material.CLOTH ...
However I wish to make the code as modifiable as possible and have the ability that should someone want to extend the game to add new materials they can do so. Thus my current Enum system breaks down and so I have attempted to switch to a Class/Subclass system. I have found two ways to do this, they are explained below with their pros and cons.
Case 1 - Having an abstract Material class and subclassing.
Thus every material would extend Material. This is advantageous as we can now "group" like materials together ie Fabric could extend Material and then Wool and Cotton etc extend this. The problem with this is that for every material there has to exist a class and with so little parameters for each material it feels like a waste. If there is 1000 materials there would be 1000 classes all with virtually nothing in them. I could cut this down by having anonymous classes but now the code has no way to differentiate one material from the other. I could use an id system which is the major problem with case 2.
The question for case 1 is:
Is there a more elegant way of doing this?
Case 2 - Having a single Material class and instantiating each new material as an instance of this class defining each material with a different id/name. This saves a lot of writing and also allows us to differentiate between materials. The problem with this is now we have an id system, what do we base this system on? Strings, ints? I ask this because I am always keen to have a complex free system that avoids using hardcoded strings and ints in the code. This is why I like the enums as there is no worry of typesetting. Another problem is users wanting to add new materials could have conflicting ids with other users.
My question for case 2 is:
Is there a full proof method of being able to differentiate instances uniquely and consistently (is the same every runtime)?
Thank you for reading. Any help or methods on how best to do this would be most appreciated.
Edit: I should note that some materials may have methods and behaviours associated with them. Some behaviours may be unique to certain materials and some that are similar for a "group".
Use a configuration file with all the materials in it, written in some DSL (simple table, basically).

Inheritance/Interface design of a game

I'm designing a game, but I can't quite get my head around the inheritance structure. I'm normally fairly good at it, but this one just has too much overlap and I can't decide on it all.
I'm seeking to model sailing vessels - think the Age of Sail. Presumably therefore everything extends a Vessel class.
There are then several types of vessel style: rowed (galleys, canoes), square-rig, fore-and-aft rig, with different behaviour. Each of these is further subdivided into several other types. I can't decide whether this should be a series of interfaces or extensions of Vessel. Note also that there can be some cross over (a vessel can be both rowed and square rigged) which leads me to think interfaces?
Ships also have different behaviours: merchant vessels, men of war, privateer, pirates. I really can't work out whether this should be an interface or an extension of another class. There is no crossover of type in this case, however.
Finally there are several behaviours which individual ships can have. Merchants may be in a convoy (defend themselves) or independent (run away). Men of war almost always attack unless heavily outgunned... but may work in fleets, squadrons or independently. Privateers and pirates only attack if weaker - usually independently but occasionally in pairs. I'm assuming that this should be an interface too?
My big problem is that each style of ship (frigate, battleship etc) can fulfil almost any of these roles, so I can't build a simple solid inheritance structure. Frigate can't extend man-o-war because some are privateers. Sloop can't extend square rigged because some are fore and aft rigged. etcetc.
Any thoughts would be appreciated, I'm at a bit of a loose end.
Thanks
Make the "behavior" part as interfaces. That will help you assigning different behaviors to different ships without problem. Strategy Pattern is helpful here. In a nutshell, it states that the changeable and the constant properties should be separated.
For different means of movements, composition sounds like the most suitable answer at this moment.
Regarding the "but may work in fleets, squadrons or independently. Privateers and pirates only attack if weaker - usually independently but occasionally in pairs." part, I guess this has nothing to do with the inheritance tree. You can make "groups" of classes depending up on your need.
This might help you:
"There are then several types of vessel style:..." is specifying different possible behaviors. So "Movable" interface and its subclasses are for that. In the "Vessel" class, you can have a member of type "Movable". Since "Movable" is an interface, any class which implements it, is assignable to this member. So any subclass of Vessel can have any possible behavior, which we cna change at runtime as well. You can also make it an ArrayList. (Not sure if you actually want to do it or not). But if you need multiple different behaviors for a same vessel, you can do it.
When you say "Ships also have different behaviours:..." it feels like separate classes extending Vessel will satisfy this requirement. The sentence "There is no crossover of type in this case, however." makes life easier.
For the nest para "Finally there are several behaviours which individual ships can have...", you should add one more member for different possible behaviors. It will mostly be an ArrayList as one vessel will have multiple attack modes.
Fro the last para, if you can give some more details, I may be able to give some more ideas.
Ok, here are some ideas:
Vessels have one or more means of propulsion (oars, sails, etc.), which you can model by composition (e.g. have a list of propulsion methods).
Vessels use one of a variety of strategies (use the strategy pattern -- see http://en.wikipedia.org/wiki/Strategy_pattern -- for this)
Strategies which depend on the presence of other nearby ships will need some way of querying for those other ships -- so you'll need some sort of data structure that allows you to find which objects are near which other objects (look into the sort of data structures that are used for broad-phase collision detection)
As an alternative to the strategy pattern, you could switch to using a component-based design. In this setup, a vessel would be composed of one or more propulsion components, a strategy component, etc. You could then combine individual components as you see fit to make different vessels.
As an extra bonus, component-based designs are very helpful if you want your game to be data-driven, because you can just write a saver/loader for each different type of component, rather than for each possible type of vessel.
You might want to see here if you're interested in this sort of approach:
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/
I want to provide a bit of advice based on the second paragraph of Bhusan's answer, which I quote here in full:
"Regarding the "but may work in fleets, squadrons or independently. Privateers and pirates only attack if weaker - usually independently but occasionally in pairs." part, I guess this has nothing to do with the inheritance tree. You can make "groups" of classes depending up on your need."
This leads me to believe that you additionally may want to consider the Composite pattern for certain groups of ships, at least those that are comprised of ships that all share the same behavior. See http://en.wikipedia.org/wiki/Composite_pattern where it is written that "the composite pattern describes that a group of objects are to be treated in the same way as a single instance of an object."
For instance you say "Merchants may be in a convoy (defend themselves)", but presumably they can defend themselves individually as well? This is all easier said than done of course, and my advice to you is to not over-think it and start with a very small subset of what you want to do as a protoype
You should separate the types and use the strategy pattern.
Immutable properties should be bound to the inheritance tree (e.g. a frigate won't turn into canoe, these are exact, non-behavioral types, inheriting from vessel) and everything that may change should be stored as references to behavioral types which are intrachangable. (Man-o-war is a behavioral type)
AI should be handled separately, for instance with states, but that is also have to be in a different module in your architecture.
Instead of thinking about it as strictly inheritance, I think you need to think about object Composition and how that can help make things easier.
For example: a Ship has a Behaviour. (Composition... the ship delegates to the behaviour to determine how to react to X situation)
A Pirate is a Behaviour (Inheritance from a Behaviour interface)...
You should not extend the Vessel class. Rather, a Vessel object should contain other objects that describe it. (This is known as Dependency Injection, to be annoyingly pedantic--forget I said that.) You have a Propulsion class, with instances for square-sails, fore-and-aft, and oars. You might want special instances of each for big and small hulls. You have a Behavior class to handle their attitude. Sometimes a simple integer works as well as a class. Your Armament class could be, instead, just a number of guns. (Or two numbers, one for poundage.) If you expect to ram, or have a ship loaded with rockets, or need to distinguish between long guns and carronades, you might need to go back to using the a class.
This lets you switch characteristics on the fly if you want--though you probably don't. Still, you can go from sail to using sweeps, or switch bold ship-of-the-line behavior with save-the-cargo behavior of a merchant to implement a captain losing his nerve. Anyway, it's there if you need it.

Splitting objects into their most fundamental parts

Not sure if the title captures what I'm trying to say here.
When designing in OO should I be splitting my objects up into their most specific areas - so if I have a factory object that deals with creating objects but later on i come across a way of creating objects for another purpose even though they may be the same objects is it worth creating a seperate fcatory or just add to the exsiting.
My biggest worry is bulking up classes with tons of stuff, or splitting objects and diluting my projects into a sea of classes.
Any help?
EDIT:
I guess on a side note/sub topic part of me wants to find out the level of granularity you should use in a program. Kind of, how low should you go?
My biggest worry is bulking up classes with tons of stuff, or
splitting objects and diluting my
projects into a sea of classes
This is a very valid point and in any even reasonably sized project, extremely difficult to get right up front especially because realistically, requirements themselves evolve over time in most cases.
This is where "Refactoring" come in. You design based on what you know at any given point and try not too make too many leaps of faith as to what you think the system MAY evolve to.
Given that you know what you are building right now, you design your classes trying to make the best possible use of OO concepts - eg encapsulation / polymorphism. This is itself, like others have noted as well, can be notoriously difficult to achieve and thats where experience, both in designing OO systems as well as knowledge of the domain can really come in handy.
Design based on what you know --> Build It --> Review it --> Refactor it --> Re-design --> and it goes on and on..
Finding the correct level of detail and responsibility is what makes OOP design so difficult. We can help you with a specific case but not with anything this general. If there were algorithms or strict methodologies of how to solve this, everyone could be an OOP designer.
A rule of thumb I like for deciding "is this getting too big now?" is "can I explain the purpose of it concisely?" If you start having to introduce caveats and lots of weasel words to explain the functions of a component of your design (be it class, member variable, method or whatever) it might be a good indicator that it's getting too complex and should be split up.
In your specific case, if you already have a factory object then the DRY Principle (Don't Repeat Yourself) would say that it's a bad idea to create another factory that does the same thing.
Is this an actual problem that you face? Or merely a fear about how your code might grow in the future?
If you are using the same type of object to solve drastically different problems then you may need to redesign the class to focus on seperation of concerns. If you need a more specific answer, you will need to provide an example of a type of class that would need this functionality.
I might have worded things badly in
the Q. I guess I wouldnt be repeating
myself its just more of a case of
where to put the code, it could be
added to an exsiting factory that
creates design objects for exporing
data to excel spreadsheets. On the
other hand I could see it could also
have its own factory for importing
excel data. Both factories would
produce the same objects but the inner
workings are completely different. –
If you aren't doing or plan on doing any class abstraction (subclassing or using interfaces) you may not need to use the factory pattern at all. The factory pattern is generally best suited for supplying objects of a base class type or that implement a specific interface.
Both
factories would produce the same
objects but the inner workings are
completely different.
Not sure if I've understood you correctly, but this sounds like a candidate for the AbstractFactory pattern.

OO vs Simplicity when it comes to user interaction

As a project over summer while I have some downtime from Uni I am going to build a monopoly game. This question is more about the general idea of the problem however, rather than the specific task I'm trying to carry out.
I decided to build this with a bottom up approach, creating just movement around a forty space board and then moving on to interaction with spaces. I realised that I was quite unsure of the best way of proceeding with this and I am torn between two design ideas:
Giving every space its own object, all sub-classes of a Space object so the interaction can be defined by the space object itself. I could do this by implementing different land() methods for each type of space.
Only giving the Properties and Utilities (as each property has unique features) objects and creating methods for dealing with the buying/renting etc in the main class of the program (or Board as I'm calling it). Spaces like go and super tax could be implemented by a small set of conditionals checking to see if player is on a special space.
Option 1 is obviously the OO (and I feel the correct) way of doing things but I'd like to only have to handle user interaction from the programs main class. In other words, I don't want the space objects to be interacting with the player.
Why? Errr. A lot of the coding I've done thus far has had this simplicity but I'm not sure if this is a pipe dream or not for larger projects. Should I really be handling user interaction in an entirely separate class?
As you can see I am quite confused about this situation. Is there some way round this? And, does anyone have any advice on practical OO design that could help in general?
EDIT: Just like to note that I feel I lost a little focus on this question. I am interested in the general methodology of combining OO and any external action(command line, networking, GUI, file management etc) really.
In the end, it is up to you. That is the beauty of OO, in that it is subject to interpretation. There are some patterns that should usually be adhered to, but in general it is your decision how to approach it.
However, you should carefully consider what each actor in the system should know about the rest of it. Should a property really know about the player, his account balance, and the other players? Probably not. A property should know what it costs, how much its rent is, etc.
On the other hand, should the main playing thread be concerned about trivial matters such as paying rent? Probably not. Its main concern should be the state of the game itself, such as dice rolling, whether each player wants to trade or buy or unmortgage/mortgage, things like that.
Think for a moment about the action of landing on a square. Once landed, the player has 3 options:
Buy the property
Ignore the property
Pay rent
Now, which actor in the system knows all the information required to complete that. We have the Game class, which isn't concerned with such tedium. We have the Property, which doesn't really care about the players. But the Player object knows all this information. It keeps a record of what each player owns, and can easily access the proper data.
So, if it were me, I would make a Player.performMove(Die d) method. It has easy access to the accounts. This also allows for the least coupling among classes.
But in the end, it's up to you. I'm sure people have created Monopoly clones in perfect OO, as well as Functional or Procedural languages too. In the end, use what you know and keep refactoring until you're happy with the end design.
I agree option #1 seems better.
As for "user interaction" - it all depends. You could leave some of your code in another class. For example,
// in main class
user.landOn(space);
if (space.containsProperties()) doSomething(); // Option #1 for some user-interaction code
// in User.java
public void landOn(Space s) {
// do some checks
s.land(this);
if (s.containsProperties()) {...} // Option #2
// something else?
}
// in GetMoneySpace.java
#Override
public void land(User u) {
u.awardCash(200);
// Option #3 - no properties so nothing here
}
This is far more OOP-y (and better, in my opinion) than something like
if (space.isCashAwardSpace()) {
user.awardCash(space.getAward());
}
if (user.something()) doSomething(); // Some user-interaction code
I am not entirely sure if I understand it correctly. You have always such choice when designing software. I would personally go for the first choice. One argument is personal experience with small games (Scrabble), which prooved to me that good design matters for smaller projects as well. The point of OOP is that you can think differently about your design and you get some design benefits. For example imagine how hard it will be to add new field, change existing one, reuse behaviour of one field in multiple fields.
Your first approach is the one I'd go for. It encapsulates the behaviour where it's needed. So, you'd have Space subclasses for Utilities, Properties, GotoJail, FreeParking - basically all the different cateogires of spaces. What groups a category is it's common behaviour.
Your properties spaces may themselves have a group object as a member, e.g. to group all the dark blue properties together.
As to interaction with the user, you pass a Board (or better a GameController) instance to each space, so it knows which Game it is part of and can influence the game. The Space can then invoke specific actions on the board, such as, moving a piece, asking the user a question etc. The main point is that there is separation - the user interaction is not happening inside each Space - but the space is allowed to request that some interaction happens, or that a piece is moved. It's up to your GameController to actually do the interaction or move pieces etc. This separation makes it easy to test, and also provide alternative implementations as the need may arise (E.g. different game rules in different editions/countries?)
Go with the first design. You'd have a Property class, and subclass the special properties, overriding the default behavior.
As far as interaction, you could have a Token class, and move an instance of that around the board. You have to give the user some options, but yes, from the responses, you should be calling methods on objects, not putting complex logic in the user events.
Sample classes:
Property
name
price
baseRent
houseCount
hotelCount
mortgaged
getCurrentRent()
RailRoad extends Property
Utility extends Property
Board
properties
User
token
playerName
currentProperty
ownedProperties
buyProperty()
payRentOnProperty()
mortgageProperty()
move()
Option 2 doesn't make much sense, or at least it's not as clear to me as option 1. With option 1 you don't need to handle user interaction inside your space object. You could have in your main class or a separate class dedicated to handle user interaction:
public void move(Player p, int spaces){
Space landingSpace = board.getLandingSpace(p,spaces);
landingSpace.land(p); //apply your logic here
}
As you can see, the Space class is responsible for checking the Player p that intends to land on that space. It applies any custom logic, checks if it has enough money, if it's something that the player owns, etc. Each subclass of Space will have its own set of rules, as you described in option 1.
Part of the point of object-oriented design is to simplify the representation of the problem within the solution space (i.e., modeling the system in the computer). In this case, consider the relationships between objects. Is there enough functionality in a Space to warrant abstracting that into a class, or does it make more sense for there to be discrete Property and Utility classes unrelated to Space because of the unique features of both? Is a Property a special kind of Space, or merely a field within Space? These are the kinds of problems you probably will need to grapple with in designing the game.
As far as interaction, it's generally bad news for a design when you have a 'god class' that does all the work and merely asks the other classes for information. There are plenty of ways to fall into this trap; one way to determine whether you are dealing with a god class is to look for a class name including Manager or System. Thus, it's probably not the best idea to have some sort of "game manager" that asks all the other objects for data, makes all the changes, and keeps track of everything. Eliminate these as much as possible.
God classes violate the concept of encapsulation, which involves more than data hiding (though that's certainly a big part of it). Good encapsulation means that related methods and data are part of a single object. For example, a Property doesn't need to make requests of its owner, so a field containing a reference to the Player could violate encapsulation. Some of these encapsulation violations aren't obvious at all, and can be hard to spot. When designing the object, try to determine the smallest amount of information about the object that needs to be shared with external objects. Trim out anything unnecessary.
You can obviously go about this in a lot of ways, but my design would be something like this (iteration could certainly prove it wrong):
Space class that contains basic data and methods that are common to all spaces (such as their position on the board, occupied or not, etc.).
Subclasses moving from most common (Property and Utility) to most unique (Go, Jail, FreeParking, and so on; probably singletons) with fields and methods related to each.
Player class to contain player information.
GameState class that is concerned with game state; whose turn it is, how many houses are left in the bank, and so on.
Good luck with the game and your continued studies.
Naturally, Google is your friend, but here's a sampling of things I would recommend reading:
ATM simulation (this idea is
also discussed in Rebecca
Wirfs-Brock's book below)
Object-Oriented Design Heuristics - Arthur Riel
How Designs Differ (PDF), Designing Object-Oriented Software - Rebecca Wirfs-Brock

Categories