first java program is not working - java

I'm new in Java, it's my first attempt to write a program:
I need to write a program that prints the sum of all positive integers smaller
than 1000, that are divided by either 3 or 5.
Here is my (poorly) attempt. after compiling it is just receiving numbers and showing them :
import java.util.Scanner;
public class ex1 {
public static void main(String[] args) {
int num=1;
int count = 1;
while (count <=1000) {
if (count%3==0|count%5==0){
count = count+num;
count++;
}
}
System.out.println(count);
}
}

Given you used a while, I assume you don't know about for loops, so I'll avoid using it.
Your code should:
Your initial sum, before any number, is 0
Iterate (i.e. go through the values) the values from 1 to 1000
If the value is divisible by 3 or 5, add it to a sum.
Print the sum.
Point 1):
int sum = 0;
Point 2):
int value = 1;
while (value <= 1000) {
//do point 3
value++;
}
Point 3):
if ((value%3==0) || (value%5==0)) {
sum = sum + value;
}
Point 4):
System.out.println(sum);
Putting it all together:
int sum = 0;
int value = 1;
while (value <= 1000) {
if ((value%3==0) || (value%5==0)) {
sum = sum + value;
}
value++;
}
System.out.println(sum);
Your main error is in using count both for the sum and for the value check of the while condition. The misusage of the single pipe as or is also a mistake.
Hope this helps

public class Test {
public static void main(String[] args) {
int num=1;
int sum=0;
while (num <=1000) {
if (num%3==0||num%5==0){
sum = sum +num;
}
num++;
}
System.out.println(sum);
}
}

You have put your count++ inside if block. That means if the number is divisible by 3 or 5 then you are incrementing the count . Place it outside of your if block. I have re-write your code as follows -
import java.util.Scanner;
public class ex1 {
public static void main(String[] args) {
int sum = 0;
int count = 1;
while (count <=1000) {
if (count%3==0||count%5==0){
sum = sum + count;
}
count++;
}
System.out.println(sum);
}
}

Related

Program that displays every perfect number

My code runs but for one of the tests two outputs are printed when I only need one. I am unsure of how to avoid this.
This is the task:
Write an application that displays every perfect number from 2 through 1,000. A perfect number is one that equals the sum of all the numbers that divide evenly into it. For example, 6 is perfect because 1, 2, and 3 divide evenly into it and their sum is 6; however, 12 is not a perfect number because 1, 2, 3, 4, and 6 divide evenly into it, and their sum is greater than 12.
The provided template lays out the initial for loop to check each number beginning from 2 and going up to 1,000. In this for loop, the perfect() method is called, where you will submit your piece of code to test if each number follows the conditions described above.
Set result to true if it meets those conditions and use sum to add up the numbers divisible by int n in the method's parameter.
public class Perfect{
public static void main (String args[]){
final int MAX = 1000;
for(int i = 2; i <= MAX; i++)
if(perfect(i) == true)
System.out.println("The number " + i + " is perfect");
}
public static boolean perfect(int n){
int sum = 1;
int i;
boolean result = false;
for (i = 2; i < n / 2; i++) {
if (n % i == 0) {
sum += i;
}
}
if (sum == i) {
return true;
}
else {
return false;
}
}
}
My output:
The number 496 is perfect
The number 729 is perfect
Expected output:
The number 496 is perfect
It only expects the first line printed...
You need to compare sum to the original number n, not to i. And you need to add 1 to the loop condition or it will miss the last divider in even numbers
public static boolean perfect(int n){
int sum = 1;
for (int i = 2; i < (n / 2) + 1; i++) {
if (n % i == 0) {
sum += i;
}
}
return sum == n;
}
First, I don't know if you have used the correct formula. But, you should know that the first perfect number are 6, 28, 496 and 8128. 729 is not a perfect number.
Hope it helped.
public static void main(String[] args) {
int i, j, s;
System.out.println("Perfect numbers 1 to 1000: ");
for(i=1;i<=1000;i++){
s=0;
for(j=1;j<i;j++){
if(i%j==0){
s=s+j;
}
}
if(i==s){ //if i == s is perfect
System.out.println(i);
}
}
}
}
According to the question, you have to print all perfect numbers.
I have created a small snippet, try it and see.
public void printPerfect() {
for(int i=2;i<1000;i++) {
List<Integer> l =factors(i);
int sum =0;
for (Integer factor : l) {
sum+=factor;
}
if(sum==i) {
System.out.println("perfect-- " +i);
}
}
}
List<Integer> factors(int number) {
List<Integer> l = new ArrayList<Integer>();
for(int i = 1; i <= number; ++i) {
if (number % i == 0) {
if(i!=number)
l.add(i);
}
}
return l;
}
You checked sum == i instead of sum == n.
As 729 = 3^6 : 3, 243, 9, 81, 27.
public static boolean perfect(int n) {
int sum = 1;
for (int i = 2; i <= n / 2 && sum <= n; i++) {
if (n % i == 0) {
sum += i;
}
}
return sum == n;
}

Number trailing zeros in factorial in java

import java.util.Scanner;
import java.io.*;
class factorial {
void fact(int a) {
int i;
int ar[] = new int[10000];
int fact = 1, count = 0;
for (i = 1; i <= a; i++) {
fact = fact * i;
}
String str1 = Integer.toString(fact);
int len = str1.length();
i = 0;
do {
ar[i] = fact % 10;
fact /= 10;
i++;
} while (fact != 0);
for (i = 0; i < len; i++) {
if (ar[i] == 0) {
count = count + 1;
}
}
System.out.println(count);
}
public static void main(String...ab) {
int a;
Scanner input = new Scanner(System.in);
a = input.nextInt();
factorial ob = new factorial();
ob.fact(a);
}
}
This code is work up to a = 10 but after enter number larger then a = 16 it gives wrong answer.
Please help.
As I am not able to post this question if I dont add more info for this question but I assume that the info I provide above is enough to under stand what I want.
Like many of these mathematical puzzles, you are expected to simplify the problem to make it practical. You need to find how many powers of ten in a factorial, not calculate a factorial and then find the number of trailing zeros.
The simplest solution is to count the number of powers of five. The reason you only need to count powers of five is that there is plenty of even numbers in between then to make a 10. For example, 5! has one 0, 10! has 2, 15! has three, 20! has four, and 25! has not five but six as 25 = 5 * 5.
In short you only need calculate the number of powers of five between 1 and N.
// floor(N/5) + floor(N/25) + floor(N/125) + floor(N/625) ...
public static long powersOfTenForFactorial(long n) {
long sum = 0;
while (n >= 5) {
n /= 5;
sum += n;
}
return sum;
}
Note: This will calculate the trailing zeros of Long.MAX_VALUE! in a faction of a second, whereas trying this with BigInteger wouldn't fit, no matter how much memory you had.
Please Note, this is not the mathematical solution as others suggested, this is just a refactoring of what he had initially...
Here I just used BigInteger in place of Int, and simplified your code abit. Your solution is still not optimal. I thought I would just show you what a refactored version of what you posted may look like. Also there was a bug in your initial function. It returned the number of zeros in the whole number instead of just the number of trailing zeros.
import java.math.BigInteger;
import java.util.Scanner;
class factorial {
public static void main(String... ab) {
Scanner input = new Scanner(System.in);
int a = input.nextInt();
fact(a);
}
private static void fact(int a) {
BigInteger fact = BigInteger.ONE;
int i, count = 0;
for (i = 1; i <= a; i++) {
fact = fact.multiply(new BigInteger(Integer.toString(i)));
}
String str1 = fact.toString();
for(int j = str1.length() - 1; j > -1; j--) {
if(Character.digit(str1.charAt(j), 10) != 0) {
System.out.println(count);
break;
} else {
count++;
}
}
}
}
Without using factorial
public class TrailingZero {
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(trailingZeroes(9247));
}
public static int trailingZeroes(int a) {
int countTwo = 0;
int countFive = 0;
for (int i = a; i > 1; i--) {
int local = i;
while (local > 1) {
if (local % 2 != 0) {
break;
}
local = local / 2;
countTwo++;
}
while (local > 1) {
if (local % 5 != 0) {
break;
} else {
local = local / 5;
countFive++;
}
}
}
return Math.min(countTwo, countFive);
}}

sum of digits till the sum is one-digit number

I am a beginner java and trying to solve tricky problem
input=777
output should be 3
7+7+7=21 , 2+1=3;
From the above code if my input is 333 I am getting 9 as answer but when the sum is two digits(777=21) i am getting blank!
public static void main(String[] args)
{
int y=333;//if y is 777 i am getting blank
int sum=0;
String s;
char []ch;
do
{
s=String.valueOf(y);
ch=s.toCharArray();
if(ch.length>1)
{
for(int i=0;i<ch.length;i++)
{
sum+=Character.getNumericValue(ch[i]);
}
}
else
{
System.out.println(sum);
}
y=sum;
}while(ch.length>1);
}
your code maybe loop forever
the right solution is the following below
public static void main(String[] args) throws ParseException {
int y = 777;// if y is 777 i am getting blank
int sum = 0;
String s;
char[] ch;
do {
sum = 0;
s = String.valueOf(y);
ch = s.toCharArray();
if (ch.length > 1) {
for (int i = 0; i < ch.length; i++) {
sum += Character.getNumericValue(ch[i]);
}
} else {
System.out.println(ch[0]);
break;
}
y = sum;
} while (ch.length > 1);
}
Maybe the better choice is the following code
public static void main(String[] args) throws ParseException {
int y = 333;// if y is 777 i am getting blank
int sum = 0;
while (y % 10 != 0) {
sum += y %10;
y = y / 10;
if (0 == y && sum >= 10) {
y = sum;
sum = 0;
}
}
System.out.println(sum);
}
hope that helped
For a task like this, it is best practise to use recursion.
The workflow in pseudocode would look like this:
procedure sumTillOneDigit(n)
split n into it's digits
s := sum of all digits of n
if s has more than one digit:
sumTillOneDigit(s)
else
output s
I am intentionally writing this in pseudocode, since this should help you solving the task. I will not give you a Java implementation, as it looks like a homework to me.
For more information see:
https://en.wikipedia.org/wiki/Recursion_(computer_science)
http://introcs.cs.princeton.edu/java/23recursion/
You are getting that because you put the print statement in else condition..
Also note that to reset your sum value before reusing it. I.e. Set sum=0 at the start of do loop.
EDIT : there are two solutions to print you value
1. Don't put you print statements inside else conditions
Print sum outside the do while loop
First of all you must reset the value of sum variable.
and secondly you must print s in else condition and not the sum and rest is fine.
public static void main(String[] args)
{
int y=333;//if y is 777 i am getting blank
int sum;
String s;
char []ch;
do
{
sum=0;
s=String.valueOf(y);
ch=s.toCharArray();
if(ch.length>1)
{
for(int i=0;i<ch.length;i++)
{
sum+=Character.getNumericValue(ch[i]);
}
}
else
{
System.out.println(s);
}
y=sum;
}while(ch.length>1);
}
I think your solution has wrong basics. There is no point to convert your number to String and handle this as char array. You are doing too much unnecessary operations.
You can do is simpler if you stick with numbers.
You can do it using recursion:
public static int sumRec(int number){
if (number<10){
return number;
}
int sum = 0;
while(number!=0){
sum += number %10;
number /= 10;
}
return sumRec(sum);
}
or itteration
public static int sumIt(int number){
while(number>=10){
int sum = 0;
while(number!=0){
sum += number %10;
number /= 10;
}
number = sum;
}
return number;
}
it is much simpler, right?
You can solve this by 1 line:
public static int sumDigits(int n) {
return (1 + ((n-1) % 9);
}
For example: input 777--> return 1 + ( (777-1) % 9) = 3
Also can work with negative number.
Recursive variant
public static int myFunction(int num){
if(num/10 == 0){
return num;
}
int digitSum = num%10 + myFunction(num/10);
if(digitSum/10 == 0){
return digitSum;
}
return myFunction(digitSum);
}
public static int sum_of_digits(int n) {
return --n % 9 + 1;
}

How to print a variable as defined in a method?

public class Program {
public static void main(String[] args) {
int lastFibo = 1; // ADDED TO check if last fib calculated is over 4000000
for (int i = 3; lastFibo <= 4000000; i = i + (i - 1)) {
lastFibo = fibo(i);
}
}
public static int fibo(int i) {
int total = 0;
if (i % 2 == 0) {
total += i;
return total;
}
return total;
}
}
The purpose of this code is to print the sum of even numbers in the fibonacci sequence who's values are less than 4 million. Using recursion the code returns a stack overflow error so it was recommended to iterate through the numbers. The difficulty encountered was knowing how to print the "total" variable. Scope articles are very basic and creating a static int total = 0 would return 0.
First, as pointed out by some comments: your for loop will not iterate the Fibonacci sequence. Second, the variable total exists only in the scope of your fibo method. So every time the method is called, total starts with the value 0.
Use the correct Fibonacci algorithm and add the return value of the fibo method up to calculate the sum:
public class Program {
public static void main(String[] args) {
int total = 0;
int previousValue = 0;
int currentValue = 1;
while (currentValue < 4_000_000) {
int nextPreviousValue = currentValue;
currentValue += previousValue;
previousValue = nextPreviousValue;
total += fibo(currentValue);
}
System.out.println(total);
}
public static int fibo(int i) {
if (i % 2 == 0) {
return i;
}
return 0;
}
}
4_000_000 is an integer literal you can use since Java 7 for the number 4000000. The purpose of the underscores is to make it better readable for humans. Programmatically there is no difference to using 4000000. For details see Primitive Data Types in The Java Tutorials.
Note: This first part of the question was related to a misunderstanding. I supposed that it was necessary to calculated up to fib(4000000).
You must use BigInteger otherwise you can't handle so big numbers. It is a number with many thousands of digits!
fib(4000000) results in a number with over 835k digits. It is not possible to handle it with int or long.
The class BigInteger (or the equivalent BigDecimal for decimal values) borns to handle such kind of problems.
Note: this is the answer to the question
Now that the question is more clear it is possible to give the correct answer.
public void printEvenFib() {
int i = 1;
int lastFib = 1;
int sum = 0;
while (lastFib <= 4000000) {
if (lastFib % 2 == 0) {
sum += lastFib;
}
i++;
lastFib = fib(i);
}
System.out.println(sum);
}
// Without recursion
public int fib(int n) {
if (n <= 2) {
return 1;
}
int fibo1 = 1;
int fibo2 = 1;
int fibo = 0;
for (int i = 3; i <= n; i++) {
fibo = fibo1 + fibo2;
fibo2 = fibo1;
fibo1 = fibo;
}
return fibo;
}
class Program2{
public static void main(String args[]){
int n1=0,n2=1,n3,total=0,i;
for(i=1;n3<4000000;++i){
n3=n1+n2;
if(n3%2==0)
total+=n3;
n1=n2;
n2=n3;
}
System.out.println("total is "+total);
}
}

Need help printing the powers of two

The method printPowersOf2 accepts a max number as the argument and prints each power of 2 from 2^0 up to that max number.
printPowersOf2(3); outputs 1 2 4 8
printPowersOf2(5); outputs 1 2 4 8 16 32
I can't seem to figure out the right code to print. I have to use a loop and the *= operator. Math class not allowed. I know its something so simple too
Here is my code
public class Chap3LabP2 {
public static void main(String[] args) {
printPowersof2(3);
printPowersof2(5);
printPowersof2(10);
printPowersof2(12);
}
public static void printPowersof2(int maxNum){
System.out.print("1" + " ");
for(int i = 1; i <= maxNum; i++){
System.out.print(i*2 + " ");
}
System.out.println("");
}
}
Before the loop set i = 2. The loop body should be (pseudocode):
i *= 2
Print i
You can store the value of current power and in each iteration of the cycle multiply it by 2.
int pow = 1;
for(int i = 1; i <= maxNum; i++){
pow = pow * 2;
System.out.print(pow + " ");
}
public static void printPowersof2(int maxNum) {
int power = 0;
int answer = 1;
while (true) {
if (power <= maxNum) {
System.out.println(answer);
} else {
return;
}
answer *= 2;
}
}

Categories